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Preface

One of the greatest struggles of mathematics is that, while it finds many applica-
tions in a wide variety of fields, communicating it consistently proves to be rather
difficult. It comes as no surprise that mathematics is a fairly unpopular subject that
many find difficult to approach. What those many seem to misunderstand is that
mathematics is, as a matter of fact, so broad and varied and can be approached in so
many different way that it can also be reprocessed to be accessible for everyone due
to its pliability. An example of this are the works by prof.dr. Nelly Litvak, who has
written the book ’Who needs mathematics?’ in which she approaches mathematics
and its applications in digital technologies for the general public. In this book as
well as in her Facebook group, Nelly Litvak approaches mathematics through the
eyes of non-mathematically-minded people in order to elaborate and explain math-
ematics in terms accessible to them. Her effort in wanting to clearly communicate
mathematics to non-mathematically-minded adults poses the question whether or
not mathematics is currently being sufficiently well communicated to those outside
of circle of mathematicians. More often than not, it would indeed seem as though
mathematics, which is a universal language, forgets that not everybody is well versed
in the higher registry and that most people posses but a limited comprehension of
its complexity.
It is no secret that physics is one of the bigger fields to which mathematics is applied.
Many results find use in that discipline. Such a result would be von Neumann’s In-
equality, which finds an application in quantum mechanics permitting a rigorous
description of the theories within the field. While many physicist do have a broad
training in mathematics, the question remains whether or not results utilised in the
discipline are properly communicated. We may ask ourselves, as mathematicians,
why we choose to communicate mathematics in a certain fashion rather than an-
other.
In this thesis we provide a different approach to the proof of von Neumann’s In-
equality, aiming to give a proof which solely rests on Linear Algebra, a branch
of mathematics which is taught in the first year of study and accessible even for
engineering students and, therefore, more accessible than Functional Analysis, the
standard tool utilised when approaching von Neumann’s inequality. In doing so, we
shall first approach this different proof step by step by ensuring all utilised results
are based on Linear Algebra. We will then take a closer look at certain aspects of
the classical proof and we will then compare the two different approaches.
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Abstract

Von Neumann’s inequality asserts that, given a contraction T operator on
a Hilbert space H, the following inequality holds for any polynomial p with
complex coefficients:

‖p(T )‖ ≤ sup
|z|≤1
|p(z)|. (1)

The formulation of this theorem only requires elementary notions, yet the
proof is usually approached through Functional Analysis.
In this thesis this result is tackled utilising solely Linear Algebra, including
a proof of the Maximum Modulus Principle. In addition, variations on this
inequality will also be touched upon.
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1 Introduction
Von Neumann’s Inequality is a mathematical result belonging to Functional Anal-
ysis and Operator Theory and due to John von Neumann, a Hungarian-American
mathematician, physicist, computer scientist, engineer and polymath whose aim was
to integrate pure and applied sciences and who made major contributions to a myr-
iad of fields. He was the very first to establish a rigorous mathematical framework
for quantum mechanics. This framework is known as the Dirac–von Neumann ax-
ioms and was first introduced in his work "Mathematical Foundations of Quantum
Mechanics" in 1932. While this work was more of a summary of results that von
Neumann had established in earlier papers, it brought his ideas and discoveries to-
gether and reduced the physics of quantum mechanics to the mathematics of Hilbert
spaces and linear operators acting on them.
Among the results present in this thesis, we also encounter von Neumann’s Inequal-
ity, an inequality providing an upper bound for the norm of a polynomial of a
contraction T acting on a Hilbert space H, as follows:

‖p(T )‖ ≤ sup
z∈D
|p(z)|, (2)

where D is the closed unit disk in the complex plane.
This result in particular will be at the centre of this thesis. Historically, this in-
equality has been proved by means of Functional Analysis by using the dilation of
a contraction. A dilation is an operator acting on a larger Hilbert space of which H
can be seen as a subspace. Roughly speaking, the operator T equals the projection
of the dilation on H. As it turns out, it can be proven that every contraction has
a unitary dilation, i.e. a dilation that is unitary. The validity of von Neumann’s
inequality for the unitary dilation of the contraction T is easily proved thanks to the
unitary nature of this operator, as it follows directly from the Spectral Theorem.
Just a few extra steps are then required to prove that the inequality also must hold
for T itself. The structure of this proof enables it to be generally applicable to all
contraction acting on a Hilbert space, independently of whether or not they are nor-
mal or unitary. As a matter of fact, von Neumann’s inequality can be shown to hold
for normal operators as a consequence of the Spectral Theorem, completely bypass-
ing this proof technique. This is generally not the case, which is why in this thesis
we look at the more general case of von Neumann’s inequality for any contraction.
In doing so, we will also approach the proof from a different angle than the historical
one by solely relying on Linear Algebra rather than Functional Analysis and will
then show and compare the differences between the two proofs. This would seem a
natural course of action, as the statement of von Neumann’s inequality only involves
basic concepts from Linear Algebra. To this avail, we will first state notions and
results needed to prove von Neumann’s inequality and we will prove those results
when needed. We will then set out to prove von Neumann’s inequality and will later
give insight into certain details of its historical proof and how it differs from the
main result of this paper.
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2 Notions and prerequisites
In the following we introduce the required concepts and results from Linear Algebra
and Analysis. To this avail, it may then be of use to explicit and look back onto
some of the definitions needed as basis for the upcoming results.

The formulation of von Neumann’s Inequality requires us to be familiar with the
concept of bounded operator, contraction and objects such as the closed unit disk.
We recall that the closed unit disk around the point 0 is the set of points whose
distance from 0 is less than or equal to one: D = {z ∈ C : |z| ≤ 1}. In addition, we
define the unit circle as follows: ∂D := {z ∈ C : |z| = 1}.

Definition 2.1 (Bounded operator). A bounded linear operator T is a linear trans-
formation T : X → Y that maps bounded subsets of X to bounded subsets of Y ,
where X and Y are normed vector spaces, vector spaces equipped with a norm. T is
bounded if and only if there exists some M ≥ 0 such that

‖Tx‖Y ≤M‖x‖X

for all x ∈ X.
The smallest such M is the operator norm of T , ‖T‖.

In this thesis, all mentioned operators are assumed to be linear bounded opera-
tors.

Definition 2.2 (Contraction). A bounded linear operator T : X → Y between
normed vector spaces X and Y is said to be a contraction if its operator norm ‖T‖,
the induced norm ‖T‖ = sup

x 6=0

‖Tx‖
‖x‖ , is less or equal to 1.

Of importance is that the von Neumann’s Inequality is specifically defined for a
contraction acting on a Hilbert space, the definition of which is hereby included.

Definition 2.3 (Hilbert space). A Hilbert space H is a real or complex inner product
space and complete metric space with respect to the distance function induced by the
inner product.

We recall that by a complete metric space we mean that every Cauchy sequence
xn ∈ H converges to a point in H.
We here make notice of what the implications of this are: when talking about a
vector norm we namely will always connote the square root of the inner product, i.e.
‖x‖ =

√
(x, x), of the considered Hilbert space and when talking about an operator

or matrix norm we will always refer to the operator norm with respect to this vector
norm. Furthermore, the inner product of elements x and y is denoted as (x, y).

Definition 2.4 (Spectral Norm for Matrices). The Spectral Matrix Norm for a
matrix A ∈ Cn×m is defined as the largest singular value of A, which is the square
root of the largest eigenvalue of the matrix A∗A, where A∗ is the complex conjugate
of A. Hence

‖A‖ :=
√
λmax(A∗A) = σmax(A).
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We have here introduced the notation σmax(A), equivalent to
√
λmax(A∗A), also

known as the spectral radius of the matrix A. For completion, we, therefore, also
include the definition of the spectrum of a matrix.

Definition 2.5 (Spectrum of a matrix). Let V be a finite-dimensional vector space
over the field C and suppose that T : V → V is a linear operator. The spectrum of T ,
σ(T ), is the set of roots of the characteristic polynomial of T . Hence, the elements
of σ(T ) are the eigenvalues of T . In addition, if the matrix T has eigenvalues λi
(i = 1, 2, ..., n), σmax(T ) denotes the spectral radius of T and σmax(A) = max

i=1,...,n
|λi|.

As it turns out, as an addition to Definition 2.4, the following equality also holds:

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Lemma 1. The Spectral Matrix Norm for a matrix A ∈ Cn×m equals the induced
norm of such that

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Proof. In order to prove this result, we must prove that there exists a unit vector
x such that ‖A‖ = ‖Ax‖ and that ‖A‖ = sup

‖x‖=1

‖Ax‖. It suffices here to make use

of the induced matrix norm, according to which ‖A‖ = sup
y 6=0

‖Ay‖
‖y‖ . Let x = y

‖y‖ , then

clearly ‖x‖ = 1. Since ‖y‖ is a scalar, it holds that ‖Ay‖‖y‖ = ‖ Ay‖y‖‖. By this we may
then obtain that ‖A‖ = sup

y 6=0

‖Ay‖
‖y‖ = sup

y 6=0
‖ Ay‖y‖‖ = sup

‖x‖=1

‖Ax‖.

In addition to the already mentioned definitions, we will make use of particular
properties of unitary and hermitian matrices.

Definition 2.6 (Unitary, Hermitian and positive semidefinite matrices). A Unitary
matrix, a Hermitian matrix and a positive semidefinite matrix are defined as follows:

• Unitary matrix: A complex square matrix U ∈ Cn×n is unitary if its conju-
gate transpose U∗ is also its inverse. That is UU∗ = U∗U = In, where In is
the identity matrix of dimensions n× n.

• Hermitian matrix: A Hermitian or self-adjoint matrix is a square matrix
in Cn×n that is equal to its conjugate transpose. This means that a matrix A
is Hermitian ⇐⇒ A = A∗ ⇐⇒ aij = aji.

• positive semidefinite matrices: An n × n Hermitian matrix A is said to
be positive semidefinite if and only if xTAx ≥ 0 for all x ∈ Cn.

For completion, we shall also include the definition of a unitary operator.

Definition 2.7 (Unitary operator). An operator acting on an Hilbert space is said to
be unitary if its conjugate transpose U∗ equals its inverse. That is UU∗ = U∗U = I,
where I is the identity operator.

5



Relating to unitary operators, we also include the following two lemmas.

Lemma 2. Let U be a unitary operator. Then U is a bijective operator. Furthermore
‖Ux‖ = ‖x‖.

Proof. The first part is a simple consequence of the operator U being unitary. We
will, therefore, only take a look at the second part.
Let U be a unitary operator on a Hilbert space H and let x be in H. Then ‖Ux‖2 =
|(Ux, Ux)|. Since U is unitary, U∗U = I and U∗ = U−1, hence

‖Ux‖2 = |(Ux, Ux)| = |(x, U∗Ux)| = |(x, x)| = ‖x‖2.

This proves the given statement.

Finally, we include for completion the definition of an separable metric space,
which will later return when tackling von Neumann’s Inequality applied to an infinite
dimensional Hilbert space.

Definition 2.8 (Separable metric space). A metric space X is said to be separable
if and only if it contains a countable dense subset. In other words, a metric space X
is separable if and only if there is a countable set Z of X such that for every point
a ∈ X there is a sequence (xk)k∈N in Z such that xk → a as k →∞.

Aside from the already mentioned definitions and lemmas, we shall also include
two theorems needed later to prove von Neumann’s inequality.

Theorem 3 (Polar decomposition). Let A ∈ Cn×n, then there exist matrices P and
U , where U is a unitary matrix and P is a positive semidefinite Hermitian matrix,
such that A may be factorised as follows: A = UP .

Proof. Let A ∈ Cn×n. Let x1, x2, ..., xn be an orthonormal basis of eigenvectors for√
A∗A, which is a positive semidefinite matrix which exists because A∗A is normal.

This means that
√
A∗Axi = Pxi = λixi, where 1 ≤ i ≤ n. To demonstrate this

we consider the orthonormal set of vectors { 1
λ1
Ax1,

1
λ2
Ax2, ...,

1
λn
Axn}, which is an

orthonormal set.
We now turn this orthonormal set into the columns of a matrix and multiply it by
E, the adjoined of a matrix containing our original orthonormal basis of eigenvectors
for
√
A∗A. This yields our definition of U :

U =
(

1
λ1
Ax1

1
λ2
Ax2 · · · 1

λn
Axn

)
·
(
x1 x2 · · · xn

)∗
=
(

1
λ1
Ax1

1
λ2
Ax2 · · · 1

λn
Axn

)
· E.

Let us define the standard unit vector si ∈ Cn as [si]j = 0 whenever i 6= j and
[si]j = 1 whenever i = j. We then investigate the matrix vector product of E with

6



any element of the orthonormal basis for P .

Exi =
(
x1 x2 · · · xn

)∗
xi

= x∗1[xi]1 + x∗2[xi]2 + ...+ x∗i [xi]i + ...+ x∗n[xi]n

= 0 + 0 + ...+



0
0
...
1
...
0


+ ...+ 0 = si.

This means that Uxi = 1
λi
Axi. We now introduce P between our orthonormal

matrix U and our basis eigenvector xi. This yields:

UPxi = Uλixi = λiUxi = λi
1

λi
Axi = Axi.

Clearly then A = UP for the basis of eigenvectors x1, x2, ..., xn, [2]

The following theorem can be found in Friedman’s book on principles and tech-
niques of Applied Mathematics, [6].

Theorem 4 (Spectral Theorem). Let A ∈ Cn×n be a self-adjoint matrix. Then there
exists a unitary matrix Q ∈ Cn×n and eigenvalues λ1, ...λn of A such that Q∗Q = I
and Q∗AQ = diag(λ1, ...λn). The columns of Q form an orthonormal basis for Cn.

This theorem holds more generally for normal matrices, matrices which commute
with their conjugate transpose.
In addition, ‖A‖ = ‖diag(λ1, ...λn)‖ and ‖diag(λ1, ...λn)‖ = max

1≤i≤n
|λi| as we will

prove below.

Lemma 5 (Norm of a diagonal matrix). Let D be a diagonal matrix with diagonal
entries λi, i = 1, ..., n. Then for some unit vector x

‖D‖ = ‖diag(λ1, ...λn)‖ = max
1≤i≤n

|λi|.

Proof. As D = diag(λ1, ...λn), the following holds:

‖D‖ = ‖diag(λ1, ...λn)‖ = max
‖x‖=1

√√√√ n∑
i=1

λ2
ix

2
i

≤ max
‖x‖=1

max
1≤i≤n

|λi|

√√√√ n∑
i=1

x2
i

= max
1≤i≤n

|λi| max
‖x‖=1

‖x‖

= max
1≤i≤n

|λi|.

Let now x be an eigenvector of D corresponding to the largest eigenvalue. Conse-
quently ‖Ax‖ = max

1≤i≤n
|λi|. This then yields that ‖A‖ = max

1≤i≤n
|λi|.
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3 Maximum Modulus Principle
The previously shown definitions and results are not the only elements needed to
construct the proof of the von Neumann’s Inequality. The Maximum Modulus Prin-
ciple also plays a central role in the proof. As we have set as our goal to prove the
von Neumann’s Inequality solely relying on Linear Algebra, it is only natural that
all theorems we utilise during our proof also should be proved by Linear Algebra
or must, at the very least, be provable by means of Linear Algebra solely. In this
section we then set out to prove the Maximum Modulus Principle in such a fashion.
Before tackling the Maximum Modulus Principle and its proof, we must mention a
result we will use to demonstrate this theorem.

Lemma 6. A square matrix U is unitary if and only if it is unitarily equivalent to a
diagonal matrix D, with diagonal elements having all modulus one. In other words,
U is unitary if and only if there exists a unitary matrix T such that D = T ∗UT ,
where D is a diagonal matrix with diagonal elements all of modulus one. This implies
that ‖U‖ = ‖D‖ = 1.

Proof. This is a consequence of the Spectral Theorem, as U is normal.
Let U be unitary, by Theorem 4 there exists a unitary matrix T such thatD = T ∗UT ,
meaning that U and D are unitarily equivalent, since ‖U‖ = ‖D‖ = 1 and since
‖D‖ = max

i
|di| as by Lemma 5, where di (i = 1, ..., n, ) are the diagonal entries of

D. Since the diagonal elements of D are the eigenvalues of U , the statement follows
since eigenvalues of a unitary matrix have to have modulus one.
On the other hand, let now U be unitarily equivalent to to a diagonal matrix D, such
that the diagonal elements of D all have modulus one. Then there exists a unitary
matrix T such that D = T ∗UT . Since ‖D‖ = ‖T ∗UT‖ = ‖U‖ and since ‖D‖ = 1, it
must be that ‖U‖ = 1 and that U is unitary, seeing as U is a composition of unitary
matrices.

Given the previous lemma, we are now ready to state and demonstrate the
Maximum Modulus Principle. The statement as well as the proof will be based on
Orr Moshe Shalit’s article "A sneaky proof of the maximum modulus principle", [11].

Theorem 7 (Maximum Modulus Principle). Let f be a polynomial analytic in a
neighbourhood of the closed unit disc D. Then

max
z∈D
|f(z)| = max

z∈∂D
|f(z)|.

Proof. Suppose Theorem 7 indeed holds for polynomials, then let a function f be
analytic in a neighbourhood of D and choose ε > 0. There exists a polynomial p
such that sup

D
|f − p| < ε. Then

max
D
|f | = max

D
|p+ f − p|

≤ max
D
|p|+ max

D
|f − p| ≤ max

∂D
|p|+ ε

= max
∂D
|f + p− f |+ ε ≤ max

∂D
|f |+ max

∂D
|p− f |+ ε

≤ max
∂D
|f |+ 2ε.
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For ε arbitrarily small it then follows that

max
D
|f | ≤ max

∂D
|f |. (3)

Let now f be a polynomial and let n be the degree of the polynomial f and let z be
any point belonging to D. Set s =

√
1− |z|2 and define the unitary (n+1)× (n+1)

matrix

U =


z 0 · · · 0 s
s 0 · · · 0 −z
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0

 .

The matrix U is unitary as

UU∗ =


z 0 · · · 0 s
s 0 · · · 0 −z
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0




z s 0 · · · 0

0 0 1
. . . ...

...
... 0

. . . 0

0 0
... . . . 1

s −z 0 · · · 0



=


z2 + s2 zs− zs 0 · · · 0

zs− zs s2 + z2 0
. . . ...

0 0 1
. . . 0

... . . . . . . . . . 0
0 · · · 0 0 1



=


z2 + 1− |z|2 0 0 · · · 0

0 1− |z|2 + |z|2 0
. . . ...

0 0 1
. . . 0

... . . . . . . . . . 0
0 · · · 0 0 1



=


1 0 0 · · · 0

0 1 0
. . . ...

0 0 1
. . . 0

... . . . . . . . . . 0
0 · · · 0 0 1

 = U∗U.

Let now P denote the (n+ 1) column vector of the form

P =


1
0
...
0

 .
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We may then see that the equality zk = P TUkP holds for all k = 1, ..., n. Since the
degree of f is n, we utilise this equality to express f(z) in terms of f(U) as follows:

f(z) = P Tf(U)P =
(
1 0 · · · 0

)

f(z) f(0) · · · f(0) f(s)
f(s) f(0) · · · f(0) f(−z)
f(0) f(1) f(0) · · · f(0)
... . . . . . . . . . ...

f(0) · · · f(0) f(1) f(0)




1
0
...
0

 .

f(z) = P Tf(U)P . Note now that

‖P‖ =

∥∥∥∥∥∥∥∥∥


1
0
...
0


∥∥∥∥∥∥∥∥∥ =
√

12 + 02 + . . .+ 02 =
∥∥(1 0 · · · 0

)∥∥ = ‖P T‖ = 1,

which yields the following result:

|f(z)| = |P Tf(U)P | ≤ ‖P T‖‖f(U)‖‖P‖ = ‖f(U)‖.

By Lemma 6 we know that the matrix U is unitarily equivalent to a diagonal matrix
diag(w1, ..., wn+1), where |wi| = 1 for all i = 1, ..., n+ 1. Furthermore

f(diag(w1, ..., wn+1) = diag(f(w1), ..., f(wn+1)).

Hence

|f(z)| ≤ ‖f(U)‖ = ‖diag(f(w1), ..., f(wn+1))‖ = max
1≤i≤n+1

|f(wi)| ≤ max
∂D
|f |.

Having proven that |f(z)| ≤ max
∂D
|f |, combined with Equation (3) that max

D
|f | ≤

max
∂D
|f |, indeed proves Theorem 7.
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4 Von Neumann’s Inequality
Now that the Maximum Modulus Principle has been proven by means of Linear
Algebra, we are ready to state and prove the main result of this paper: von Neu-
mann’s Inequality. In order to prove this result, we need several lemmas, which we
will state and prove hereafter.

Lemma 8. For every matrix A ∈ Cnn there exist unit vectors x and y such that
‖A‖ = |(Ax, y)| and such that ‖A‖ = sup

|x|=1,|y|=1

|(Ax, y)|.

Proof. By Lemma 1 there exists a sequence (xn) bounded in Cn such that |xn| = 1.
Therefore, there exists a subsequence and ‖Axn‖ → ‖A‖ as n → ∞. Since {y ∈
Cn : ‖y‖ = 1} is complex, there exists a subsequence (xnk

) of (xn), which converges
to x. Since A is continuous, Axnk

converges to Ax and thus ‖Axn‖ converges to
‖A‖, as A is compact.
To see the second identity, note that by Cauchy-Schwartz the following inequality
holds: ‖A‖ ≥ sup

‖x‖=1,‖y‖=1

|(Ax, y)|.

On the other hand

sup
‖x‖=1,‖y‖=1

|(Ax, y)| ≤ sup
‖x‖=1,‖y‖=1

‖Ax‖‖y‖

= sup
‖x‖=1,‖y‖=1

‖Ax‖

≤ sup
‖x‖=1,‖y‖=1

|‖A‖‖x‖ = ‖A‖,

meaning that sup
‖x‖=1,‖y‖=1

|(Ax, y)| ≤ ‖A‖.

Since ‖A‖ ≥ sup
‖x‖=1,‖y‖=1

|(Ax, y)| and sup
‖x‖=1,‖y‖=1

|(Ax, y)| ≤ ‖A‖, the following must

hold: sup
‖x‖=1,‖y‖=1

|(Ax, y)| = ‖A‖.

This proves the lemma.

We may now state and prove von Neumann’s Inequality for contractions T acting
on a finite dimensional Hilbert space, meaning we prove this result for the case in
which the operator is represented by a matrix. The following theorems and proofs
are all based on Gilles Pisier’s book (Ch.1, p.13-14), [9].

Theorem 9 (von Neumann’s Inequality for a finite dimensional Hilbert Space).
Let T be a contraction acting on a finite dimensional Hilbert space and let p be any
polynomial with complex coefficients. Then:

‖p(T )‖ ≤ sup
z∈D
|p(z)|. (4)

Proof. Let T be a contraction acting on a finite dimensional Hilbert space, meaning
that the operator T maps the Hilbert space on which it is acting to itself. The
operator T can, therefore, be represented by a complex square n × n matrix, i.e.
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T ∈ Cn×n, where n equals the dimension of the space. Since T is a square matrix,
we may factorise it according to the polar decomposition, Theorem 3, such that

T = UT ,

where U ∈ Cn×n is a unitary matrix and T is a positive semidefinite Hermitian
matrix. We note that by the Spectral Theorem, Theorem 4, T is unitarily diago-
nalisable, since it is Hermitian, meaning that we may find a unitary matrix P such
that T = P ∗DP , where D is a diagonal matrix. We note that

‖T‖ = ‖UT‖ = ‖T‖ = ‖P ∗DP‖ = ‖P ∗‖‖D‖‖P‖ = ‖D‖,

since matrices U and P (and thus also of P ∗) are all unitary, meaning they have no in-
fluence whatsoever on the norm of the matrices they compose as follows from Lemma
2. Following this we obtain that ‖D‖ = ‖T‖ ≤ 1, since T is a contraction by assump-
tion. This implies that there exist λj, j = 1, ..., n, such that D = diag(λ1, ..., λn)
and

||D|| =

∥∥∥∥∥∥∥∥∥∥∥


λ1 0 0 · · · 0
0 λ2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 λn−1 0
0 0 · · · 0 λn



∥∥∥∥∥∥∥∥∥∥∥
= max

1≤j≤n
|λj| ≤ 1 (5)

by Lemma 5. Therefore, |λj| ≤ 1, 1 ≤ j ≤ n. Let now

T (z1, ..., zn) = UP ∗


z1 0 0 · · · 0
0 z2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 zn−1 0
0 0 · · · 0 zn

P

for |zi| ≤ 1, i = 1, ..., n, such that T (λ1, ..., λn) = T . Let now z = z1 and fix zi,
i = 2, ..., n. Then

T (z, z2, ..., zn) = UP ∗


z 0 0 · · · 0
0 z2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 zn−1 0
0 0 · · · 0 zn

P

Now take p to be any polynomial in one variable with complex coefficients. Then
p(T (z, z2, ..., zn)) = (p(z))ij, i, j = 1, 2, ..., n.
By Lemma 8 there exist unit vectors x and y such that ‖p(T (z))‖ = |(p(T (z))x, y)|,
where x and y depend on z, p and T . We note that (p(T (z))x, y) is a polynomial
in the variable z. Therefore, the Maximum Modulus Principle, Theorem 7, can be
applied for the running variable z. This yields

‖p(T (z1, ..., zn))‖ = |(p(T (z))x, y)| ≤ max
z∈∂D
|(p(T (z))x, y)| ≤ max

z∈∂D
‖p(T (z)‖.

12



This is done iteratively, each time fixing a different z = zi for i = 1, ..., n, which
gives, in particular,

‖p(T (λ1, ..., λn))‖ ≤ sup
z1,...,zn∈∂D

‖p(T (z1, ..., zn)‖.

We note that, for z1, ..., zn ∈ ∂D, (T (z1, ..., zn) is unitary by Lemma 6 and may then
be diagonalised in such a way that

T (z1, ..., zn) = V ∗


z1 0 0 · · · 0
0 z2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 zn−1 0
0 0 · · · 0 zn

V,

where V , and therefore also V ∗, is a unitary matrix. We apply p once again to this
equality and obtain that

p(T (z1, ..., zn)) = V ∗


p(z1) 0 0 · · · 0

0 p(z2) 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 p(zn−1) 0
0 0 · · · 0 p(zn)

V.

Hence

‖p(T (z1, ..., zn))‖ =

∥∥∥∥∥∥∥∥∥∥∥
V ∗


p(z1) 0 0 · · · 0

0 p(z2) 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 p(zn−1) 0
0 0 · · · 0 p(zn)

V

∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥


p(z1) 0 0 · · · 0

0 p(z2) 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 p(zn−1) 0
0 0 · · · 0 p(zn)



∥∥∥∥∥∥∥∥∥∥∥
≤ sup

z∈∂D
|p(z)|.

Hence this proves that

‖p(T (λ1, ..., λn))‖ ≤ sup
z∈∂D
|p(z)|.

In addition, by the maximum principle it is given that sup
z∈D
|p(z)| = sup

z∈∂D
|p(z)|.

Therefore,

||p(T )|| = ||p(T (λ1, ..., λn))|| ≤ sup
z∈∂D
|p(z)| = sup

z∈D
|p(z)|,

which concludes the proof of our statement.
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We here make note of the fact that von Neumann’s Inequality also holds for poly-
nomials p in multiple variables, analytic in each variable. The proof follows then
directly from the proof here above: instead of fixing z, we consider all z1, i = 1, ..., n
and |zi| = 1, at the same time. The Maximum Modulus Principle is then applied
repeatedly in each variable.

Having proven von Neumann’s Inequality for the finite dimensional case, we will
now state and approach the proof of the infinite dimensional case, the inequality as
classically stated and the result we truly aim to prove. We first though will state
and prove a lemma that we will need in order to prove this more general result. To
this avail, we will also include the definition of an orthogonal projection operator.

Definition 4.1 (Orthogonal projection operator). A complex operator P is an or-
thogonal projection if it is a linear operator such that P 2 = P and P ∗ = P .

Lemma 10. Let P be an orthogonal projection operator. Then then norm of P is
smaller or equal to one, i.e. ‖P‖ ≤ 1.

Proof. Let P be an orthogonal projection operator and x be any vector. Then

‖Px‖2 ≤ ‖Px‖2 + ‖(I − P )x‖2 = ‖x‖2,

which proves our statement as ‖P‖ ≤ 1.

Theorem 11 (Von Neumann’s Inequality). Let T be a contraction acting on a
Hilbert space H and let p be any polynomial with complex coefficients. Then:

‖p(T )‖ ≤ sup
z∈D
|p(z)|, (6)

where D is the closed unit disk.

Proof. If H is finite dimensional, then the statement follows from Theorem 9. For
simplicity of notation, we shall assume the infinite dimensional Hilbert space H to
be separable. This is allowed seeing as H admits a countable orthonormal basis.
Let then {En} be an increasing sequence of finite dimensional subspaces of H such
that

⋃
En = H. Now let Pn be the orthogonal projection from H onto En and

set Tn = PnTJn, where Tn is the mapping Tn : En → En and Jn is the embedding
from En to H. This projection exists, since En is finite dimensional, meaning that
there exists an orthonormal basis for En. As follows from Lemma 10, the norm of
an orthogonal projection operator is smaller or equal to 1, because of which the
following inequality holds:

‖Tn‖ = ‖PnTJn‖ ≤ ‖Pn‖‖T‖‖Jn‖ = ‖T‖.

Hence ‖Tn‖ ≤ ‖T‖. By Theorem 9, we already know that ||p(Tn)|| ≤ sup
z∈D
|p(z)|

for any polynomial with complex coefficients in one variable. We observe now that
Tnx → Tx whenever n → ∞ for any x ∈ H. It then follows that p(Tn)x → p(T )x
as n→∞ for all x ∈ H. From this we deduce that the following inequality holds:

‖p(T )‖ ≤ sup
z∈D
|p(z)|.

This then concludes the proof for the infinite dimensional case.
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At this point, the question might naturally arise whether or not a variation on
von Neumann’s Inequality exists which holds for operators of norm greater than 1.
As it turns out, that is indeed the case.

Theorem 12 (Von Neumann’s Inequality for any operator). Let T be any operator
acting on an infinite dimensional Hilbert space and let p be any polynomial with
complex coefficients, then:

‖p(T )‖ ≤ sup
|z|≤‖T‖

|p(z)|. (7)

Proof. Consider the operator T = T
‖T‖ . Clearly ‖T‖ = ‖T‖

‖T‖ = 1, hence T is a
contraction acting on a Hilbert space H. The statement follows then from Theorem
11.
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5 MaximumModulus Principle: a different approach
As we had previously mentioned, we wanted to consider the proof of von Neumann’s
Inequality to be purely based on Linear Algebra if all results utilised in the proof
also are proved relying solely on Linear Algebra. In regards to Theorem 9, the
proof of this theorem barely required us to utilise results belonging to Functional
Analysis. It did though require us to prove certain results again in order for those
not to rely anymore on Functional Analysis. As for Theorem 11, one might argue
that the proof of this statement is not entirely based on Linear Algebra, as we did
make use of separable metric spaces, which are concepts belonging to Analysis. As
it turns out though, it is not just the proof of our main result that we have had to
modify to fit our goal, but also the proof of one of the theorems utilised to approach
it. The validity of Theorem 7 is usually demonstrated in a very different fashion by
utilising properties belonging to Functional Analysis.
Before moving forward and analysing the two proofs side by side, we see it fit to
take a short look at how the Maximum Modulus Principle is usually tackled. To
this avail, we shall include and prove a lemma needed for the proof and also propose
and prove the Maximum Modulus Principle as done in Edward B. Saff and Arthur
David Snider’s book, [10].
We must briefly recall that a domain is an open connected set in C.

Lemma 13. Suppose that f is analytic in a disk centred at z0 and that the maximum
value of |f(z)| over this disk is |f(z0)|. Then |f(z)| is constant in the disk.

Proof. Assume that |f(z)| is not constant. Then there must exist a point z1 inside
the disk such that |f(z0)| > |f(z1)|. Let CR denote the circle centred at z0 which
passes through z1 with radius R = |z1−z0|. Then |f(z0)| ≥ |f(z)| for all z on CR by
assumption. In addition, by the continuity of f , the strict inequality |f(z0)| > |f(z)|
must hold for z on a subset of CR containing z1. Seeing as CR may be parametrised
as z = z0 + Reit, this leads to a contradiction of the following equation, derived by
the Cauchy formula for f :

f(z0) =
1

2πi

∮
CR

f(z)

z − z0

dt

=
1

2πi

∫ 2π

0

f(z0 +Reit)

Reit
iReitdt

=
1

2π

∫ 2π

0

f(z0 +Reit)dt.

This is because, since |f(z0)| > |f(z1)|, the subset containing z1, when evaluated
through this integral, would produce a deficit, which could only be made up by
another point z2 on CR for which |f(z0)| < |f(z2)|. That is a clear contradiction,
since z0 is the maximum attained by the function f . Must must, therefore, be
constant inside this disk.

We may now show the more classical approach to the Maximum Modulus Prin-
ciple.
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Theorem 14 (Maximum Modulus Principle). If f is analytic in a domain D and
|f(z)| achieves its maximum value at a point z0 in D, then f is constant in D.

Proof. Suppose that |f(z)| is not constant. Then there must exist a point z1 in D
such that |f(z1)| < |f(z0)|. Let γ be a path in D running from z0 to z1 and consider
the values of |f(z)| for z on γ, starting at z0. We should expect to find a point w
along γ where |f(z)| first starts to decrease. That is, there should be a point w on
γ which fulfils the following properties:

• |f(z)| = |f(z0)| for all z preceding w on γ.

• There are points z on γ, arbitrarily close to w, where |f(z)| < |f(z0)|.

Note that w may coincide with z0. In addition, from the first mentioned property
and the continuity of f , we have that |f(w)| = |f(z0)|.
Since every point of a domain is an interior point, there must be a disk centred
at w that lies in D. Since Lemma 13 applies and says that |f | is constant in
this disk, contradicting property the second mentioned property, we are forced to
conclude that the initial supposition about the existence of z1 must be incorrect.
Consequently |f |, and therefore f itself, is constant in D.

One may immediately notice that, while the are both named the Maximum Mod-
ulus Principle, Theorem 7 and Theorem 14 are extremely different. As a matter of
fact, they are two ’different’ theorems. Theorem 7 is a weaker version than Theo-
rem 14, as Theorem 7 does show that the maximum of a function f , analytic on a
certain domain in the shape of a disk, must be obtained on the boundary of this
disk, but it mentions nothing about the behaviour of the function in the case that
the maximum is obtain on the interior. Theorem 14 makes mention of this and
proves that no non-constant function can reach it’s maximum on the interior of said
disk. What’s more, the proofs are also clearly very different and not just in what
sort of mathematical theory they rely upon. Theorem 7 has a rather lengthy proof
that requires multiple steps, while Theorem 14 relies much more on intuition and
requires few simple steps.
What is especially interesting about these differences is that, while Theorem 14 de-
mands more advanced mathematics to be known, its proof is much easier then the
one of Theorem 7. This might very well be the reason why this version of the Max-
imum Modulus Principle, relying on Functional Analysis, is usually utilised when
proving von Neumann’s inequality instead of the version presented in Theorem 14,
in spite of the fact that the latter relies on Linear Algebra, a wider spread and better
known branch of mathematics.

We must of course also make note of the differences present in the proof itself.
The historical proof makes use of the dilation of the contraction T acting on the
Hilbert spaceH in question. This dilation is an operator acting upon a larger Hilbert
space of which H is a subspace and it can be orthogonally projected onto H in order
to obtain T . Since T is a contraction, this dilation must be a unitary operator for
which the validity of von Neumann’s inequality follows directly from the Spectral
Theorem, Theorem 4. Proving the same statement for T becomes then a direct
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consequence of the previous steps.
Both methods try to accomplish the same: starting with the contraction T , one tries
to find a unitary matrix relating to T for which von Neumann’s inequality holds and
by which its validity also can be proven for T . The main difference lies then in how
this unitary matrix is found. In the paper we accomplished that by a combination of
the Polar Decomposition, Theorem 3, and the Spectral Theorem, Theorem 4, while
in the historical proof only one step is needed: it suffices to prove that the dilation
of T is indeed unitary. The latter, while it rests on more difficult mathematics, is
a simpler and shorter approach, while the result provided in this paper is certainly
accessible to a much broader audience. This might very well be a reason why this
proof is preferable to the historical one.
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6 Variations on von Neumann’s Inequality
Von Neumann’s inequality shows that a contraction T acting upon an Hilbert space
H is polynomially bounded. By this we mean that

‖p(T )‖ ≤ sup
z∈D
|p(z)|, (8)

for any polynomial p with complex coefficients and where D is the closed unit disk.
One may wonder whether or not the closed unit disk is the only set which can
provide such a bound and, in fact, that is not the case. Several more inequalities
and bounds have been found since, even for operators that are not contractions.
In this section we will first look into a possible new set Ω and will try to define
its characteristics and how these relate to the other inequalities and bounds that
have been defined since von Neumann’s inequality. In particular, we will discuss
Crouzeix’s Conjecture and will reflect upon whether or not this conjecture provides
a better or worse bound for an operator T acting on a Hilbert space.

6.1 About the eigenvalues of T

Firstly we are interested in knowing how this new set Ω relates to the spectrum of
the operator T . By Theorem 9, we are aware that Ω must contain all eigenvalues of
T whenever T is a contraction and Ω = D, but can that be said for any operator T
and every set Ω for which von Neumann’s inequality holds?
That is certainly the case for self-adjoint matrices as can be derived by Theorem 12,
Theorem 4 and the definition of the spectral norm. In fact, self-adjoint matrices have
a so-called, spectral decomposition. This entails that a self-adjoint matrix T may be
rewritten as the sum of each of its eigenvalues times the orthogonal projection onto
the eigenvalue space. In other words, if T is a self-adjoint matrix with eigenvalues
λ1, λ2, ..., then

T = Pλ1λ1 + Pλ2λ2 + ...,

which is referred to as the spectral decomposition of T . By this spectral decompo-
sition we may see that the norm of a Hermitian operator is equal to the spectral
radius of T , σmax(T ). As we have seen from Theorem 12: let T be any operator
acting on an infinite dimensional Hilbert space and let p be any polynomial with
complex coefficients, then:

‖p(T )‖ ≤ sup
|z|≤‖T‖

|p(z)|. (9)

The norm of z must hence be smaller or equal to that of T , but the norm of T
is equal to σmax(T ), the modulus of the largest eigenvalue of T . Since |z| ≤ ‖T‖
describes a disk with radius ‖T‖, this disk comprises all eigenvalues of T and Ω must
at least be equal to this disk, hence Ω ⊇ σ(T ).
Before continuing, we must make note of the fact that the set σ(T ) is defined in a
slightly different fashion for operators than for matrices. In fact, the spectrum of
an operator contains more than just the eigenvalues of that operator. This does not
impact what has been said before, but we will include, for clarity, this definition as
well.
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Definition 6.1 (Spectrum for operators). Let T be a linear operator acting on
a Hilbert space H over the field C and let I be the identity operator on H. The
spectrum of T , σ(T ), is the set of all λ ∈ C for which the operator λI − T does not
have an inverse that is a bounded linear operator.

As we have just seen, the set Ω for self-adjoint operators must clearly contain
the spectrum of the operator taken into consideration and, in fact, that is the case
for all operators as follows from the following theorem.

Theorem 15. Let T be any operator acting on a Hilbert space H and let Ω be a
closed bounded set such that for any polynomial p

‖p(T )‖ ≤ c sup
z∈Ω
|p(z)|,

where c ∈ R is a scalar independent of p. Then Ω ⊇ σ(T ).

Proof. Suppose there exists some element λ ∈ σ(T ) that is not contained in Ω. Since
λ /∈ Ω, the following inequality must hold for f(z) = 1

λ−z , seeing as f may be written
as a uniform limit of polynomials on Ω:

‖(λI − T )−1‖ ≤ c sup
z∈Ω
| 1

λ− z
|.

This implies that the inverse (λI −T )−1 of the operator λI −T exists as a bounded
operator. This clearly contradicts Definition 6.1, since we had assumed λ to be an
element of σ(T ). It must then be the case that λ ∈ σ(T ) implies that λ ∈ Ω.

Now that we have established that Ω ⊇ σ(T ), we must ask ourselves whether or
not Ω = σ(T ) is a suitable candidate. We will show that is not the case through a
counterexample.
Let T be an operator of the following form:

T =

(
0 1
0 0

)
.

This operator T has eigenvalue 0 with multiplicity of 2. This implies that

σmax(T ) = max
1≤i≤2

|λi| = max{|0|} = |0| = 0.

Furthermore, σ(T ) = {0}. Suppose now that indeed Ω = σ(T ). Then the following
inequality should hold for any polynomial p:

‖p(T )‖ ≤ |p(0)|.

This does not hold for just any polynomial p. Take for example p = z. This yields
the following inequality: ∥∥∥∥(0 1

0 0

)∥∥∥∥ = 1 ≤ 0 = c sup
z∈{0}

z

Clearly the inequality does not hold, not even for large values of c. Hence it can not
be the case that Ω = σ(T ).
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6.2 The numerical range

As it turns out, a good candidate for Ω is the numerical range of an operator.

Definition 6.2 (Numerical range of an operator). Let T be an operator acting on a
complex Hilbert space, then the numerical range of T , denoted as W (T ), is defined
as follows:

W (T ) = {(Tx, x) ∈ C : ‖x‖ = 1}.
This is clearly a smaller set than D if T is a contraction, as we will later see from

Lemma 17, but does it then also provide a lower upper bound for von Neumann’s
inequality?
Before answering this question, it is of importance we state and prove certain prop-
erties belonging to the numerical range of our operator T . First of all we shall show
that W (T ) is a convex set following a proof by Karl Gustafson of the Toeplitz-
Hausdorff Theorem, [7].

Theorem 16 (Toeplitz-Hausdorff). The numerical range W (T ) of an arbitrary lin-
ear operator T in a Hilbert space is convex.

Proof. It suffices to consider the situation (Tx1, x1) = 0, (Ax2, xz2) = 1, ‖xi‖ = 1
(i = 1, 2). This because W (µT + γI) = µW (T ) + γ for scalars µ, γ ∈ C.
Let x = αx1 + βx2, α, β ∈ R, and require that

‖x‖2 = ‖αx1 + βx2‖2 = α2 + β2 + 2αβRe(x1, x2) = 1 (10)

and that for each λ, 0 ≤ λ ≤ 1

(Ax, x) = β2 + αβ{(Ax1, x2) + (Ax2, x1)} = λ (11)

If (Ax1, x2) + (Ax2, x1) ∈ R, then the system described by Equations (10) and (11)
clearly possesses solutions.
In fact, (Ax1, x2) + (Ax2, x1) can always be guaranteed to be real by using an ap-
propriate (scalar multiple of) x1.

Secondly, we shall show that the numerical range of an operator T is a subset of
the ball of radius ‖T‖ about the origin.

Lemma 17. The numerical range of an operator T , W (T ), is a subset of the disk
|z| ≤ ‖T‖.
Proof. Let z = (Tx, x) for ‖x‖ = 1. Then

|z| = |(Tx, x)| = |(x, Tx)| ≤ ‖x‖‖Tx‖ ≤ ‖x‖2‖T‖ = ‖T‖.

Clearly then |z| ≤ ‖T‖ for all z ∈ W (T ). This proves that W (T ) is a subset of the
disk of radius ‖T‖ centred at 0.

It is this second property in particular which eventually led to the result proved
by Okubo and Ando, [1]. Okubo and Ando proved that D is a complete c-spectral
set for a contraction T . In other words, they proved that D is a set Ω for which the
equality

‖p(T )‖ ≤ c sup
z∈Ω
|p(z)|

holds.
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Theorem 18 (Okubo-Ando Inequality). Let T be a contraction acting on a Hilbert
space H. If W (T ) ⊆ D, then the following equation holds for all polynomials p with
complex coefficients:

‖p(T )‖ ≤ 2 sup
z∈D
|p(z)|.

One may already notice that, while this inequality holds at the cost of c = 2, it
also relies on the weaker assumption that W (T ) ⊆ D.

6.3 Crouzeix’s Conjecture

Theorem 18 paved the path to a more general inequality which could hold for all
operators T and their numerical range W (T ). Such an inequality was produced
by Michel Crouzeix, who in 2006 produced a paper in which he proved this more
general inequality would hold for c = 11.08, [5].
Theorem 19 (Crouzeix’s Theorem). Let T be an operator acting on a Hilbert space
H and let p be any polynomial with complex coefficients. Then

‖p(T )‖ ≤ 11.08 sup
z∈W (T )

|p(z)|.

Once again, while this inequality holds at the great cost of c = 11.08, it also relies
on the weaker assumption, making the statement weaker as a whole. This bound
has though since changed as in 2017 Crouzeix and Palencia found and proved that
there exists a much better upper bound for this inequality, [4].
Theorem 20. Let T be an operator acting on a Hilbert space H and let p be any
polynomial with complex coefficients. Then

‖p(T )‖ ≤ (1 +
√

2) sup
z∈W (T )

|p(z)|.

Thus far, this has been the lowest bound to be found and proven, although
Michel Crouzeix also released a paper in 2004 in which he supposed there to an even
lower bound, [3].
Conjecture 1 (Crouzeix’s conjecture). Let T ∈ Cn×n be an operator acting on a
Hilbert space H and let p be any polynomial with complex coefficients. Then

‖p(T )‖ ≤ 2 sup
z∈W (T )

|p(z)|.

Unfortunately, Crouzeix’s conjecture has thus far only been proven for n = 2
and still an open problem for n > 2. One thing is certain, for Ω = W (T ) there is no
lower bound possible than c = 2. This can be easily seen if we consider the operator

T =

(
0 2
0 0

)
and p(z) = z. Then

‖p(T )‖ =

∥∥∥∥(0 2
0 0

)∥∥∥∥ = 2 ≤ c sup
z∈W (T )

|p(z)| = c sup
z∈W (T )

|z| = c.

For this inequality to hold, clearly c must at least be equal to 2, hence no lower
bound can be found. Once again, this could inequality holds at cost of c = 2, but
once more relies on the weaker assumption, making the statement weaker as a whole.

22



7 Conclusion
As we have seen throughout this thesis, although von Neumann’s inequality’s proof
has origin in a mathematical field very different to the one we used to approach it,
it still stands when backed up by Linear Algebra. In particular, we should mention
that it is rather surprising that the Maximum Modulus Principle, Theorem 7, which
belongs to and finds its use in Complex Analysis, may also be proven by means of
Linear Algebra. The possibility to achieve this is really what makes it possible to let
von Neumann’s Inequality rest solely on Linear Algebra, while preserving all of its
properties. In fact, the result attained in this thesis was only possible thanks to the
combination of certain already existing techniques attributed to Orr Moshe Shalit,
[11], and Gilles Pisier, [9]. In order to do this, we first recalled all needed notions
and prerequisites, such as the definition of a contraction or the Spectral Theorem.
We then proved the Maximum Modulus Principle by means of Linear Algebra and
used this result in proving von Neumann’s Inequality. In addition, we also peeked
into the classical proof of von Neumann’s Inequality and into variations of this in-
equality. Of particular interest is that Crouzeix’s conjecture, Conjecture 1, is still an
open problem on which more research could be done. Furthermore, Okubo-Ando’s
Inequality, Theorem 18, offers options for further research in line with what has
been achieved in this thesis: would it be possible to prove Okubo-Ando’s Inequality
only utilising techniques belonging to Linear Algebra?

As a final remark, we would like to briefly touch upon the applications of inequalities
similar to von Neumann’s. Such inequalities may be used to bound the error when
solving huge Linear Systems, [8].
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