

Analysing and visualising data to improve the productivity level

of an Agile organised company

Bachelor thesis

Ceret van der Vegt

Industrial Engineering & Management

 Bachelor

University of Twente

02-07-2021

Page 2 of 92

Analysing and visualising data to improve the productivity level

of an Agile organised company

Author University of Twente
Ceret van der Vegt Drienerlolaan 5

S2145677 7522 NB Enschede
BSc Industrial Engineering & Management Netherlands

A.S. Watson Group First supervisor
Nijborg 17 prof. dr. J. van Hillegersberg

3927 DA Renswoude Faculty of BMS, IEBIS
The Netherlands

Supervisor A.S. Watson Group Second supervisor
Mr. B. Jekel dr. G. Sedrakyan

A.S. Watson Group IT Europe Faculty of BMS, IEBIS
Product owner

Page 3 of 92

Preface
This document contains my bachelor thesis on “how to analyse and visualise data to improve the

productivity level of an Agile organised company”, to complete the bachelor Industrial Engineering and

Management at the University of Twente.

I would like to thank my company supervisor Bram Jekel for supporting me every Friday morning during

my research. I would like to thank Laurens Priemis for giving me the opportunity to do my graduation

at the CRM Tribe of A.S. Watson. Also a special thanks to Menno Noorloos, who supported me during

my research on the IT systems and different coding parts.

Furthermore, I would like to thank my supervisor Jos van Hillegersberg from the University of Twente,

for sharing his enthusiasm about the subject and providing me feedback. Moreover, I would like to

thank Gayane Sedrakyan for providing me feedback on my concept version to bring my research to a

higher level. Besides my supervisors, a special thanks to my fellow student Lisa Nonhof, for stimulating

each other and for her suggestions on improving my research.

Ceret van der Vegt

Page 4 of 92

Management summary

Introduction

AS Watson Group is the world’s largest international health and beauty retailer. The Group is a member

of CK Hutchison Holdings, also known as Hutchison Whampoa. A.S. Watson operates in four different

sectors: health & beauty, luxury perfumeries & cosmetics, food, electronics & wine and last beverages.

The CRM department, part of Group IT Europe, is responsible to deal with the software related

changing needs of its customers to put a smile on its customers’ faces.

Research is conducted within this CRM department. The CRM department is continuously improving

the process to ensure their services are matching the changing techniques and needs of their internal

as well as external customers as closely as possible. Having an optimal productivity level is importa nt

to ensure high quality of their services in this dynamic environment. To be able to respond adequately

to those changing needs, a clear overview of different processes is necessary. However, A.S. Watson

is not aware of which problems are affecting the productivity level. Currently, decisions to react on

changing needs are made based on feelings instead of on data. Therefore, a dashboard with a set of

metrics suitable for the CRM Tribe is necessary to identify the problems affecting the productivity level

to be able to ensure high quality solutions.

Research approach

To identify a proper solution for the company, different research methods were used. A company

analysis is conducted by doing a bottleneck analysis with process mining and by having conversations

with employees, a survey is held, literature reviews are conducted, data is analysed, and the own

expertise is used.

The solution
During the research, the following is found to solve the problem:

1) Important bottlenecks to monitor

2) Desired improvements by employees

3) Suggestions on increasing productivity by literature

4) Visualisation suggestions on tools and charts

5) Optimal set of metrics with explanations

6) Recommended dashboards

Conclusions & recommendations
A combination of the findings above results in a recommendation for a CRM Tribe (department)

dashboard with concerning CRM Squads (teams) dashboards. The bottleneck analysis provides the

input which is important to focus on, together with the desires from the employees and the

suggestions from literature. As a result, the recommended set of metrics focus on quality, productivity,

and performance. Five tools are selected as suitable and several recommendations are provided on

how to visualise the data on the dashboard. A demo dashboard is provided to visualise the solution.

By increasing the number of available indicators to a well-determined set of metrics and by increasing

the awareness of the need for data visualisation, the core problem has been solved.

Page 5 of 92

Table of Contents
Reader’s guide.. 7

Definitions ... 8

List of figures.. 9

List of tables ..10

1. Introduction ..11

1.1. Introduction to A.S. Watson Group ...11

1.1.1. Scope of the research ...12

1.2. Problem identification ..12

1.2.1. Reason for research ...13

1.2.2. Problem statement ..13

1.2.3. Core problem...13

1.3. Problem solving approach ..14

1.3.1. Research methodology ...14

1.3.2. Research goal ..14

1.3.3. Research questions ..15

1.4. Problem quantification ...17

2. Company analysis ..18

2.1. The current work process ...18

2.1.1. CRM in Group IT of A.S. Watson ..18

2.1.2. The Agile principles ..19

2.1.3. The A.S. Watson model ..22

2.2. Problem analysis ..26

2.2.1. The bottlenecks ...26

2.2.2. The productivity level ...37

2.2.3. The bottlenecks and the actors involved..38

2.3. Desired situation..38

2.3.1. Desired metrics ..38

2.3.2. Survey ...39

3. Theory on improving productivity level of an Agile organised company40

3.1. Agile optimisations on improving productivity suggested in research40

3.1.1. Systematic Literature Review ..40

3.1.2. Suggestions on the framework..47

3.2. Suggested indicators by research ..48

3.2.1. Suggestions from literature review..48

3.2.2. Suggestions by experts ...50

Page 6 of 92

3.2.3. Results ..50

3.3. Data visualisation ...51

3.3.1. Analysis and visualisation ...51

3.3.2. The design ...54

3.3.3. Implementation ...55

4. Improving the productivity level of the CRM Tribe by using suggested metrics 56

4.1. The metrics..56

4.2. The dashboard ...58

4.3. Evaluation ...59

5. Conclusion, recommendations & limitations ...60

5.1. Conclusion ...60

5.2. Recommendations ...61

5.3. Limitations...63

References ..64

Appendix ..67

Appendix A Agile Manifesto ..67

Appendix B Data analysis ..68

Jira report cumulative flow diagram...68

Jira report control chart ..68

Jira report average age ...69

Jira report resolution time...70

Script ...71

Disco analysis ...72

Appendix C Survey..73

Appendix D Systematic Literature Review ..77

SLR – 1 ...77

SLR – 2 ...81

Appendix E Data visualisation..84

Jira...84

Python ...85

Appendix F Dashboard ..89

Page 7 of 92

Reader’s guide
The research on analysing and visualising data to improve the productivity of an Agile organised

company is structured in five chapters. To explain the structure of the report, a brief introduction per

chapter is provided below.

Chapter 1. Introduction
Chapter 1 provides all details to understand the company, the problems there are, the reason why it

needs to be researched and the research strategy. This chapter provides the approach taken to solve

the core problem, and research questions are provided to achieve the research goal.

Chapter 2. Company analysis
For analysis and visualisation, it is important to have an overview of the bottlenecks. Chapter 2

provides a clear explanation of the principles of the department in which research takes place. An

insight into the bottlenecks is given by analysing available reports and by applying the technique

process mining. The needs of the company are investigated in this chapter as well. The results from

the bottleneck analysis and the needs addressed by the employees serve as important input for the

solution.

Chapter 3. Theory on improving productivity level of an Agile organised company

Chapter 3 provides the suggestions and theory from literature needing to improve the productivity

level. More important, it indicates which indicators are important for data visualisation. The way data

should be visualised within a company using the Agile principle is addressed as well within this chapter.

Chapter 4. Improving the productivity level of the CRM Tribe by using suggested metrics
This chapter provides the solution on how to solve the core problem together with a demo dashboard.

Chapter 5. Conclusion, recommendations & limitations

This chapter concludes whether the solution solves the core problem and to what extent the norm set

by the company has been achieved. Recommendations are given and limitations are explained.

Page 8 of 92

Definitions

 Definition Explanation

 CRM Customer Relationship Management

 CRM Tribe Name of CRM department in Agile terms

 Business unit (BU) For A.S. Watson a group of customers (e.g. Kruidvat) doing a request

 Ticket Another term for the work item that must be addressed

 Issue Agile term which could represent a story, bug, or task in a project

 Topdesk Software service desk

 GIC Project All tickets related to CRM software changes

 Native integration A pair of applications provide direct integration with one other via APIs

 Real-time dashboard Type of visualisation automatically updating the most current data available

 Metric A quantifiable measure for comparing and tracking performance

Page 9 of 92

List of figures
Figure 1: Markets in which A.S. Watson operates (A.S. Watson, 2020) .. 11

Figure 2: A.S. Watson’s brands .. 11

Figure 3: Organogram ... 12

Figure 4: Problem cluster ... 13

Figure 5: Problem solving approach ... 14

Figure 6: Overview of the research questions.. 16

Figure 7: Reality vs Norm ... 17

Figure 8: Scrum framework ... 20

Figure 9: Scaling Agile at Spotify (Cruth, 2021) .. 21

Figure 10: Nexus framework (Scrum.org, 2021) .. 21

Figure 11: Roots of Agile .. 22

Figure 12: Organisation of CRM Tribe.. 22

Figure 13: Main roles .. 22

Figure 14: Scrum process ... 23

Figure 15: Incoming request .. 24

Figure 16: Process structure .. 24

Figure 17: Change management process flow ... 25

Figure 18: Incoming request flow ... 25

Figure 19: Cumulative flow diagram (CFD) ... 26

Figure 20: Control chart.. 27

Figure 21: Average age report... 28

Figure 22: Resolution time report .. 28

Figure 23: Input in Advanced Report ... 29

Figure 24: Process flow Jira.. 30

Figure 25: Animation of the flow generated by Disco (100% activities, 0% paths) ... 31

Figure 26: Control-flow perspective (left) and performance perspective (right) of the process model generated by Disco 32

Figure 27: Case duration generated by Disco for tickets between 2016-2021 .. 33

Figure 28: Events per case generated by Disco (10 events) for tickets between 2016 -2021 .. 33

Figure 29: Case duration generated by Disco between 2019-2021 ... 34

Figure 30: Events per case generated by Disco (10 events) for tickets between 2019 -2021 .. 34

Figure 31: Example of data uncertainty .. 35

Figure 32: Problems to visualise ... 36

Figure 33: Currently available metrics ... 37

Figure 34: Desired metrics ... 39

Figure 35: DevOps cycle (Atlassian, 2019) .. 47

Figure 36: Result of exporting data from Jira ... 51

Figure 37: Format of exported data with python .. 52

Figure 38: Dashboard design guidelines.. 54

Figure 39: Overview of charts ... 55

Figure 40: Recommended metrics.. 56

Figure 41: Metrics for CRM Tribe dashboard ... 58

Figure 42: Metrics for CRM Tribe dashboard ... 58

Figure 43: Demo dashboard .. 59

Figure 44: Cumulative flow diagram .. 68

Figure 45: Control chart.. 68

Figure 46: Average age report... 69

Figure 47: Resolution time ... 70

Figure 48: Jira Script for data extraction ... 71

Figure 49: Control-flow perspective generated by Disco (100% activities, 100% path) ... 72

Figure 50: Overview of tickets in Jira) .. 84

Figure 51: Anaconda platform... 85

Figure 52: Installing jira library .. 85

Figure 53: The dashboard .. 89

Figure 54: Release health metric .. 90

Figure 55: High priority issues ... 91

Figure 56: Days in status metric .. 91

Figure 57: Lead time metric ... 91

Figure 58: Average age metric .. 92

Figure 59: Cumulative flow metric ... 92

Page 10 of 92

List of tables
Table 1: Factors affecting productivity (Fate ma & Sakib, 2018) ... 41

Table 2: Metrics ... 48

Table 3: Metrics classified in four perspectives ... 49

Table 4: Set of Metrics .. 50

Table 5: Balanced scorecard for dashboard tools.. 53

Table 6: Results of balanced scorecard ... 53

Table 7: Inclusion and Exclusion criteria ... 77

Table 8: Search terms ... 78

Table 9: Initial search results ... 78

Table 10: Results .. 79

Table 11: Inclusion and Exclusion criteria ... 81

Table 12: Search terms ... 82

Table 13: Initial results .. 82

Table 14: Final results ... 83

Page 11 of 92

1. Introduction
In the first chapter, an introduction to the company and its problem is provided. The approach for

solving the problem is given by explaining the research questions to be solved.

1.1. Introduction to A.S. Watson Group
A.S. Watson Group is the world’s largest international health and beauty retailer. The Group is a

member of CK Hutchison Holdings, also known as Hutchison Whampoa. The holding has four core

businesses in 50 countries: ports and related services, telecommunications, infrastructure and retail

(Atlassian, 2021a). This research is focused on the retail sector, represented by A.S. Watson Group.

The group has over 16,000 stores located in Asia & Europe, visualised in Figure 1 (Watson, 2020).

A.S. Watson operates in four different sectors: health & beauty, luxury perfumeries & cosmetics, food,

electronics & wine, and last beverages. The different sectors are divided into different brands, also

called business units. An example of one of the business units is Kruidvat, which is probably familiar to

almost everyone in the Netherlands. To understand the Group, the different business units are

visualised in Figure 2 (Watson, 2020).

Figure 1: Markets in which A.S. Watson operates (A.S. Watson, 2020)

Figure 2: A.S. Watson’s brands

Page 12 of 92

1.1.1. Scope of the research
Since A.S. Watson is a large company, research is conducted within one department of the Group. With

the help of Figure 3, the scope of the research becomes clear. As depicted, A.S. Watson Group consists

of an E lab, ASW Benelux and Group IT. The latter is divided into two continents; Asia and Europe.

Research is focused on Group IT Europe, specifically within the Customer Relationship Management

(CRM) department.

1.2. Problem identification
The problem occurs in the CRM department, organised based on the Agile principle. Therefore, the

CRM department is further called the CRM Tribe. The CRM Tribe is responsible for handling software

related issues and requests from the Business Units. The request or issue, also called ‘ticket’, comes

across several phases within the CRM Tribe. Because the CRM Tribe is Agile organised, all phases are

related to each other. One problem in a specific phase could therefore cause another problem in a

different phase. There are two types of problems, the knowns and the unknowns. On the one hand,

A.S. Watson is aware of the fact that some factors or actions are having a consequence on the

productivity level. These actions are the known problems. An example is the lack of communication

between the different development teams concerning a cross-team ticket. On the other hand, there

are actions affecting the productivity level the company is not aware of. Those are the unknown

problems. The consequences of both the known and unknown problems are for example long lead

times and missed agreed deadlines, all having an impact on the productivity level.

Figure 3: Organogram

Page 13 of 92

1.2.1. Reason for research
The main characteristic of Agile is the iterative approach. Terms like continuous improvement and

responding quick and easy describe the approach. The CRM Tribe is continuously improving the

process to ensure their services are matching the changing techniques and needs of their internal as

well as external customers as closely as possible. Having an optimal productivity level is important to

ensure high quality of their services in this dynamic environment. Therefore, it is important to identify

the problems affecting the productivity level first. Besides, it is of importance to identify indicators to

keep track of the problems. When having a clear picture of the indicators affecting the productivity

level, adequate response to changes is possible.

1.2.2. Problem statement
Within the software industry, it is important to meet the changing needs of the customers. To be able

to respond adequately to those changing needs, the productivity of the process should be optimal.

However, A.S. Watson is not aware of which known and unknown problems are affecting the

productivity level. Therefore, the action problem is: “the productivity level is lower than desired.” To

deal with the action problem, it is important to identify both the known and unknown problems to

increase productivity. Currently, there is no insight into those important factors. When having no

insight, it is hard to make decisions to react to problems or changes. Since the CRM Tribe is Agile

organised, all phases are related. One problem arising in a specific phase is causing other problems in

different phases. To visualise the problems, a problem cluster is created which is depicted in Figure 4.

1.2.3. Core problem
From the problem cluster can be concluded that there are several problems all causing a lower

productivity level than desired. However, it is unclear to what extent the problems are having an

impact on the process, which is a problem to be able to increase productivity. It is proven in literature

that data visualisation, instead of using all the raw data which is available, provides a quick insight into

the problems to explore, discover, summarise and present, such that adequate response is possible

(Sedrakyan et al., 2019). Not having visualisations can cause a lack of overview. To solve the action

problem and thus improve the productivity level, a clear insight into the extent of the problems is

necessary, which is currently lacking because of the few visualisations available. Following the problem

cluster, the limited level of data visualisation is a problem that needs to be solved, leading to the

following core problem:

 “Limited level of data visualisation to identify known and unknown problems”

Figure 4: Problem cluster

Page 14 of 92

1.3. Problem solving approach
A.S. Watson is already using Jira to manage their projects. Jira is the tool for Agile project management
and provides possibilities for using metrics. These metrics help to identify known and unknown
problems. Therefore, it is chosen, together with the company, to design a dashboard as a solution to

solve the core problem. This section explains what steps are taken to solve the problem.

1.3.1. Research methodology
To solve the core problem of having a limited level of data visualisation to identify known and unknown

problems, the Managerial Problem-Solving Method (MPSM) is used. The MPSM is a systematic

approach by Heerkens and Winden (2017) to solve business problems handled in their organisational

context. The method consists of seven phases, of which the first one “defining the problem” has

already been conducted in the second paragraph.

Phase 2, formulating the approach

A scheme is created and visualised in Figure 5 to show the approach of this research.

Phase 3, analysing the problem
After having an understanding of the process, an extensive analysis of the problem is conducted to
completely analyse the process and its problems.

Phase 4, formulating alternative solutions
Key in this research is to identify indicators to track productivity. However, alternative solutions will

be researched as well by doing literature research on suggestions from the literature on Agile.

Phase 5, choosing a solution
After doing research, the most suitable solutions will be chosen using the balanced scorecard method
to determine about the tool. Besides, the most suitable options are chosen based on the research

which will serve as input for data visualisation.

Phase 6, implementing the solution

Implementation of the solutions in the company takes place during this phase of the MPSM.

Phase 7, evaluation of solution
To determine whether the productivity level increased and to determine if the company is able to

respond better to the changing needs of their customers.

1.3.2. Research goal
The goal of this research is to get insight into the most suitable indicators for Agile organised

companies to identify known and more important, unknown problems. The goal is to increase

productivity by solving this problem, so the company can respond better to problems and changing

needs. When the company is aware of the problems, an adequate response is possible. After selecting

the most important indicators, this information can be visualised on a dashboard, so the company is

able to track the process by focusing on important indicators.

Figure 5: Problem solving approach

Page 15 of 92

1.3.3. Research questions
To solve the core problem of having a limited level of data visualisation to solve known and unknown

problems, the following research question is formulated.

The following set of sub-research questions is defined to answer the main research question.

1) How is the work process of the CRM Tribe organised?
a. What is the meaning of CRM within Group IT Europe of A.S. Watson?

b. What are the Agile principles on which the Tribe is operating?
c. How is the process of the A.S. Watson model organised?

First, insight into the environment in which research takes place is necessary to understand the
process. The problem analysis can only be conducted correctly if the context is properly understood.

It is important here to understand the main tasks of the CRM tribe, how Agile works and last the
different flows of the process. Research is conducted with the use of sources, available on the
Confluence page of the company. Besides, information is gathered by communicating with employees

and by observing the processes.

2) Where in the process are the bottlenecks?

a. Which bottlenecks are there?
b. What is the current productivity level?

c. How can these bottlenecks be explained by the actors involved?

Second, it is important to have a view on the current situation of the productivity level. Therefore, it is

important to identify the bottlenecks affecting it to make a problem analysis. By researching the

problems, it will become clear what factors are affecting the productivity level. This is an important

indication of where to focus on while designing the dashboard. Research is done by doing an

observation of the process to identify bottlenecks, communicating with employees about problems

and by process mining. This current situation will serve as the initial situation to measure the improved

situation.

3) What are the needs of the company for important indicators to track?

a. What are the norms for those needs?

Third, the preferences and goals of the employees play an important role while designing the

dashboard. This will indicate what is seen as important according to the employees. Research is done

by communicating with a few employees and with survey research, to include all opinions of all

employees. The information is used to measure the difference between the initial and the improved

situation.

“How to analyse and visualise data to improve the productivity level of an Agile organised company?”

Page 16 of 92

4) What optimisations on Agile software development teams to improve productivity are
suggested in research?

Fourth, a literature study is conducted to identify possible solutions suggested by research to improve

the productivity of an Agile organised company. The productivity level is not optimal at this moment.
By creating a clear visibility of the data to identify known and unknown problems, the expectation is
to solve the core problem. However, it could be that only a data visualisation is not enough to solve

the entire problem. Therefore this literature study is conducted. Based on the findings, a
recommendation is written to be provided to the company.

5) What indicators are suggested for agile software development companies?

Fifth, a second literature study is important to identify important indicators suggested by research for
the company. To control productivity, it is important to identify which indicators should be tracked to

be able to do so. Already a lot of research has been conducted on this topic, therefore it is chosen to
use the method of a literature study for this knowledge question.

6) What constitutes a dashboard to improve productivity of an Agile process and how to

implement this?

Sixth, literature research is conducted to understand how to design and how to implement a

dashboard in an Agile process. The company is pragmatic, so it is important to introduce the solutions

pragmatically. Implementing a dashboard in an Agile process is already a widely investigated question,

so therefore it is chosen to use literature. The results will be provided to the company.

In Figure 6, an overview of the research questions is provided. As described, both research question 1

and 2 contributes to the third phase of MPSM, analysing the problem. The goal of the other research

questions is to formulate solutions, phase 4 of MPSM. After doing research, a solution is chosen which

is phase 5 of the MPSM. In this phase, the design of the dashboard takes place. Implementing the

dashboard is part of phase 6 and evaluation is phase 7 of the MPSM.

Research question MPSM step Section

Research question 1 Phase 3 Section 2.1.

Research question 2 Phase 3 Section 2.2.

Research question 3 Phase 4 Section 2.3.

Research question 4 Phase 4 Section 3.1.

Research question 5 Phase 4 Section 3.2.

Research question 6 Phase 4 Section 3.3.

Page 17 of 92

1.4. Problem quantification
A problem is often described as a difference between norm and reality. The desired productivity level

is lower than desired, resulting in different problems. Some of the problems, the company is aware of,

others not. After a quick problem analysis, the underlying problem, the core problem, causing the

lower productivity level became clear: there is a limited of data visualisation. Currently, the company

is making decisions to react to those problems based on their gut feeling, instead of on data, visualising

the problems.

To determine whether the solution solved the core problem or not, it is necessary to set a norm on

what the company strives for. The company prefers to have the input for an overview visualising all

data affecting productivity. By keeping track of important indicators problems can be detected in an

early stage. Figure 7 represents the current situation and the desired situation.

 Current situation | Reality Desired situation | Norm

After implementing the solution, a comparison can be made between norm and reality to see whether

the core problem and thus the action problem, has been solved. Measuring the increase in productivity

is beyond the scope of this research, since the period after the dashboard is out of the research period.

To measure the comparison between norm and reality, two variables are assessed:

1) Available indicators

This variable expresses the number of indicators currently available to keep track of the

problems. By having clear what this number is, the current insight into the problems can be

measured. After implementing the solution, the available indicators are measured again to see

whether the solution improved the situation.

2) Insight into the problems affecting productivity

The second variable is the level of insight into the problems affecting productivity. This variable

assesses whether the awareness of the problems affecting productivity is improved. The

current insight into the problems has been determined in section 2.2.1.3. To measure norm

and reality, the improved insight into the problems affecting the productivity level is

determined after implementing the solution.

Figure 7: Reality vs Norm

Page 18 of 92

2. Company analysis
In this chapter, research questions 1, 2 and 3 are answered in section 2.1, 2.2, 2.3, respectively. The

answers to these questions are used to select and design the right solution, to create the most suitable

dashboard for the CRM Tribe of A.S. Watson.

2.1. The current work process
To have a complete understanding of the work process, this section is divided into subsections to have

a complete overview of the whole process. First, an explanation is provided of what CRM actually is

and what their tasks and responsibilities are. Second, the principle of Agile is explained. This is

important since Agile plays a major role in the way the process is organised. A.S. Watson created their

Agile method, which is explained in subsection 3. In this section are all details of the process described.

2.1.1. CRM in Group IT of A.S. Watson
CRM is a combination of people, processes and technology that seeks to understand a company’s

customers. It is an integrated approach to managing relationships by focusing on customer retention

and relationship development (Chen & Popovich, 2003). Customer Relationship Management has a

key role in the software industry. While the software world is changing continuously, CRM applications

take full advantage of this. Their ability of collecting and analysing data is valuable to respond timely

and efficiently to everything related to online activities. Some examples of functionalities are being

able to manage marketing campaigns, manage sales and many more.

Within A.S. Watson, the CRM Tribe is responsible to manage the CRM software for their business units.

The tools used are Siebel, Adobe and OSB Middleware. The Oracle-powered Siebel CRM is a package

of CRM solutions that can easily be modified to the business requirements. It supports major aspects

such as marketing, sales, services etc. Adobe Campaign is a powerful campaign marketing solution with

a wide variety of options. Personalised deals can be offered to the customers by using this tool. OSB

Middleware is software functioning as a transition layer to enable different applications to work

together.

There are several processes to manage everything around the software tools the CRM Tribe is dealing

with. This varies from the customer, the store and the online environment to the offers and the

campaigns. To manage all these different aspects, seven processes are used and shortly explained:

1) Test management: this is simply the procedure around the testing process of the product.

2) User management: this process is about dealing with important aspects for the user. Examples

are GDPR, privacy issues and access to several systems.

3) Change management: this process involves managing changes to the systems, such as

improvements, new requests, or changes to codes.

4) Release management: the process of deploying changes in the software.

5) Incident management: incident management plays a role when there is a problem with a direct

impact on the functional processes.

6) Problem management: when a problem is arising with an indirect impact on the processes,

problem management plays a role. This has less priority than incident management.

7) Escalation management: when there is an escalation (often a problem with a high financial

impact), escalation management is needed.

Research question 1: how is the work process of the CRM Tribe organised?

Page 19 of 92

2.1.2. The Agile principles
Agile is an iterative approach, a methodology, to project management and software development that

helps teams deliver value to their customers faster (Atlassian, 2021). Different from regular project

management tools are the continuous, small launches instead of one big bang launch. Open

communication, collaboration, adaptation, and trust amongst team members are at the heart of Agile.

Although the project lead or product owner typically prioritises the work to be delivered, the team

takes the lead on deciding how the work will get done, self-organizing around granular tasks and

assignments (Atlassian, 2021). The origin of Agile goes back to 2001 when 17 developers met and wrote

the Agile Manifesto. Agile is based on twelve principles, included in Appendix A.

The main reason for companies to choose Agile is the ability to respond quickly to changes in the

marketplace or feedback from customers, without derailing a year’s worth of plans. "Just enough"

planning and shipping in small, frequent increments lets your team gather feedback on each change

and integrate it into future plans at minimal cost (Atlassian, 2021). According to the Agile Manifesto of

Beck et al. (2001), the main focus is on people. Authentic human interactions are more important than

rigid processes.

Since Agile is a methodology, many Agile frameworks have emerged over the last couple of years. The

most famous framework is Scrum, but Kanban, Lean, and Extreme Programming (XP) are also

frequently used frameworks. Each framework embodies the core principles of Agile, such as

continuous improvements and frequent iterations. Many Agile teams combine concepts of the

different frameworks today to create their own unique framework. This is also how A.S. Watson is

organised. The Agile method of the CRM Tribe of A.S. Watson is based on principles from Scrum, the

Spotify model, and the Nexus model. First, a clarification of those different methods is given to

understand the unique method of the company. Second, the Agile framework within A.S. Watson is

discussed.

Scrum

The first framework is Scrum, which is a framework that helps teams to work together. The framework
describes a set of roles, meetings, and tools to help structure and organise the team. In this subsection,

the main principles are explained. Within Scrum, there are three artifacts. An artifact is an object made
by humans, comparable with a tool to solve a problem. Those artifacts in Scrum are defined as a

product backlog, a sprint backlog, and an increment which contains the definition of done according
to the team.
The product backlog

The following description is the definition of the product backlog according to Drumond (2018).
A product backlog is the master list of work that needs to get done maintained by the product owner
or product manager. This is a dynamic list of features, requirements, enhancements, and fixes that acts

as the input for the sprint backlog. It is, essentially, the team’s “To Do” list. The product backlog is
constantly revisited, re-prioritised and maintained by the Product Owner because, as we learn more

or as the market changes, items may no longer be relevant, or problems may get solved in other ways.
The sprint backlog
According to (Drumond, 2018), the sprint backlog is the list of items, user stories, or bug fixes, selected

by the development team for implementation in the current sprint cycle. Before each sprint, in the
sprint planning meeting, the team chooses which items it will work on for the sprint from the product

backlog. A sprint backlog may be flexible and can evolve during a sprint.
Increment
The increment is the usable end-product from a sprint, often referred to as the team’s definition of

“Done”(Drumond, 2018).

Page 20 of 92

There are three important roles: product owner, Scrum Master, and the development team. Here, the
product owner is the key person between the customer and the Scrum team. It is of high importance

that they understand the business, the customer, and the requirements so they are able to prioritise
the work that needs to be done. The Scrum master is the person who deeply understands the work

and coaches the team through the Scrum process. The development team consist of people who
getting the work done.

The Scrum process consists of a set of events and meetings that are performed regularly. The key
ceremonies are: 1) organise the backlog, 2) sprint planning, 3) sprint, 4) daily Scrum, 5) sprint review
and 6) sprint retrospective. Organising the backlog is the responsibility of the product owner. The

sprint planning is a meeting in which the work to be performed is planned by the entire development
team. The sprint itself is the actual time period when the Scrum team is working on an increment,

mostly two weeks. The daily Scrum is a daily meeting, super-short, to make sure the whole team is on
the same page. The sprint review is the demo of an increment. Last, the sprint retrospective is an
evaluation to look back at the process and evaluate what went well during a sprint and what did not.

A clear overview of the work structure is visualised in Figure 8.

The Spotify model

The Spotify model is a people-driven, autonomous approach for scaling Agile that emphasises the

importance of culture and network (Mark Cruth, 2021). The model is derived from the Agile mindset

and was introduced to the world for the first time in 2012. The Spotify model focuses on how business

can structure an organisation in order to enable agility. Key focus areas are autonomy, communication,

accountability, and quality. It is important to emphasise the fact that the Spotify model is not a

framework, but it represents Spotify’s view on Agile. There are some key elements that are important

elements for the Spotify model. A department within a company is called a “Tribe” and specific

disciplines within the teams are described as “Squads”. There is a product owner and an Agile coach

within the squad. Within the Spotify model, there are chapters, which is the family that each specialist

has, helping to keep engineering standards in place across a discipline usually led by a senior

technology lead (Mark Cruth, 2021). The whole Tribe is led by a Tribe lead. Other groups are a guild, a

trio, and an alliance. First mentioned is a group of team members, also called a community with people

with the same interest. A trio is formed by the tribe lead, a product lead, and a design lead. This group

is formed to ensure there is continuous alignment between the different perspectives. Last mentioned

is a group formed by combinations of tribe trios that work together to accomplish a goal involving

multiple Tribes. The different terms are visualised in Figure 9.

Figure 8: Scrum framework

Page 21 of 92

The Nexus model

The Nexus framework builds on the Scrum foundation. A Nexus is a group of approximately three to

nine Scrum (development) teams that work together to deliver a single product; it is a connection

between people and things (Schwaber & Scrum.org, 2021). The Nexus guide describes that Nexus seeks

to preserve and enhance Scrum’s foundational bottom-up intelligence and empiricism while enabling

a group of Scrum Teams to deliver more value than can be achieved by a single team. Within Scrum, a

development team is using one product backlog. The difference with the Nexus framework is the use

of multiple so-called Nexus sprint backlogs. Each team collect all the details of tickets on their own

backlog. The cross-team refinement sessions are there to prevent delay and to identify dependencies

among different development teams. The Nexus framework is visualised in Figure 10.

Figure 9: Scaling Agile at Spotify (Cruth, 2021)

Figure 10: Nexus framework (Scrum.org, 2021)

Page 22 of 92

2.1.3. The A.S. Watson model
Within the CRM Tribe, a self-developed working method has been implemented several years ago

based on principles of the three methods described above. The main idea was to implement an Agile

method based on several aspects from different frameworks. Figure 11 visualises the roots of Agile. As

can be seen, Agile is a composition of many concepts with different principles. Where for example

Sociotechnics focuses on people, theory on constraints (TOC) focuses on processes. Combining

principles of all these concepts leads to the model of the CRM Tribe of A.S. Watson.

The structure of the department is organised based on the Spotify model, visualised in Figure 12. The

CRM department is called the CRM Tribe, the disciplines within the team are called a Squad. Besides,

there are also guilds and chapters. When there is a big request concerning multiple squads, guilds are

formed. Testers of the different squads are in a chapter. Scrum describes three important roles:

product owner, scrum master and the development team. The method also contains the role of a Tribe

lead, as prescribed by the Spotify model. The main roles are depicted in Figure 13.

Figure 11: Roots of Agile

Figure 12: Organisation of CRM Tribe Figure 13: Main roles

Page 23 of 92

The organisation of the several processes is based on the Scrum framework with the following key

ceremonies: organise the backlog, sprint planning, sprint, sprint review and sprint retrospective. In

these ceremonies, the artefacts as described by Scrum are also used. To understand the Scrum process,

a visualisation is given in Figure 14.

The start of the process is at the left side, where inputs are coming into the process via the product

owner. The product owner prioritises the requests and is setting up a list of requirements. At A.S.

Watson, the information analyst is setting up a first concept of how the solution should look like. The

tasks enter the product backlog, also called the “to do list” of the concerning squad. The next step is

for the teams. Instead of using one single team as described according to Scrum, A.S. Watson is using

three teams, as prescribed by the Nexus model. Each team has their own backlog. The teams select

requests for the sprint backlog to deliver by the end of the Sprint during the sprint planning meeting.

Then a period of two weeks follows in which the team is working on the requests standing on the sprint

backlog for the specific period. Every 24 hours during the sprint, a daily stand-up meeting takes place

to check whether everything is going fine. After the sprint is finished, a sprint review is held and there

will be determined whether the product is finished or not. This is also called the increment, the

definition of done. At the end, the sprint retrospective takes place. The overview of the work to be

done can be found on the Kanban board. All tickets are placed on the Kanban board that provides a

visual overview of the status of the tickets.

The project management tool the CRM Tribe is using is Jira, in combination with Confluence. Jira is a

software application used for the software developing cycle to manage all the work. Confluence is a

collaboration tool supporting the processes in Jira for collaborating and sharing knowledge efficiently.

Now all elements of the different frameworks used in the A.S. Watson model are clear. The structure

and the roles of the CRM Tribe are described, and the standard process is explained. To be able to

understand the problems on which this research focuses, it is of importance to understand the

approach of the seven processes described in 2.1.1. within this Agile method.

Figure 14: Scrum process

Page 24 of 92

 The inputs/requests are coming into the process in two ways, explained in Figure 15.

Figure 16 visualises the structure of the processes the CRM Tribe uses. First, entering the process via

the product owner is discussed, which is change management (priority CR). An epic planning is made

for the coming three months over a set of sprints. An epic serves to manage tasks. It is a defined body

of work that is segmented into specific tasks based on the needs/requests of customers or end-users

(Rehkopf, n.d.). The idea is to break down large tasks into doable pieces so that large projects can get

done. In this epic planning, there will be determined in which release period a request will be

addressed.

Every six weeks, a release is planned. In the change planning is determined which request is developed

in which sprint. One release period consists of three sprints, each two weeks. In the two weeks,

development takes place. After development, the processes release management and test

management play a role. First regression tests and integration tests are conducted to identify whether

the change integrates within the systems. The next step is the User Acceptance Test (UAT). This is the

last phase of the testing procedure. During the UAT, software users of the Business Unit test the

software to make sure it meets the requirements. When the testing procedure is completed, the

software is ready for production to be deployed to the end-user.

The last phase visualised at the right side is operations (OPS). Within OPS user management, problem

management, incident management and escalation management occur. This is the second way a

request can come into the process. When there is an error in one of the systems for example, a topdesk

ticket can be made which will be addressed by the operations centre control (OCC) squad. If the

problem is of priority 1 or 2, the problem will be solved immediately. Otherwise it will start as a new

change request.

Figure 15: Incoming request

Figure 16: Process structure

Page 25 of 92

For a better understanding of the process in which the request is coming into the change management

process flow, the workflow is discussed. When there is a new change request coming in at the product

owner, the ticket is going through five phases. The first phase is specification, which involves planning

and a quick setup of the solution. The second phase is refinement, in which the request is refined.

During the sprint, the actual development phase takes place. After development, the request is ready

to get tested. When the BU approves after their UAT, the request is ready for release. The process of

the five phases is visualised in Figure 17.

When the requests are coming into the process by a topdesk ticket, the level of priority will be

determined first. If the request concerns a priority level 1 or 2, it will be solved immediately. On the

other hand, a ticket can be prioritised as a new change request. If this is the case, the request will be

solved based on the change management procedure managed in Jira. Figure 18 shows a visualisation

of this process.

Figure 17: Change management process flow

Figure 18: Incoming request flow

Page 26 of 92

2.2. Problem analysis
The second section of chapter 2 is providing an extensive analysis of the, lower than desired,

productivity level of the GIC project. An explanation is provided in Definitions . It is clear that there are

problems affecting productivity, however, it is unknown what exactly all the problems are since the

limited level of data visualisation. To determine which data to visualise on the dashboard, an insight

into the problems is necessary. First, to identify the bottlenecks, the process is researched by analysing

available reports in Jira and the technique process mining. Important to notice is that these Jira reports

are not used at the moment by the company to analyse the process. Next, the influence on the

productivity level is analysed and last the productivity level is explained by the actors involved.

2.2.1. The bottlenecks
Jira contains a lot of data and information that can help to provide insights into the productivity of a

team. Besides, the data can help to identify and resolve bottlenecks to accelerate and improve

performance. However, the biggest part of this data is either hidden or hard to retrieve. There are

currently six useful reports available within Jira to review the process. Reports help teams to analyse

the progress made on a project. This is the first part of the analysis, to have a quick indication of

potential bottlenecks, provided in 2.2.1.1. A zoomed-in version of the reports is provided in appendix

B. Second, the process is analysed in more detail by using the tool process mining, provided in 2.2.1.2.

A conclusion of the problems and the matching indicators is provided in 2.2.1.3.

2.2.1.1. Jira reports

Cumulative flow diagram

The first report is the Cumulative Flow Diagram (CFD), visualised in Figure 19. The diagram is an area

chart that shows the various statuses of work items for a sprint. The aim of the CFD is to show the

stability of a process over time. The horizontal x-axis indicates time, the vertical y-axis indicates issues

(tickets). Each coloured area equates to a workflow status (Atlassian, 2020).

The CFD is useful for addressing potential bottlenecks. If the chart contains an area widening

significantly more vertically than during other periods, the widening column is generally a bottleneck.

When zooming in, there are some periods with a widening integration test column.

Research question 2: where in the process are the bottlenecks?

Figure 19: Cumulative flow diagram (CFD)

Page 27 of 92

Control chart

The control chart in Figure 20 shows the Cycle Time or Lead time for a sprint. It takes the time spent

by each issue in a particular status and maps it over a specified period of time (Atlassian, 2021b). The

rolling average is shown by the blue line and is issue-based. It is calculated by taking the issue, X issues

before and after the issue and averaging their cycle times. The advantage of this method is that it

produces a steady average line showing the outliers. The blue shaded area represents the amount of

variation from the rolling average, the standard deviation. Each open dot represents a single issue, a

solid dot represents a group of issues. The vertical y-axis indicates the elapsed time, which is the cycle

time of a single issue and the average cycle time for a group of issues. The horizontal x-axis represents

when the issue passed the last status selected.

When the blue line of the rolling average is below the average, it indicates the team is working

efficiently. Higher values may indicate bottlenecks of the process. Besides, the control charts are

showing a lot of outliers. Especially the ones above the average could be an indication of a bottleneck

somewhere in the process.

Average age report

The average age report in Figure 21 shows the average age of unresolved issues for a period of two

years. The purpose of this report is to identify whether the backlog is kept up to date. The vertical y-

axis represents the number of days an issue is unresolved. The horizontal x-axis the period of time.

From the period of May 2019, the average age of unresolved issues is rapidly increasing. This report

could be an indication of a bottleneck around the process of the backlog.

Figure 20: Control chart

Page 28 of 92

Resolution time

Figure 22 shows the resolution time report. This report represents the length of time needed to resolve

an issue. It starts counting from the moment the customer, the BU, reaches out to the CRM Tribe and

stops when the BU receives an answer they consider as complete. This is important for the satisfaction

level of the customer.

It stands out that there are several peaks, indicating a high average resolution time. Since the

resolution time is indicating the time from starting the request till the end, this means the issue is

spending a long time in one or more statuses. This is potentially a bottleneck for a suboptimal

productivity level.

Figure 21: Average age report

Figure 22: Resolution time report

Page 29 of 92

2.2.1.2. Process mining

Process mining provides a set of techniques to automatically extract process behaviour from event

logs (Marques et al., 2018). The approach has already been applied successfully in certain fields. Jira

records a large amount of run-time event data which can be used for process mining to discover the

patterns and analyse the process. Every single event contains at least information about the case, the

activity (status), the resource and time.

When mining a process, it is important to apply a process mining methodology. The one recommended

by Marques et al. (2018) is the PM2 process mining methodology since it is a general approach

supporting the analysis of both structured and unstructured processes. According to the methodology,

there are six stages: (1) planning, (2) extraction, (3) data processing, (4) mining & analysis, (5)

evaluation and (6) process improvement & support (Van Eck et al., n.d.)

(1) planning

The goal of applying process mining to this research is to determine the efficiency of the process to

identify bottlenecks. The research question corresponding to this is “where in the process are the

bottlenecks?” For this purpose, data is exported from the Jira Cloud in which all the events are logged.

(2) extraction

As mentioned, it is hard to easily retrieve data from Jira. The necessary aspects are a key, activity,

resource, and time. The challenging part here is time. To eventually analyse the process, it is important

to have an insight into the amount of time it took for each ticket to go through each status. Directly

exporting the history of an issue is impossible from Jira to Excel, so first a script has been created to

extract the desired data. After exporting the data from the GIC project, it became clear that the script

worked out, however not in an efficient way. To show the challenge of retrieving data, the script,

written by M. Noorloos, Scrum Master of the Adobe squad within the CRM Tribe, is included in Figure

48 in the appendix B. The solution to export the data is eventually found by using the add-on advanced

export, by Atlassian, who also developed Jira. Figure 23 shows the retrieved format of the data.

Figure 23: Input in Advanced Report

Page 30 of 92

(3) data processing

To prepare the data for the analysis in Disco, some data is removed. All issues are completed issues,

open issues were already filtered out. Cancelled issues are removed because in this research it is

unnecessary to improve the process of cancelled issues.

Figure 24 shows the process flow of a change issue within Jira. As can be seen, the ticket starts with

the status “inno backlog”. When following the flow, the tickets can go through “specification” and

“refinement” before coming into the “sprint preparation” status. After sprint preparation, the ticket

can flow through “in development”, “staging UAT”, “integration test”, “user acceptance test”, “staging

production” and finally the ticket will be “delivered”. Several different statuses were appearing just a

few times. Those were removed or merged with identical statuses since the work statuses showed

below are of interest.

It is interesting to analyse the frequency and performance of the workflow. When there is a high

frequency in a specific status, it could indicate a bottleneck. Performance is showing the time elapsed

between different states. It is for example interesting to analyse the time it takes between “inno

backlog” and “delivered”, to identify the complete time it takes from starting the issue till ending the

issue. What could also be interesting is the time between sprint preparation and in development, to

identify how long it takes before the ticket is in development from the moment it is planned.

Figure 24: Process flow Jira

Page 31 of 92

(4a) mining and analysis - flows

The analysis is divided into two parts. First, the project is filtered on all completed tickets available of

which the flows are analysed. Second, statistics from the period of 2016-2021 are provided. For an

accurate insight into the current process, statistics are also provided from 2019-2021.

The project comprises 765 cases and 7438 events performed between 13/10/2016 and 28/04/2021

after applying the filters mentioned above. One single case, also called the issue/ticket, consists of

multiple events, which are the statuses. There are 513 variants, with as most common variant the path

“Inno backlog → specify and refine → sprint preparation → in development → delivered”.

Figure 25 shows a quick visualisation of how the tickets flow through the different statuses. The path

on the left side shows the flow of the tickets in January 2018. The path in the middle represents the

process exactly one year later, and the path on the left side visualises the process another year later,

in January 2020.

What immediately stands out is the thickness of the yellow dots, highlighted by the grey rectangles.

The statuses involved are “specify and refine”, “sprint preparation”, and “in development”. When a

ticket is in the first stage, the status “inno backlog”, it takes a long period before entering the

development phase. This can be seen when playing the animation, since the yellow dots are moving

slowly through the phases “inno backlog”, “specify and refine”, “sprint preparation”, and “in

development”. The first phases, before a ticket starts in the development phase, clearly indicate a

bottleneck. A lot of tickets are pushed into the process flow before they can be developed. When

observing the process, this bottleneck could be declared by the fact that entering tickets are scheduled

mostly one or even two release deadlines ahead. One release period consists of six weeks. Therefore,

it takes a long period before the tickets can enter the “in development” stage.

Figure 25: Animation of the flow generated by Disco (100% activities, 0% paths)

Page 32 of 92

When analysing the process from a control-flow perspective, the patterns with the frequency per

status of the tickets can be analysed. This can be seen on the left side in Figure 26. Remarkable is that

a lot of tickets skip the testing phase, which is an important stage. What becomes clear from the

analysis is that the data is not going smoothly through the process at all. The number of tickets in the

development phase is 1056. However, 659 tickets are continuing the process to either “Staging UAT”

or “delivered”. The path of the other tickets can be seen when increasing the number of paths to 100%.

This is visualised in Appendix B. The tickets are going to “Integration Test”, again “in development”,

“sprint preparation” and back in “inno backlog”.

When analysing the process from a performance perspective visualised on the right side, the mean

duration times from stage to stage are given. What becomes clear from this analysis is the time it takes

between entering the process and leaving the process. The biggest bottleneck is between the stages

“sprint preparation” and “in development”, with a mean duration of 32.1 days. The tickets spend the

longest time in the first period of becoming in the development phase. Another remarkable point is

the time it takes when a ticket needs to re-enter the process. It takes 24.1 days to go to the “staging

UAT” stage after the “delivered” stage, and then the testing phase did not even start.

Figure 26: Control-flow perspective (left) and performance perspective (right) of the process model generated by Disco

(100% activities, 0% path)

Page 33 of 92

(4b) mining and analysis - statistics

The statistics give a good insight into some potential bottlenecks as well. The median case duration is

18.1 weeks, meaning that most tickets have a duration of 18.1 weeks, which is equal to 126.7 days.

The mean case duration is 25.1 weeks, equal to 175.7 days. As visualised in Figure 27, many tickets are

having a duration of over 180 days.

This could be declared when looking at the events per case. Most tickets are going through seven

stages, also called events. As visualised in Figure 28, there are many tickets having 10 events or even

more. When a ticket goes through all stages, it should have nine events (figure 26). There are even

tickets having 20 events or more. This is an important bottleneck that should be optimised to improve

the productivity level.

Figure 28: Events per case generated by Disco (10 events) for tickets between 2016-2021

Figure 27: Case duration generated by Disco for tickets between 2016-2021

Page 34 of 92

Between 07/01/2019 and 28/04/2021, the project comprises 540 cases and 5499 events performed

after applying the filters mentioned in the third step, data processing. There are 360 variants, with as

most common variant the path “Inno backlog → specify and refine → sprint preparation → in

development → delivered”. The median case duration is 14.3 weeks, equal to 100.1 days. The mean

case duration is 17.7 weeks, equal to 123.9 days. As visualised in Figure 29, there are many tickets

having a case duration over 123.9 days.

Also for the tickets between 2019-2021 holds that it could be declared when looking at the events per

case. Many tickets are having more than nine events.

Figure 29: Case duration generated by Disco between 2019-2021

Figure 30: Events per case generated by Disco (10 events) for tickets between 2019-2021

Page 35 of 92

(5) evaluation

When evaluating the findings of conducting the Disco analysis, several bottlenecks that could have a

negative effect on the productivity level stand out.

First of all, there are clear bottlenecks visible in the process flow. Between the “inno backlog” stage

and entering the “in development” stage, more tickets are pushed very slowly into the process than

can be processed. It takes a long period before a ticket can be delivered since the tickets are waiting a

long time in the first phases. From a performance perspective, the big red line between “sprint

preparation” and “in development” indicates a bottleneck with a mean duration of 32.1 days. This is

also shown by the statistics. Many tickets are having a longer duration than the mean duration.

Another bottleneck is visualised between “delivered” and “staging UAT”. When a ticket needs to re-

enter the testing phase, it already takes a lot of days before actually getting tested. Long waiting times

do not contribute to an optimal productivity level.

What is also remarkable is that the data is not going smoothly through the process at all. Many tickets

are re-entering similar stages or are starting from the beginning when they were already in the

“delivered” stage. This is visualised in appendix B, where the flow is depicted with all possible paths.

The statistics confirm this since many tickets having 10 events or even more. Re-entering similar stages

take time and could therefore causing a decrease in the productivity level. Also remarkable is that a

lot of tickets skip the testing phase. Since testing is of importance in the software developing industry,

this is important to further investigate.

The most important conclusion of this analysis is the uncertainty about the correctness of the data. As

mentioned during the process of the data extraction, it is really hard to even export the desired data

from Jira to a CSV file. When observing the exported data, there were several tickets from which the

data is uncertain. To explain this uncertainty, an example is given in Figure 31. The rows represent the

history of each status the ticket went through. In a time period of 16 minutes, the ticket came across

5 statuses, which is highlighted by the red rectangle. It could be possible that the ticket followed this

path in the system when for example several employees push the ticket forward to the new status

accidentally. However, in practice, it is not likely to finish these five statuses within 16 minutes. There

are more tickets in the dataset with the same uncertainty. Therefore, the findings above cannot be

concluded with a high level of certainty.

Figure 31: Example of data uncertainty

Page 36 of 92

(6) process improvement and support

To improve the process, the first step is to ensure the data is correct to be able to analyse it. Once can

be determined with certainty that the status is the actual status, the results of the analysis can be

established correctly. Therefore, improvements should first take place on the data side.

When the data is correct, the bottlenecks can be correctly identified and solved. However, to identify

the bottlenecks, a clear insight into the process is necessary. This is currently not the case since the

Disco visualisation is performed manually. Therefore, it is important to visualise the process in a way

it represents important indicators tracking problems influencing the productivity level. In this way,

adequate response to problems is possible. Recommendations on how to deal with the visualisation

are given in section 3.3.

2.2.1.3. Tracking the identified problems

In this section, the problems identified by both the analysis of the reports and process mining are

listed. To be able to track the problems to ensure a high productivity level, it is important to have them

visible. The problems are represented in Figure 32. Some possible metrics are linked to the problems.

After the bottleneck analysis, it was asked to the employees if they could mention the problems within

the process affecting productivity. A ‘full backlog’ was the only answer. An animation of the process in

Disco was shown to several employees showing the bottlenecks. The discussion that arose indicated

the level of awareness of the employees about the bottlenecks. There was a vague suspicion around

which problems there were, but no numbers or visualisations were confirming the thoughts. There

was no awareness about the fact that several tickets were skipping the testing phase. Therefore, it can

be concluded that there was no insight into the problems affecting productivity at all, only thoughts.

Problem Possible metrics

Long time in specific stages WIP, cycle time, throughput time, Time in status

High average ages Work item age, Lead time

Long waiting times WIP, mean time to repair, work in progress

Skip testing Overview of tickets in testing

Re-entering stages Defects, failed deployments

Figure 32: Problems to visualise

Page 37 of 92

2.2.2. The productivity level
The goal of the data visualisation is to increase the productivity of the CRM Tribe. To increase

productivity, it is important to be aware of how to measure it.

When employees and managers are provided relevant data, it can be used to identify bottlenecks early

and effectively to be able to reduce risks and eliminate failures. Ramirez-Mora and Oktaba (2018)

describe that the number of defects found in software is a measure of software quality related to

effectiveness. Identifying bottlenecks such as the number of defects and solving them with the use of

metrics is how productivity is measured in Agile software development teams. Metrics are required

for planning and tracking projects, measuring quality, and assessing team performance (Budacu &

Pocatilu, 2018). Agile productivity refers to how well a team performs on the metrics. A lot of research

is conducted on productivity in Agile software development teams since every team wants to be

productive. The emergence of new methods and processes requires relevant measuring methods for

better visualization and control of software development (Shah et al., 2015).

Jaspan and Sadowski (2019) encourage the design of a set of metrics, except tracking individual

performances (Sadowski & Zimmermann, 2019). The use of metrics for tracking individual

performances can create moral issues, which could lead to a decrease in productivity in the end. It is

therefore important to focus on team performance.

The conducted analysis on the bottlenecks explains the need for measuring productivity because there

are several bottlenecks identified. As described, the way to measure productivity in Agile software

development teams is using metrics. Currently, there are three metrics available for the GIC project

visualised in Figure 33; sprint burndown adobe, sprint burndown Siebel and a pie chart. Productivity

cannot be measured by having only three metrics, so, therefore, there is a limited level of data

visualisation. The metrics are showing the importance again of improving productivity. There is one

day left of the sprint at the moment of including the pictures. Siebel rarely finishes all their story points.

Adobe often finishes the sprint since the testing is finished mostly on the last day of the sprint. The pie

chart is showing a backlog of 25%.

Figure 33: Currently available metrics

Page 38 of 92

2.2.3. The bottlenecks and the actors involved
To understand the relation between the bottlenecks and the process, it is important to identify the

actors who are involved. The focus is not on individual actors, but on the different roles and squads

within the process. This is of importance because the results and processes of the different squads are

different and therefore several metrics should be visualising the performance of individual squads for

a better insight.

As described, there are five squads; End 2 End, Siebel, Adobe, Middleware and OCC. The End 2 End

team consists of members with functions that cannot be captured within one of the specialised teams,

such as the product owner, the information analyst, the UAT tester, the release manager, the Agile

coach, and the Tribe Lead. Siebel, Adobe, and Middleware are the squads named after the three tools

used by the CRM Tribe. The three squads are responsible for developing CRM related software, testing

it, and keeping track of the integration. This is where the main bottlenecks are identified: re-entering

stages, testing errors, long duration times, long cycle times and skipping phases. OCC is responsible for

handling request coming in by Topdesk. When there is an issue, OCC determines whether it can be

solved quickly by the OCC team or when it concerns a change. If it is a change, the ticket will be

addressed by one of the specialised teams.

A ticket enters the process via the End 2 End team. Thereafter the ticket is developed by one of the

specialised teams, depending on the type of ticket. When observing the process, there are differences

visible between the different squads. The backlog of Siebel is bigger than both Adobe and Middleware.

When planning the release period for the ticket, it stands out that Siebel is planning more story points

in one period and must plan further ahead. This can already be seen in the metric visualised in Figure

33. Siebel has planned almost 100 story points and Adobe almost 40. This is an important indication of

the importance of having metrics visualising the process per different squad.

2.3. Desired situation
The norm of the company is to have an overview with recommendations of how to visualise data and

what data to visualise. Since it is not clear what bottlenecks exactly cause a lower productivity level as

desired, they face challenges in determining which metrics to use for visualisations. The company

needs to know what metrics to use for which reason, as well as how to use the dashboard in the

process. Therefore, an advice on how to visualise data with a set of recommended metrics and

explanations is what they wish, so only setting up the final dashboard is left.

The goal of the metrics is to improve productivity by visualising data. The employees of the CRM Tribe
have to work with the metrics, so their lives at work must become easier. After having some
conversations with several employees a set of metrics stand out. Besides, a survey had been conducted

to provide the employees the possibility to share their needs.

2.3.1. Desired metrics
The goal of the visualisation is to develop a solution suitable for the entire CRM Tribe. As described in

the previous section, it is important to separate the metrics in the overview for the different squads.

All employees are interested in different processes. Where a tester for example is interested in

everything around testing, the Product Owner is more interested in an overview of tickets and their

release deadlines. Therefore, to recommend a proper set of metrics, all different needs must be

included.

Research question 3: what are the needs of the company for important indicators to track?

Page 39 of 92

The Tribe Lead is responsible for the overall process of the Tribe and is therefore interested in metrics

that visualise the most important factors with the biggest impact on the process. What is most

important according to the Tribe Lead is the well-being of the employees and quality. It is important

for him that the work pressure is not too high, the employees are satisfied and happy with their job.

Besides, quality is important to determine how the process is going. He is interested in whether the

scheduled number of tickets can be released per Squad, how the story points are divided each Sprint

and the quality of both developing and testing.

The scrum masters indicate a preference for having an overview of the quality of the work. Especially

the findings per specific stage in peer review, testing, integration, user acceptance testing (UAT) and
bugs in production, are of importance to identify bottlenecks. Besides, it is desired to have an overview

of the UAT tickets to be able to schedule the work better. What is also desired is having an overview
of the lead time of the stories in a functional release, specifically from the stages of creation to peer
review so it is clear that the tickets are ready with the development.

Employees of the specific Squads indicate that it is desirable to have an overview of the findings in

different stages and to see the progression of a ticket. The Siebel team is having a large backlog, so an
overview of the work in specific stages is desired.

2.3.2. Survey
To provide all employees the opportunity to share their needs about the input for the dashboard, a

survey is sent. Since the Tribe Lead shares his opinion about the importance of the well-being of the

employees, questions about this topic are included in the survey as well. When observing the process,

it became clear that the Siebel team is having a large backlog. To identify whether this large backlog

has an impact on the work pressure and needs to be solved, this question has been included in the

survey. The questions and the results are included in appendix C.

Important to take into account is the result of the satisfaction level about the work pressure. As some

of the employees are extremely or moderately satisfied about the work pressure, others are slightly

satisfied or even slightly dissatisfied. Since well-being is an important topic to the Tribe Lead to ensure

a high productivity level, it is recommended to take the result into account and to take further action

on this topic. The result of question 5 can be used to improve on this. Several recommendations are

given on where improvements are necessary to make the job of the employees easier.

The desired metrics by the employees provide an insight into the needs for the dashboard and are

presented below.

 Sprint completion Customer Love Score

 Release burndown Topdesk overview

 Findings / Bugs in testing Ticket flow through process

 Integration testing findings Live status of work

 Lead time Quality

 Longest status duration

Figure 34: Desired metrics

Page 40 of 92

3. Theory on improving productivity level of an Agile organised company
Chapter 3 provides suggestions on how to improve the productivity level of the CRM Tribe of A.S.

Watson. Two different systematic literature reviews (SLRs) are conducted. The SLR is included in

appendix D. First, suggestions from literature are given in section 3.1 on what improvements to make

within an Agile organisation to improve productivity. Important indicators suggested in research to

keep track of important data are provided in section 3.2. Section 3.3 contains research on the design

and the implementation of a dashboard in an Agile process.

3.1. Agile optimisations on improving productivity suggested in research
The first paragraph provides suggestions by research on how to improve the productivity of software

development teams. The paragraph is separated into two parts; the first part is a SLR with suggestions

for software development teams and the second part is about suggestions on the framework.

3.1.1. Systematic Literature Review
Productivity in the software industry is often defined as the amount of output per unit of input used

(Kitchenham & Mendes, 2004). Productivity in software is often defined based on the three dimensions

velocity, quality, and satisfaction. Productivity refers to the ratio between output and input, where the

input side – the cost spent – is relatively easy to measure in software development. The challenge lies

in finding a reasonable way to define output as it involves software quantify and quality (Sadowski &

Zimmermann, 2019). According to Kitchenham and Mendes (2004), there are no standardized

productivity benchmarks in the software industry. Having an insight into productivity is important to

measure how the process is going. The reason why this is important is that software development

projects often exceed time and budgetary constraints and do not even meet all user requirements

(Jiang & Klein, 2000).

Research on productivity in software development has a long history. Several factors affecting

productivity are relevant, such as project size, the programming language, and developer experience

(Scott et al., 2020). Scott et al (2020) also report the study of Fatema and Sakib, who conducted a

survey in several companies to identify important productivity factors. Their study suggests that the

effectiveness of an agile team relies on multiple interrelated factors such as excellent communication,

leadership, adaptability, motivation, and self-management. Agile means swift, active and responsive

and Agile software development is an iterative approach to keep pace with dynamic development

environments (Ahmed et al., 2010).

To understand how to improve productivity, it is first important to identify the factors affecting

productivity. Wagner and Murphy-Hill (2019) describe that the factors are divided into technical

factors and soft factors. The technical factors are categorised into three categories. The first category

consists of factors related to the product. Examples are the development flexibility, software size and

degree of complexity. The second category is the process. Examples are completion level, project

duration and defects solving. The last category of factors impacting productivity is environmental

related factors. Examples of this are the programming language, the use of tools and documentation.

The soft factors can be divided into corporate culture, team culture, individual skills & experience,

work environment and project. Examples are fairness, clear goals, communication, team cohesion,

programmer capability, developer happiness, proper workplace, telecommunication facilities and

team size. Table 1 identifies factors in different areas affecting productivity researched by (Fatema &

Sakib, 2018).

Research question 4: what optimisations on Agile software development teams to improve

productivity are suggested in research?

Page 41 of 92

Table 1: Factors affecting productivity (Fatema & Sakib, 2018)

Factors affecting productivity

Culture Project complexity Team Leadership Mutual performance
monitoring

Staffing Backup Behavior Team orientation Adaptability

Size of team Mutual trust Coordination Communication

Appreciation working

long hours

Rewarding for working

long hours

Adequate technical

training

Adequate team skills

training for team

Team member
turnover

Key personnel stayed
throughout the
project

Staff turnover rate in
project

Reuse

Software reuse level Goals Intra group wage
inequality

Team measurement

Self-management Task variety and

innovation

External dependencies Tools usage

Programming
language

Schedule pressure Impact of pair
programming

Resource constraints

Project management Motivation External project

factors

Dealing with cultural

differences

Working environment

There is a lot of research conducted on how to improve the currently existing frameworks, used in

Agile software development teams. When making changes to frameworks, it is of importance to invest

in managing, motivating, and coaching the team members involved in software development projects.

Especially, because self-managed work teams have now been used for several decades and are popular

as a means to make work organisations more effective and to improve productivity. Evidence suggests,

however, organisations remain sceptical and even dismissive of self-organised teams. The reasons, it

is suspected, is that handing away responsibility for much of the decision-making to team members is

perceived as a high risk (Parker et al., 2015).

A study by Kola (2014) researched the thoughts of Scrum Masters on how to improve the productivity

of an Agile software development team: measure productivity, find the root causes of possible

problems and fix them, eliminate useless work activities in favor of high-value activities, assign the

right tasks to the competent people; in other words letting everybody work on what they are best on,

motivate the team members to commit on what they are doing, ensure customer contact for the team

members, use the agile to improve the team working efficiency and improve the team velocity

continuously, involve testing soon and make it as automatic as possible, focus on training people and

building competence, focus on improving the productivity of the teams rather than that of specific

individuals, organize small activities that make the team happy (sprint celebrations), consider change

management.

Several suggestions based on research to improve the productivity of important aspects of an Agile

software development team are provided.

Page 42 of 92

Interruptions

The first topic on which can be improved according to the literature is interruptions. In software

development projects, agile approaches are often used to manage the project by using daily standups,

retrospectives, and other agile tools. Agile software development projects increase collaboration with

different stakeholders in software development project teams. This collaboration has many benefits

for the agile team, as it ensures that customer needs are met, it fosters knowledge sharing, and it

increases employee motivation (Wiesche, 2021). However, Wiesche (2021) describes that the

openness toward change and the high degree of collaboration also cause interruptions for the software

development team, described as events that impede or delay organizational members during work

tasks. Examples of interruptions are being asked for help or feedback by a team member, changing

requirements or waiting for input. As far as researched nowadays, recovering from interruptions is a

central problem among software development teams. To identify the way a team is affected by

interruptions in three different contexts, a study has been conducted. Wiesche (2021), identifies the

contexts (1) programming-related work impediments, such as changed requirements, errors, and

developers waiting for information; (2) interaction-related interruptions, such as customer requests

and formalized meetings; and (3) interruptions imposed by the external environment, such as

technology-induced interruptions and interruptions caused by the work environment. All teams

participating in this research are using practices embedded in the agile mindset.

When dealing with interruptions, it is important to stick to the rules prescribed by the framework. The

results of the study highlight the importance of the roles in agile software development teams. The

scrum master needs to possess the resources and power to protect the team from too many

interruptions. Further, the product owner needs to channel interruptions during the software

development process to help agile software development teams cope with interruptions (Wiesche,

2021). Another possibility to deal with interruptions is to allocate a portion of time to interruptions

(Berteig, 2020). To determine whether this is necessary, it is important to track the occurrence of

interruptions. It is possible to allocate time to interruptions in two ways, by giving everyone in the

team some time or by giving one or two people time to handle interruptions.

Data

Improving the productivity level of software development teams is one of the most important

objectives all software companies are dealing with. In this section, several suggestions are provided on

how to improve productivity with the use of data.

With the increasing popularity of Big Data, which throughout the years has successfully entered the

realm of computer science and business environment alike, software practitioners can now efficiently

use it to improve software development processes (Biesialska et al., 2021). When optimising

development cycles by using data analytics, it can help to streamline the daily business operations of

a company. A study has been conducted by Biesialska et al. (2021), to identify tools to using Big Data

Analysis in Agile software development. Many works incorporated additional functionalities to existing

tools or integrated with solutions already in use by the studied organizations. In general, Eclipse plug-

is were especially well-represented among the tools, followed by JIRA plug-ins and, to a lesser degree,

Azure DevOps extensions (Biesialska et al., 2021). Visual analytics in software engineering mainly

provides insights about intangible software product artifacts (such as program runtime behavior or

software evolution), while software process visualization is far less popular and deserves more

attention (Biesialska et al., 2021). Furthermore, numerous studies proved that visual representation of

data often offers the kind of insights that are especially useful for decision-makers, such as dashboards

visualising most vital metrics for ASD processes and KPIs. This is essential besides Big Data Analytics.

Page 43 of 92

Retrospective meetings are nowadays a popular practice in software development teams. Activities

that take place in this meetings often do not rely on project data, instead depending solely on the

perceptions of team members (Matthies et al., 2020). Research by Matthies et al. (2020) propose new

Retrospective activities, based on mining the software repositories of individual teams, to complement

existing approaches with more objective, data-informed process views. Most proposed Retrospective

exercises focus on gathering the perceptions and experiences of team members and extracting

improvement opportunities from them. Another view of the project reality is available through the

artifacts that are produced by software developers in the course of their daily work (Matthies et al.,

2020). A tool-type suggested for Jira is Issue Tracker, providing the possibility to manage detailed

information on work items. Data extracted from such tools are useful for process improvements

because of the provided evidence for project problems. A large-scale analysis of this data is the focus

of Mining Software Repositories.

Software development teams have usually a lot of data available in different kinds of repositories. The

data can be mined as suggested by Biesialska et al. and Matthies et al. The result can be used for

software process improvement purposes. As the human mind is powerful in interpreting visual

representations, visualizations could help in recognizing problems and areas of improvement in an

agile software development process (Lehtonen et al., 2013). Research by Lehtonen et al. on

visualization was used to identify problems in sprint length, release cycle, task size, lead time and

communication between the development team and the customer. The biggest challenge described

by Lehtonen et al. is to export data easily from Jira to be able to analyse it. Jira content was

transformed to a visual form as follows. First, a Jira filter was applied to find issues from the past two

years. The issue event data consists of state changes, comments, and assignments. However, it turned

out to be that there was a better connection needed to access issue event data. This has been done

by a custom Jira Web Crawler with robot frameworks and python scripts. The visualization presented

contains a lot of information, with tens of tasks and hundreds of events shown in a compact form

(Lehtonen et al., 2013).

The employees

Research suggests improving the happiness level/satisfaction rate of employees to improve

productivity. A study by Graziotin and Fagerholm (2019) show that most developers are moderately

happy: happy developers are supposedly more productive and, hopefully, also retained. Perks,

playground rooms, free breakfast, remote office options, sports facilities near the companies...there

are several ways to make software developers happy (Sadowski & Zimmermann, 2019).

A study by Ramirez-Mora and Oktaba (2018) describes that almost all identified factors impacting

productivity are team process, attitudes, and affections among team members. It was found that most

of the factors are characteristics of “mature teams”. Social science exposes that “mature teams” can

reach high productivity levels and are characterized by open communication, team cohesiveness,

mutual support, mutual trust, shared leadership and effective conflict management (Ramirez-Mora &

Oktaba, 2018). To improve productivity, it is suggested to focus on those aspects.

Each developer of a development team feels different about productivity which makes it more

challenging to determine which actions could help increase the productivity of a team. To better

understand the different feelings, a study has been conducted. Analyzing productivity ratings from

hourly self-reports during three workweeks, it is found that developers can roughly be categorized into

three groups that are similar to the circadian rhythm: morning person, afternoon person, and low-at-

lunch person (Meyer et al., 2019). Besides, the developers can be clustered into six groups based on

personality: social, lone, focused, balanced, leading, and goal-oriented. A first step to increasing

Page 44 of 92

productivity is to build self-monitoring tools allowing the developers to increase their awareness about

both productive and unproductive behaviours to use the insight to set goals for self-improvements.

For the future, it could be possible to build virtual assistants, such as Alexa for Developers, that

recommend (or automatically take) actions, depending on the goals of developers or based on the

productivity patterns/roles/clusters of developers (e.g. blocking notifications for the lone developer,

but allow them for the social developer) (Meyer et al., 2019). By knowing the trends and

characteristics, it might be possible to change schedules that best fits the work patterns.

Another important aspect suggested to improve on is team awareness. Currently, there are tools

available to provide mostly quantitative information that helps developers making sense of everything

that goes on in a project. However, to accurately represent what goes on in a project, awareness tools

are important, focusing on summarising the most important information. It is suggested that such tools

should categorise the events in a software project according to whether they are expected or

unexpected and use natural language processing to provide meaningful summaries rather than

numbers and graphs that are likely to be misinterpreted as productivity measures (Treude & Filho,

2019)

Improving the Agile frameworks

As identified, several factors are having an impact on productivity. Some of them are concerning

programming languages, coding, etc. To improve on them to increase productivity, it might yield to

use existing methods, understanding programmers. Metrics are providing insights into the process,

human-computer interaction (HCI) methods can help better understanding programmers. Myers et al.

(2019) identified ten possible methods to use for this purpose.

1) Contextual inquiry

Used to understand barriers in context. The experimenter observes developers performing

their real work where it actually happens and makes special note of breakdowns that occur.

2) Exploratory lab user studies

The experimenter assigns specific tasks to developers and observes what happens.

3) Surveys

To observe the frequency of an observed barrier, surveys could be used. The survey can be

counted how often developers have questions about control flow and how hard those

questions are to answer

4) Data mining (including corpus studies and log analysis)

As an example, the study by Sadowski and Zimmerman felt that programmers were wasting

significant time trying to backtrack while editing code. When analysing code-editing logs the

instances could be tracked.

5) Natural – programming elicitation

A way to understand how programmers think about a task and what vocabulary and concepts

they use so the intervention can be closer to the users’ thoughts. A method is to give a blank

paper where the desired functionality is described and the programmers design how that

functionality should be provided

6) Rapid prototyping

Allows quick and simple prototypes of the intervention to be tried, often just drawn on paper,

which helps to refine good ideas and eliminate bad ones

7) Heuristic evaluations

Ten guidelines to evaluate an interface

Page 45 of 92

8) Cognitive walk-throughs

Involves carefully going through tasks using the interface and nothing where users will need

new knowledge to be able to take the next step

9) Think-aloud usability evaluations

The participant continuously articulates their goals, confusion and thoughts. This provides the

experimenter with rich data about why users perform the way they do so problems can be

found and fixed

10) A/B testing

Statistically valid experiments to demonstrate that one intervention is better than another, or

better than the status quo.

Another important element on which can be improved is waste. Software wase refers to project

elements (objects, properties, conditions, activities, or processes) that consume resources without

producing benefits (Sedano et al., 2019)(Sadowski & Zimmermann, 2019). Wastes can be compared

with frictions in the development process. Two steps in waste are important: waste awareness and

identification. During a study conducted by Sedano et al. (2019), nine main types of waste in agile

software projects were identified:

1) Building the wrong feature or product

Techniques to avoid or reduce waste include usability testing, feature validation, frequent

releases and participatory design

2) Mismanaging the backlog

Solutions include prioritising backlog several times a week, minimizing work in progress by

finishing features before starting new ones, update the backlog with current work in progress

3) Rework

Solutions include continuous refactoring, reviewing acceptance criteria before beginning a

story, and improving testing strategy and root-cause analysing on bugs

4) Unnecessarily complex solutions

Solutions include simpler designs for user interaction and software code

5) Extraneous cognitive load

Solutions include refactor code that is difficult to understand, decompose large, complex

stories into smaller, simpler stories, replace hard-to-use libraries, work on one task at a time

until it is completed; avoid “blocking” tasks (i.e., putting a task on hold to work on something

else), improve the development flow including better scripts and tools

6) Psychological distress

Solutions include simply asking team members “how are things going” and reducing scope or

extending deadlines for stress related to deadlines

7) Waiting/multitasking

Solutions include limiting work in progress and taking breaks instead of task switching

8) Knowledge loss

Solutions include code review and pair programming

9) Ineffective communication

Solutions include having face-to-face synchronous communications and conversational turn-

taking

Page 46 of 92

Dashboards

There are many kinds of information that developers should be aware of in a software development

project. However, with the amount of information available, it is hard and often not necessary to be

aware of all details of a project. Important is to use dashboards to focus on quantitative data about

the issues. Especially in agile teams are dashboards important for managers. Stephen Few defines a

dashboard as “a visual display of the most important information needed to achieve one or more

objectives which fit entirely on a single computer screen so it can be monitored at a glance” (Storey &

Treude, 2019)(Sadowski & Zimmermann, 2019). It is possible to measure from different perspectives.

Storey and Treude (2019) describe the different dimensions as developer activity, team performance,

project monitoring and performance, and community health.

Besides tracing productivity by using a dashboard, it is also possible to use a tool for the employees to

self-monitor their own work. There is a wide variety of factors that impact success and productivity at

work, like interruptions for example. Self-monitoring is proved to be successful to increase awareness

about productivity in other domains.

Pair programming

The definition of pair programming is that two programmers are working closely together on a

programming task. Zieris and Prechelt (2019) studied the effectiveness of paired programming. They

discovered that frequent pair programming is an excellent technique to make sure system knowledge

spreads continuously across a team.

Add-ons

A wide variety of add-ons for Jira are developed. To accelerate Jira productivity, some of them are

suggested.

1) Mail Me

Communication is key, so Mail Me provides the opportunity to send issues to internal and

external users while still on Jira.

2) Checklist

Provides the possibility to track smaller tasks. It is possible with this add-on to create custom

checklists to track issues and manage different statuses.

3) Structure

An add-on turning chaos into clarity. With grouping, sorting, filtering, and other rules

structures can be built.

Page 47 of 92

3.1.2. Suggestions on the framework
The CRM Tribe of A.S. Watson is using a framework mainly based on the principles of Scrum, a Kanban

board, and principles from the Nexus model and the Spotify model. Scrum focuses on the management

of development and does not prescribe specific development techniques: therefore, it can easily be

combined with other approaches, such as XP (Vogel & Telesko, 2020). A suggestion for improving the

current model could therefore be the implementation of some practices of XP. Vogel and Telesko

(2020) describe that the following practices can be used together with Scrum:

1) Pair programming

2) Test-driven development (described as the most useful XP practice)

3) Coding standards

4) Sustainable pace/energised work

Another framework that deserves to be considered is the combination of Agile with DevOps. DevOps

is a set of practices that work to automate and integrate the processes between software development

and IT teams, so they can build, test, and release software faster and more reliably (Atlassian, 2019).

Atlassian (2019) explains the DevOps lifecycle as a cycle consisting of six phases, representing the

processes, capabilities, and tools needed for development on the left side of the loop, and the

processes, capabilities, and tools needed for operations on the right side of the loop. Will Kinard

mentions that when it comes to developing software faster and maintain software more efficiently,

both agile and DevOps have a big role to play (Ismail, 2018).

Figure 35: DevOps cycle (Atlassian, 2019)

Page 48 of 92

3.2. Suggested indicators by research

To solve the core problem of having a limited level of data visualisation to identify known and unknown

problems, a dashboard is needed. To keep track of the process with the dashboard, indicators are

needed. The purpose of the data visualisation is to improve the productivity level in the end. The

productivity level is tracked with performance indicators. First, a SLR is conducted providing

suggestions for indicators to use in software developing companies. Second, suggested metrics are

provided based on the opinions of experts.

3.2.1. Suggestions from literature review
An indicator is a common term. In Agile software developing teams, the term metric is used for

indicators, which tracks a specific process. Metrics are required for planning and tracking projects,

measuring quality, and assessing team performance (Budacu & Pocatilu, 2018). According to Kupiainen

et al., (2015), the reasons for and the effects of using metrics are focused on the following areas: sprint

planning, progress tracking, software quality measurement, fixing software process problems, and

motivating people, which has also been identified by Budacu and Pocatilu, (2018). In Table 2 an

overview of metrics, ranked on importance, is provided based on the literature study conducted by

Kupiainen et al., (2015). Metrics were selected as important during the literature study if the author

praised the metric if there were signs of continuous use or if there was a positive correlation to

important output.

Table 2: Metrics

Metric
Velocity Processing time
Effort estimate Defect trend indicator
Customer satisfaction Work in progress

Defect count Number of unit tests
Technical debt Cost types
Build status Variance in handovers
Progress as working code Deferred defects
Lead time Predicted number of defects in backlog

Story flow percentage Test coverage
Velocity of elaborating features Test-growth ration
Story percent complete Check-ins per day
Number of test cases Cycle time
Queue time

Research by Kurnia et al., (2018) suggests that software metrics can improve the development process,

produce a better project, and control the quality, and improve the estimation process. Software

metrics can be used to provide an objective view and to evaluate the various impacts of software

development process changes. In addition, software metrics also provide benefits to review project

progress, monitor the product quality, and forecast the project and the project management. Kurnia

et al., (2018), provides a set of software metrics, provided in table 3, to measure the performance on

each event based on four perspectives of measurement, respectively sprint planning, daily sprint,

sprint review and sprint retrospective.

Research question 5: what indicators are suggested for agile software development companies?

Page 49 of 92

Table 3: Metrics classified in four perspectives

Sprint planning
metrics

Daily sprint
metrics

Sprint review
metrics

Sprint
retrospective

metrics
Effort estimate # of an open defect # of defects found

in system test
Focus factor Earn value

management

Story point Contribution Bug correction time
from new to the
close state

Fulfillment of
scope

Impression

Task effort The ratio of work
spent and work
remaining

Business value
delivered

Number of
stories

Influence

Task’s expected
and end date

Standard violation Customer
satisfaction

Open defect
severity index

Job satisfaction

Velocity The release burndown
chart

Completed web
pages

% of adopted
work

Net promoter

 The sprint burndown
chart

Defects deferred % of found
work

 Defect per iteration Progress chart
 Delivery time Unit test

coverage for
developed code

 Error density Work capacity

The two most popular metrics in the sprint planning stage are story point and velocity. Release
burndown and sprint burndown are the two most important metrics for the daily sprint stage. In the
sprint review process, customer satisfaction and business value delivered are the most popular. For

the last stage, job satisfaction and earn value management (Kurnia et al., 2018). (Padmini et al., 2015)
identifies “delivery on time” was the most used metric according to their literature study. The result

of recommended metrics based on their literature study is as follows: delivery on time, work capacity,
unit test coverage for the developed code, percentage of adopted work, bug correction time from
new-to-closed state, sprint-level effort burndown, velocity, percentage of found work, open defect

severity index and focus factor.

Agile software development continues to grow. There is a need for empirical evidence on the impact,

benefits and drawbacks of an agile transformation (Olszewska et al., 2016). The metrics apply to

projects of any size, complexity, and scope and for measuring past and ongoing projects. If the

company is shifting towards more agile principles, the following set of metrics is suggested by

Olszewska et al., (2016) and by Heidenberg et al., (2013): Customer Service Request (CSR) turnaround

time, lead time per feature, functionality/money spent, Number of releases/time period, commit

pulse, flow metric, number of external trouble reports and average number of days open external

trouble reports.

Page 50 of 92

3.2.2. Suggestions by experts
When reviewing articles and blogs from experts and JIRA users, several metrics are highlighted. It is

recommended to divide the metrics into quality, productivity, and performance. Three types of metrics

are identified: Scrum metrics, Kanban metrics, and Lean metrics. Since the Tribe is using Scrum and

Kanban principles, the focus is on those two categories. Scrum metrics focus on the delivery of working

software to customers and Kanban metrics focus on workflow, and the organisation of work and

getting it done.

The most common mentioned metrics are:

1) Velocity
2) Cycle time
3) Lead time
4) Sprint burndown
5) Epic and release burndown
6) Issue burndown
7) Control chart
8) Cumulative flow diagram
9) Sprint health gadget

10) High priority issues
11) Time spent including waiting time
12) Defects
13) Work Item Age
14) Throughput
15) Escaped defects
16) Failed deployments

17) Story points planned
18) WIP

3.2.3. Results

Table 4: Set of Metrics

Metrics
Velocity Cycle time Escaped defects

Story points Ratio of work spent and remaining Failed deployments
Number of test cases Release burndown Time spent including waiting time
Defect count Sprint burndown Work item age
Queue time Number of stories Throughput
Build status Control chart Processing time

Work in Progress Cumulative flow diagram Story percent complete
Lead time Sprint health gadget Number of unit tests
Story flow percentage High priority issues

“When combining all key recommendations applicable to the Tribe, the following set of metrics arise”

Page 51 of 92

3.3. Data visualisation
In this section, all details around data visualisation are provided. First, it is important to export data in
a way it is useable for data visualisation and analysis. Suggestions are provided for this. Besides,
suitable options for dashboard tools are given. Second, suggestions are given on the type of charts to

use and last suggestions are provided on how to implement the use of a dashboard in an Agile process.

3.3.1. Analysis and visualisation

Preparing data
The company is using Jira Cloud as project management tool. All tickets and their details can be found
here. A picture of how this looks is visualised in Figure 50 included in appendix E. However, it is hard

to easily export data in a way it is usable for further analysis, or for a dashboard that is not connected
with Jira. When pressing the export button, data is exported to excel in the following way. To explain
why this is a problem, a screenshot is included in Figure 36. Many users describe the export of data

from Jira as a problem. Therefore, a tool to export data in a structured way is necessary. Below the
picture, two suggestions are provided.

1) Advanced Export (add-on)

For the Disco analysis, data was exported with the free trial of the tool Advanced export. With

Advanced Export for Jira, unlimited number of issues can be exported easily in a spreadsheet or other

tools. This includes the history of changes, which is often the most important input for further analysis.

Standard fields can be exported, as well as customised fields. The advantage of this tool is that it is an

add-on provided by Atlassian Marketplace. Atlassian is an Australian company that developed the tool

Jira. This means the tool can easily be integrated within Jira. When only the CRM Tribe would use it, it

will cost between $25 and $37.5 per month.

Research question 6: what constitutes a dashboard to improve productivity of an agile process and how to implement this?

Figure 36: Result of exporting data from Jira

Page 52 of 92

2) Python
There is a lot of information on issues in Jira which is interesting to analyse. This method is based on a

Python code to extract the desired data from Jira into a CSV file. Python is a general-purpose

programming language. To export data from Jira into Excel, a code is developed based on an existing

code (Dmitriev, 2018). The code is written in Spyder; a free and open-source scientific environment

written in Python. Besides, the Jira library is needed for the code.

A practical way to start with coding is to use the open-source distribution platform Anaconda. A

screenshot of the platform is provided in Figure 51 which is included in appendix E. After installing

Anaconda, CMD.exe.prompt can be launched via Anaconda in which the Jira library can be installed. A

visualisation of this is provided in Figure 52. Then it is time to launch Spyder. The code is also provided

in appendix E. Data is automatically exported to CSV, depicted in Figure 37.

The advantage is that it is an open-source platform, and it is possible to program the code in all

different ways to export the desired fields. This makes this method also suitable for exporting data for

other goals within the company.

Visualisation tools

The set of metrics serve as the input for the dashboard. In this section, several options for dashboards

are tested on requirements so a recommendation can be given on what tool to use. The tools and the

requirements are represented in Table 5. First, the different selected tools are explained.

The first tool is the Jira dashboard, which is a dashboard created in Jira cloud. Personal dashboards for

different projects can be created by adding gadgets to keep track of. Geckoboard is a cloud-based

dashboard tool displaying key business metrics in real-time. The third option, powermetrics, is a tool

providing real-time data to visualise data. Klips is a cloud-based platform to make visualisations from

important metrics. Screenful is the fifth option and provides the opportunity to visualise and track

productivity using data from existing tools. Kanban analytics provides the opportunity to connect with

Jira and visualise actionable insights from the data. The seventh option is EazyBI for Jira, which is an

add-on available on Atlassian marketplace. It provides the opportunity to analyse & visualise many

metrics. Tableau is a popular platform used for dashboards on which all preferred data can be

visualised. Kibana is a tool that provides the opportunity to rapidly create views that pull together

charts from real-time data. As Excel is probably familiar to everyone, not everyone is familiar with the

possibilities to design charts to create a dashboard within Excel. The last tool from the list is an add-on

providing a single report; time in status, which serves as a comparison explained below the table.

Figure 37: Format of exported data with python

Page 53 of 92

Table 5: Balanced scorecard for dashboard tools

 Costs # Users Real-
time

Degree of
customisa-

bility

Ease to
use

Ease to
install

Public/
private
cloud

Integratable
with Jira

Weighing factor 2 1 1,5 3,5 3 2,5
Jira dashboard 10 8 8 3 8 10 Private Exclusive
Geckoboard 6 4 8 5 9 10 Public Native

integration

Powermetrics 2 6 8 6 6 8 Public Native
integration

Klips 8 6 8 10 3 6 Public N/A
Screenful 8 10 8 6 8 8 Public Yes

Kanban analytics 4 4 8 7 8 8 Public Yes
EazyBI for Jira 8 4 8 7 8 6 Public Yes / exclusive
Tableau 6 10 6 10 3 3 Private No
Kibana 6 10 6 9 6 3 Private No
Excel 10 10 6 8 4 2 N/A No
Time in status 2 6 8 1 8 8 Public Yes

The first four requirements speak for themselves. Ease to use means how user-friendly the tool is. Ease

to install determines how much effort is needed before having the desired metrics. If the tool is not

integrable, a connection needs to be programmed. Each requirement received a score after comparing

all tools and a weighing factor. The requirements are weighted based on importance by the Tribe Lead.

Table 6 represents the results of the balanced scorecard method.

Table 6: Results of balanced scorecard

Instead of choosing a dashboard, it is also possible to use the alternative of single reports such as the

add-on “time in status” to visualise a process. However, the low result of the single add-on “time in

status” visualises the importance of having a dashboard. Since time in status is an expensive tool, it is

really expensive to purchase several single add-ons.

EazyBI is an add-on for the Jira dashboard. This makes the selection the following: Screenful, Jira

dashboard with the combination EazyBI for Jira, and Geckoboard are suitable solutions for the

dashboard tool, based on a public cloud. Kibana is a suitable option with a private cloud. Tableau has

a high level of customisability and is on a private cloud, so could be suitable if this is highly desired.

The tools on a public cloud should be checked by the privacy department of the company.

Rank Tool Total Public/private
cloud

Integrability

1 Screenful 103 Public Yes

2 Jira dashboard 99,5 Private Exclusive

3 Geckoboard 97,5 Public Native integration

4 EazyBI for Jira 95,5 Public Yes / exclusive

5 Klips 93 Public N/A

6 Kanban analytics 92,5 Public Yes

7 Kibana 88 Private No

8 Excel 84 N/A No

9 Tableau 82,5 Private No

10 Powermetrics 81 Public Native integration

11 Time in status 69,5 Public Yes

Page 54 of 92

3.3.2. The design
The purpose of the dashboard is to visualise important processes identified by the bottleneck analysis,

the needs of the employees, and literature. The goal is, by visualising the data, to improve the

productivity level of the CRM Tribe. As analysed, it is important to make a distribution between the

different squads. This gives the Tribe Lead the opportunity to analyse the process of the whole Tribe

and more specific per Squad and it provides the Scrum Master with the opportunity to discuss the

process with the Squad members. A clear layout is of importance to achieve the best results while

using a dashboard in your process.

There are different types of charts with different purposes of visualisations. When choosing the wrong

type of chart for a specific metric, the data can be interpreted incorrectly. Therefore, it is important to

decide which chart to use for which metric. An overview of the types of charts is provided with an

explanation of when to use the specific chart.

 1) Line graphs

 Illustrates change and comparisons over time to reflect trends

Add multiple (different coloured) lines for comparisons and

consider shading the areas under the lines

2) Bar charts

Illustrates comparisons

Comparing data across categories and use (different coloured)

stacked bars or side-by-side bars

3) Pie charts

Illustrates proportions / percentages of information

Do not use for comparisons, but for proportions and limit it to six

categories

Guidelines for designing a dashboard Tips

1) Include only the most important metrics Less is more

2) Make use of size and position to show importance Big + top left

3) Give context to numbers Compare with previous data

4) Group metrics related to each other Quality / Productivity / performance

5) Be consistent with layouts and visualisations Use same type of charts

6) Clear labels Use headings

7) Round numbers Use symbols/abbreviations

 Figure 38: Dashboard design guidelines

Page 55 of 92

 4) Gauges

 Illustrates the move towards a goal

 Goal threshold below maximum and set a negative threshold,

 use red and green to make a distinction between bad and good

 5) Progress bars

 Illustrates the progress towards a goal

Only use for key, fundamental team goals and provided details

about which process the bar is going

 6) Colour-coded alerts

 Highlight critical metrics

Only use this for critical metrics and consider using an icon to

ensure everyone interprets the chart correctly (colour-blind)

 7) Scatter plots

 Illustrates relationship between different variables

Use to spot outliers that might indicate further investigation.

Consider using (different coloured) bubbles as a technique to

accentuate data

 8) Histogram

 Illustrates the distribution across groups

To understand the distribution of the data, use this type of

chart. Consider adding a filter to drill down into categories

3.3.3. Implementation
A lot of research suggests using a dashboard during the retrospective meetings with the Scrum master

and the entire Squad. In this meeting, it is relevant to have a dashboard visualising the most important

processes related to the specific Squad. During a sprint, all employees can regularly check the

dashboard themselves. Besides, the Tribe Lead needs to track the process by using the dashboard. To

discuss this with the team, the dashboard can be used during the Scrum Master meeting.

Figure 39: Overview of charts

Page 56 of 92

4. Improving the productivity level of the CRM Tribe by using suggested metrics
This chapter describes the result of all analyses and provides the solution of how to analyse and

visualise the productivity level of the CRM Tribe. Based on bottleneck analyses, personal needs, and

literature research, a set of metrics is developed so the Tribe can analyse their productivity by having

an overview of the bottlenecks. The overview gives the employees an insight into the problems so that

all problems are known to the employees such that adequate response is possible.

4.1. The metrics
The bottleneck analysis showed the importance of visualising the duration of the tickets in the process

and between the different stages. Besides, it showed that an important phase, the testing phase, was

skipped too often and that several tickets re-entered a specific stage a lot of times. Both bottlenecks

are related to quality and are therefore a strong indication to use metrics visualising these processes.

As a result of the conversations with the different employees about their needs, they indicate a need

for quality and progression. Developing quality and testing quality are both mentioned by the

employees. Besides, the need is to track easily whether the process is on track or not, on a general

Tribe level and a Squad specific level. Literature research suggests different metrics. The suggestion is

to focus the metrics on three categories: quality, productivity, and performance. Figure 40 shows the

suggested set of metrics.

Category Metric Chart type

 Quality Escaped defects Bar chart / colour-coded alert

 Quality Failed Deployments Bar chart / colour-coded alert

 Quality Findings per stage Bar chart / colour-coded alerts

 Quality Skipping phases Colour-coded alert / Pie chart

 Quality Mean time to repair Colour-coded alert / line graph

 Quality Ticket flow Bar chart

 Productivity Velocity Bar chart / line graph

 Productivity Lead time Line graph

 Productivity Sprint Burndown Line graph

 Productivity Release burndown Line graph

Productivity Days in Status or average age Histogram / Bar chart / Pie chart

 Performance Cumulative Flow Line graph with shaded areas

 Performance Release/Sprint health Gauge / progress bar

 Performance High priority issues Colour-coded alert

 Performance Progression of testing Bar chart

 Performance Customer value Colour-coded alert

Figure 40: Recommended metrics

Page 57 of 92

The different metrics have different purposes. Therefore, a list with both explanations, and some
instructions for the metrics is provided.

1. Escaped defects

Helps to identify the number of bugs in a build/release after the ticket enters production. The
ideal factor is zero. Since production bugs are often a problem in agile processes, it is an
important metric. It could be divided into production findings and change tickets. Currently, it

is not possible to visualise this metric because of the way information is logged in Jira. To be
able to visualise this metric, the findings should be logged to identify the escaped defects.

2. Failed Deployments

Provides a clear indication of whether tickets in sprints or releases are ready for production,
or not. It indicates the quality of the software that will be delivered. Similar to escaped defects,

the way of logging in Jira should be changed for this metric as well, to be able to visualise the
failed deployments.

3. Findings per stage

Provides an overview of the quality of the different processes, such as developing and testing.
It is suggested to monitor the transitions between different stages, especially when a ticket

goes back into the process to a stage it already passed. When monitoring for example the
transition from a ticket in developing to testing, back to developing, the quality of the
development phase can be monitored. By doing this, bottlenecks can be identified quickly.

4. Skipping phases
Helps to identify whether a ticket is skipping an important phase or not. If a ticket is skipping
the testing phase for example, it should give a notification so it can be checked whether it is

allowed to skip testing. This metric helps to optimise quality of the software delivered.
5. Mean time to repair

The average time it takes to repair a finding. Helps to identify the duration time which seems
very long in some cases, as analysed by process mining. Unplanned maintenance time and the
total number of failures are needed to calculate this metric.

6. Velocity
A metric allowing to assess the average amount of story points finished in a sprint. It indicates
the amount of work the team is able to complete within a timeframe. A decrease in velocity

signals a decrease in productivity and vice versa. A consistent velocity can be used to forecast
and plan for the amount of work in the backlog.

7. Lead time
The metric provides the opportunity to monitor a ticket from entering the backlog to the
moment of release. The lower, the more productive the process is. It is useful to identify tickets

with longer lead times than others to prevent long unnecessary duration times.
8. Ticket flow

Visualises the path of the tickets to identify who is responsible for which status. It contributes
to the quality of the software since it is clear whether different employees tested a ticket for
example.

9. Sprint Burndown
When a sprint starts, a number of story points are scheduled to finish in the sprint. This metric
provides the opportunity to identify whether the Squad is on track or not.

10. Release burndown
Instead of monitoring the progression of story points per sprint, this metric allows to track the

progression of a release
11. Days in Status or average age

Tracking the time each ticket spends in a specific status. This helps to identify long duration

times. Could be divided into the development process and testing process. This is important
to identify bottlenecks in specific statuses and it shows the problem of the large backlog.

Page 58 of 92

12. Cumulative Flow
Helps to get a view of the status for each task in a sprint, release and across software squads.

Bottlenecks per status can easily be identified.
13. Release/Sprint health

Provides a summary of the progress of the sprint and the story points. A quick indication to
see whether everything is on track or not.

14. High priority issues

Preventing missing important tickets by giving them priority by flagging the ticket. Currently,
there is a division in must have, should have, and could have. However, it is possible to give
priorities to tickets in Jira. This is necessary to visualise this metric.

15. Progression of testing
This metric could help to identify the status of testing. It is currently not visible how far the

ticket is with testing, resulting in a lack of overview for the testers. To be able to visualise this
metric, the add-on checklist could be an option to make this visible. Another option is to split
the status of testing into more sub statuses.

16. Customer value
To identify the value of the work, surveys can be sent to the BUs and the average scores can

be added as a metric. The goal of the company is to put a smile on its customers’ faces.

Therefore, a customer love score is important as a measure to identify the value of the

software delivered to the customers. This could work as a stimulation to the employees as well

since they are not directly in contact with the customers. By seeing this customer value score,

they see the value of their work to their customers.

4.2. The dashboard
To start with using dashboards, it is important to make a distinction between a CRM Tribe Dashboard

and Squad dashboards. From the set of metrics, a recommendation is given on the most important

metrics suitable to the CRM Tribe to use on which dashboard, represented in Figure 41 and Figure 42.

CRM Tribe dashboard

 Functional release health Release burndown Velocity

 Escaped defects Customer value Findings per stage

 Failed deployments Mean time to repair Lead time

 Ticket flow Cumulative flow Days in status

Squad dashboards

 Sprint health Skipping phases High priority issues

 Sprint burndown Progression of testing Days in status

Figure 42: Metrics for CRM Tribe dashboard

Figure 41: Metrics for CRM Tribe dashboard

Page 59 of 92

To realise the dashboards, the first step for the company is to determine which tool to use and to

purchase a license. Based on the analysis, there are five possibilities selected following from the

balanced scorecard method. Most important considerations are costs, customer friendliness and

public/private cloud. The second step is to make changes in the way of logging. Some important

information is currently missing to be able to construct several metrics. Priority should be logged to

visualise high priority tickets and all findings should be clearly logged as well. After the tool is purchased

and the way of logging is changed for specific processes, the dashboard can be constructed. The tool

EazyBI is used to visualise how a dashboard would look like, by showing a demo in Figure 43. In this

demo, only the metrics currently possible to construct with the given data are visualised. A zoomed-in

version of the dashboard is provided in appendix F.

4.3. Evaluation
Evaluating the dashboard is beyond the scope of this project. As described above, the company has an

advice now on how to analyse and visualise data, so they only need to decide on which tool and realise

the dashboard based on the given recommendations. However, a great result is already achieved by

creating awareness about the importance of data visualisation. Several discussions took place among

the employees following from the bottleneck analysis with process mining. The bottleneck analysis

showed important bottlenecks and the uncertainty of the data, so some employees already started

with cleaning old data. The importance of having a suitable set with metrics became an important topic

in discussions and employees were willing to share their thoughts and desires about the dashboard.

Increasing the awareness of the urgency of the dashboard among employees is a first important step

in implementing a dashboard.

Figure 43: Demo dashboard

Page 60 of 92

5. Conclusion, recommendations & limitations
The goal of this research was to solve the core problem of having a limited level of data visualisation

identifying known and unknown problems to improve the productivity level. By answering the research

question “how to analyse and visualise data to identify problems so that productivity of an Agile

organised company can be improved” the core problem is solved.

The research was conducted on behalf of the CRM Tribe of Group IT Europe of A.S. Watson. In this

chapter, first a conclusion on the extent of which the solution reached the norms of the company is

provided. It is concluded whether the solution solved the core problem. Afterwards, recommendations

are provided and the limitations of the research are taken into account.

5.1. Conclusion
After a quick problem analysis, it was clear that there were multiple problems of which the impact on

productivity was unclear. The underlying problem was having a limited level of data visualisation to

track the impact of these problems. A lack of communication was causing errors in testing phases,

tickets missing release deadlines, having difficulties with sticking to the sprint planning and there was

a full backlog of the Siebel team. The core problem would be solved if the norm set by the company is

reached.

An elaborate analysis explained the importance of data visualisation even more. On the one hand, data

related bottlenecks, such as long duration times and long waiting times, became clear. These were

indications for the importance of visualising productivity metrics. Skipping testing phases and re-

entering stages are important indications for having quality metrics. On the other hand, it explained

the current level of awareness about the process and its bottlenecks. Disco, the process mining tool,

has the option to show an animation of the process. When playing the animation, the ticket flow is

clearly visualised so that bottlenecks can be seen easily. During a Teams session, the animation was

shown to the Scrum Master resulting in a discussion about the process. It became clear that the limited

level of data visualisation resulted in the lack of awareness about important factors within the process.

The company wanted to have an advice on how to visualise the data to have a better overview of the

data. The company already used Jira to manage their projects which provides the possibility to use

metrics. After the discussion on the visualisations of the Disco animation, the conclusion was that

visualisations help to understand the data.

During the research, several research methods were used to identify a suitable set of metrics for the

CRM Tribe. The end result is a list with recommended metrics that can be visualised to improve the

number of metrics from three to a complete dashboard. The metrics are carefully chosen based on the

needs of A.S. Watson. With the use of the metrics, the problems of having a lack of communication

and focusing on the own problem will be solved as well. Only a set of metrics is not enough for data

visualisation. First of all, it is necessary to determine which visualisation tool to use, so therefore, a set

of tools had been chosen to evaluate. Eight requirements were set up to evaluate the tools on. To

determine which tool to use, the balanced scorecard method was used. After applying scores on each

requirement, weights based on the importance of the requirement were added, to be able to

recommend what tool to use. When the tool is determined and when the set of metrics is known, data

needs to be visualised. To make optimal use of a dashboard, the right type of chart needs to be chosen.

Therefore, the different types of charts were analysed and for each metric, a suggestion on which chart

to use is provided. Productivity can also be improved by other improvements besides using a

dashboard. For this purpose literature research is conducted to general suggestions on improving the

productivity level by using add-ons for example.

Page 61 of 92

To decide whether the problem has been solved, the situation before and after research is compared

based on two measures. The first measure is the number of indicators available to keep track of the

process. The second measure is the level of insight into the problems affecting productivity, indicating

the importance of data visualisation. Both measures show that can be concluded that the core problem

has been solved.

 Norm | Goal of the company New reality | Improved situation

1) Available indicators

Improve the amount of metrics from A set with 16 recommended metrics in total

three single metrics to a set of well- of which 8 metrics are visualised as a demo,

determined metrics as input for a all metrics are well-determined based on

dashboard bottleneck analysis, literature, and input

from employees

2) Insight into the problems

Instead of making decisions based on A clear list with bottlenecks affecting

feelings about bottlenecks affecting productivity, resulting in employees

productivity, awareness should be having conversations about the bottlenecks

created about the bottlenecks to and the importance of data visualisation

understand the importance of a

dashboard

5.2. Recommendations
In this section, recommendations are provided on how to improve the productivity level by analysing

and visualising data.

As identified during the bottleneck analysis, there are a lot of tickets going through stages within a

short period which seems unrealistic in practice. When visualising data and making decisions based on

the visualisations, it is important to ensure the data is correct. Otherwise, the conclusions might be

inaccurate. Therefore, it is recommended to check the quality of the data by hiring a data analyst for

example, or an audit. When there is certainty about the correctness of the data, the dashboard can be

developed.

If the data is accurate, the dashboard can be developed. It is recommended to consider the privacy

issues at the privacy department for the tools Screenful, Geckoboard, and EazyBI for Jira, to use in

combination with Jira dashboards. Screenful scores high on ease to use and ease to install. The costs

are relatively low, and the number of users is unlimited. It is integrable with Jira to provide a real-time

dashboard. The only limitation is that it scores average on the degree of customisability. Geckoboard

scores high on user friendliness, is real-time and has an average level of customisability. However, it

scores lower on costs and number of users. Jira dashboard scores high on all requirements, except on

the degree of customisability. The advantage of Jira dashboard is that it is a private cloud. To improve

on the degree of customisability, Jira dashboard can be used in combination with the add-on EazyBI

for Jira. The main advantage of this add-on is the possibility to customise your own charts to use in

combination with Jira dashboards. However, this add-on is a public cloud. Another recommendation is

Kibana. Kibana works well with the software Kafka, which provides a framework for storing, reading,

and analysing streaming data. Kibana scores really good on the degree of customisability and it is on a

private cloud. When there are changing needs in the future, Kibana can easily be programmed in a way

it provides the desired charts.

Page 62 of 92

The code provided in appendix E can be used to export data from Jira to Kafka, and from Kafka to

Kibana. Since other departments are using Jira as well, they are also having issues with the export of

data from Jira. Some want to make analyses and others would like to use it for different goals. The

script can be adapted to achieve the desired output, so therefore it is recommended to use the script

for data exportation also for different goals. A last option for a tool based on a private cloud is Tableau.

The degree of customisability is really high, however it is hard to easily create the charts.

The set of metrics is provided in chapter 4 and it is recommended to use the metrics as input for the

dashboards. The set of metrics require some recommended changes in the way of logging. To be able

to visualise priority issues, the Tribe should start with assessing priority to tickets. To visualise the

defects, the findings should be logged. It is hard to determine how good the software actually is, which

is known as software quality intelligence. It is recommended to start with sending short surveys to the

customer to identify the value and the quality of the delivered product. This could serve as an

indication of the quality of the product so a customer love score can be determined. There are tools

combining data about code changes, production uses, and test execution, to provide an insight into

this. An example is SeaLights. However, this is more expensive than sending surveys. Therefore, it is

recommended to implement the process of sending surveys in the process. To identify the progress of

the testing phase for example, changes are required. A great suggestion from literature is the add-on

“checklist”. The add-on provides the opportunity to split tasks into clear steps. In this way, it is possible

to provide steps to a testing phase so the progression can be identified. This could be of importance

for visualising the progression of tickets since it is not always clear what the progression is of testing

for example. It is recommended to consider this add-on. In first case it is recommended to realise a

CRM Tribe dashboard and Squad dashboards. After the implementation of both, it is suggested to

consider a Topdesk dashboard, a Test guild dashboard and an Audit dashboard. Based on the research

and the survey, there is a desire to visualise data concerning these specific topics.

Besides using the dashboard to improve productivity by increasing the level of data visualisation,

another problem that needs to be solved is unreliability in the Siebel Squad at software delivering level.

After observing different processes and conducting conversations with several employees, it became

clear that the process was not structured at all. Every sprint again, the scheduled story points were not

finished, which could be seen in the burndown charts. When planning the tickets during high-level

refinement sessions, the sprints of the Siebel squad are scheduled completely full, resulting in not

achieving the scheduled story points. This always results in a bad news conversation. It is

recommended to start with decreasing the backlog by scheduling a percentage of the total story points

in each sprint. When scheduling 70% of the points for example, 30% remains to decrease the backlog.

The use of a dashboard will help to achieve this goal. Using a dashboard should be the starting point

of conversations about the process and bottlenecks, so it stimulates people to improve their process.

A dashboard should be voluntarily used by the team, so it needs to be seen as a tool that makes their

job easier. When the process runs more smoothly, especially the process of the Siebel Squad,

employees are happier with their job. Employee satisfaction is key in achieving a high productivity

level.

Research suggests improving on the happiness level / satisfaction rate of employees to improve

productivity. Regularly not reaching the number of agreed story points is not contributing to a happy

feeling. Therefore, it is strongly recommended to improve on this to ensure a high level of satisfaction

among the employees. To further increase productivity, the results of the survey can play a role. The

work pressure is something which should deserve some attention. Some are satisfied, others are

dissatisfied. Since well-being of the employees is priority of the Tribe Lead, it is recommended to spend

some time on this topic. It is recommended to take into account their suggestions.

Page 63 of 92

5.3. Limitations
This section provides several limitations that could influence the results of this research.

For the bottleneck analysis, by mining the process, only the tickets from the GIC project were used as

input. As explained, the tickets can enter the process in two ways. When it is change-related, it will

enter via the product owner. When there is a problem in CRM software, the tickets are entering the

process via OCC. OCC either solve the problem themselves or when it is change related it will go into

the change project as a GIC ticket. The focus is on the change process of the CRM Tribe since this is the

main activity, so therefore it was chosen to only focus on the change tickets and not on the CRM

software related tickets solved by OCC. However, those tickets immediately solved by OCC are part of

the process, since the tickets can be products developed by the CRM Tribe. This could be a limitation.

A limitation of the research is the uncertainty of the correctness of the data. The uncertainty was

explained during the bottleneck analysis and was discovered while doing the exportation of the data

from Jira. Because of this uncertainty, it could be that there are errors in the set of recommended

metrics. On the one hand, there might be problems that did not show up during the analysis, because

of incorrect administration in Jira. On the other hand, it could be possible that the identified problems

are no problems at all and thus metrics are wrongly recommended. To make this limitation as small as

possible, literature research was conducted and conversations with employees were held.

Another limitation in the set of metrics is the situation of working from home. All employees of the

company do work from home because of the pandemic. This made it hard to observe a process to

determine a suitable set of metrics. In first place, it was important to get familiar with the company to

have an insight into all different projects. This was only possible by conducting conversations and by

joining Teams sessions. Next, the bottlenecks should be observed from a distance. This is a limitation

so it could be possible that some important processes are missed. However, to limit the impact of this

situation, a survey had been constructed to reach all employees.

The last limitation is that it is not possible to test the effect of a dashboard on the process. All literature

suggests a dashboard with metrics as the solution, however, due to time constraints, it is not possible

to evaluate this within the company.

Page 64 of 92

References
Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. Z. (2010). Agile software development:

Impact on productivity and quality. 5th IEEE International Conference on Management of

Innovation and Technology, ICMIT2010, 287–291. https://doi.org/10.1109/ICMIT.2010.5492703

Atlassian. (2019). What is DevOps? | Atlassian. Atlassian. https://www.atlassian.com/devops

Atlassian. (2020). View and understand the cumulative flow diagram | Jira Software Cloud | Atlassian

Support. https://support.atlassian.com/jira-software-cloud/docs/view-and-understand-the-

cumulative-flow-diagram/

Atlassian. (2021a). Our business. http://www.vireoenergy.se/our-business

Atlassian. (2021b). View and understand the control chart | Jira Software Cloud | Atlassian Support.
https://support.atlassian.com/jira-software-cloud/docs/view-and-understand-the-control-

chart/

Atlassian. (2021c). What is Agile? https://www.atlassian.com/agile

Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,

Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Software Development. The Agile

Alliance. http://agilemanifesto.org/

Berteig, M. (2020). Seven Options for Handling Interruptions in Scrum and Other Agile Methods -
Berteig Consulting and Training. https://berteig.com/how-to-apply-agile/seven-options-for-

handling-interruptions-in-scrum-and-other-agile-methods-3/

Biesialska, K., Franch, X., & Muntés-Mulero, V. (2021). Big Data analytics in Agile software
development: A systematic mapping study. Information and Software Technology, 132, 106448.

https://doi.org/10.1016/j.infsof.2020.106448

Budacu, E., & Pocatilu, P. (2018). Real Time Agile Metrics for Measuring Team Performance.
Informatica Economica, 22(4/2018), 70–79.

https://doi.org/10.12948/issn14531305/22.4.2018.06

Chen, I. J., & Popovich, K. (2003). Understanding customer relationship management (CRM): People,
process and technology. Business Process Management Journal, 9(5), 672–688.

https://doi.org/10.1108/14637150310496758

Dmitriev, S. (2018, November 21). Reading and visualizing data from Jira by python | by Sergei
Dmitriev | Towards Data Science. https://towardsdatascience.com/communication-story-from-

an-issue-tracking-software-efbbf29736ff

Drumond, C. (2018). Scrum - what it is, how it works, and why it’s awesome. Atlassian.

https://www.atlassian.com/agile/scrum

Fatema, I., & Sakib, K. (2018). Factors Influencing Productivity of Agile Software Development
Teamwork: A Qualitative System Dynamics Approach. Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, 2017-Decem, 737–742. https://doi.org/10.1109/APSEC.2017.95

Heerkens, H., & van Winden, A. (2021). Solving Managerial Problems Systematically. In Solving
Managerial Problems Systematically. Noordhoff uitgevers.

https://doi.org/10.4324/9781003186038

Heidenberg, J., Weijola, M., Mikkonen, K., & Porres, I. (2013). A metrics model to measure the impact
of an agile transformation in large software development organizations. Lecture Notes in

Page 65 of 92

Business Information Processing, 149, 165–179. https://doi.org/10.1007/978-3-642-38314-4_12

Ismail, K. (2018). Agile vs DevOps: What’s the Difference? https://www.cmswire.com/information-

management/agile-vs-devops-whats-the-difference/

Jiang, J., & Klein, G. (2000). Software development risks to project effectiveness. In Journal of

Systems and Software (Vol. 52, Issue 1). https://doi.org/10.1016/S0164-1212(99)00128-4

Kitchenham, B., & Mendes, E. (2004). Software productivity measurement using multiple size
measures. IEEE Transactions on Software Engineering, 30(12), 1023–1035.

https://doi.org/10.1109/TSE.2004.104

Kola, B. (2014). Thinking Lean in Agile Software Development Projects.

Kupiainen, E., Mäntylä, M. V, & Itkonen, J. (2015). Using metrics in Agile and Lean Software

Development-A systematic literature review of industrial studies.

https://doi.org/10.1016/j.infsof.2015.02.005

Kurnia, R., Ferdiana, R., & Wibirama, S. (2018). Software metrics classification for agile scrum process:
A literature review. 2018 International Seminar on Research of Information Technology and

Intelligent Systems, ISRITI 2018. https://doi.org/10.1109/ISRITI.2018.8864244

Lehtonen, T., Eloranta, V. P., Leppänen, M., & Isohanni, E. (2013). Visualizations as a basis for agile
software process improvement. Proceedings - Asia-Pacific Software Engineering Conference,

APSEC, 1, 495–502. https://doi.org/10.1109/APSEC.2013.71

Mark Cruth. (2021). The Spotify model | Atlassian | Atlassian. https://www.atlassian.com/agile/agile-

at-scale/spotify

Marques, R., Da Silva, M. M., & Ferreira, D. R. (2018). Assessing agile software development
processes with process mining: A case study. In Proceeding - 2018 20th IEEE International

Conference on Business Informatics, CBI 2018 (Vol. 1). https://doi.org/10.1109/CBI.2018.00021

Matthies, C., Dobrigkeit, F., & Hesse, G. (2020). Mining for Process Improvements: Analyzing

Software Repositories in Agile Retrospectives. Proceedings - 2020 IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ICSEW 2020, 189–190.

https://doi.org/10.1145/3387940.3392168

Meyer, A. N., Murphy, G. C., Fritz, T., & Zimmermann, T. (2019). Rethinking Productivity in Software
Engineering. In C. Sadowski & T. Zimmermann (Eds.), Rethinking Productivity in Software

Engineering (pp. 137–146). https://doi.org/10.1007/978-1-4842-4221-6

Myers, B. A., Ko, A. J., LaToza, T. D., & Yoon, Y. (2019). Human-Centered Methods to Boost

Productivity. In Caitlin Sadowski & T. Zimmermann (Eds.), Rethinking Productivity in Software

Engineering (pp. 147–157). https://doi.org/10.1007/978-1-4842-4221-6_13

Olszewska, M., Heidenberg, J., Weijola, M., Mikkonen, K., & Porres, I. (2016). Quantitatively
measuring a large-scale agile transformation. Journal of Systems and Software, 117, 258–273.

https://doi.org/10.1016/j.jss.2016.03.029

Padmini, K. V. J., Dilum Bandara, H. M. N., & Perera, I. (2015). Use of software metrics in agile

software development process. MERCon 2015 - Moratuwa Engineering Research Conference.

https://doi.org/10.1109/MERCon.2015.7112365

Parker, D. W., Holesgrove, M., & Pathak, R. (2015). Improving productivity with self-organised teams
and agile leadership. International Journal of Productivity and Performance Management.

https://doi.org/10.1108/IJPPM-10-2013-0178

Page 66 of 92

Ramirez-Mora, S. L., & Oktaba, H. (2018). Team maturity in agile software development: The impact
on productivity. Proceedings - 2018 IEEE International Conference on Software Maintenance

and Evolution, ICSME 2018, 732–736. https://doi.org/10.1109/ICSME.2018.00091

Rehkopf, M. (n.d.). Epics Atlassian. Retrieved May 7, 2021, from

https://www.atlassian.com/agile/project-management/epics

Sadowski, Caitlin, & Zimmermann, T. (2019). Rethinking Productivity in Software Engineering. In

Rethinking Productivity in Software Engineering. https://doi.org/10.1007/978-1-4842-4221-6

Schwaber, K., & Scrum.org. (2021). Online Nexus Guide: The Definitive Guide to Scaling Scrum with

Nexus. In Scrum.org. https://www.scrum.org/resources/online-nexus-guide

Scott, E., Charkie, K. N., & Pfahl, D. (2020). Productivity, Turnover, and Team Stability of Agile Teams
in Open-Source Software Projects. Proceedings - 46th Euromicro Conference on Software

Engineering and Advanced Applications, SEAA 2020, 124–131.

https://doi.org/10.1109/SEAA51224.2020.00029

Sedano, T., Ralph, P., & Péraire, C. (2019). Removing Software Development Waste to Improve
Productivity. In Caitlin Sadowski & T. Zimmermann (Eds.), Rethinking Productivity in Software

Engineering (pp. 221–240). https://doi.org/10.1007/978-1-4842-4221-6_19

Sedrakyan, G., Mannens, E., & Verbert, K. (2019). Guiding the choice of learning dashboard

visualizations: Linking dashboard design and data visualization concepts. Journal of Visual

Languages and Computing, 50, 19–38. https://doi.org/10.1016/j.jvlc.2018.11.002

Shah, S. M. A., Papatheocharous, E., & Nyfjord, J. (2015). Measuring productivity in agile software
development process: A scoping study. ACM International Conference Proceeding Series, 24-26-

Augu, 102–106. https://doi.org/10.1145/2785592.2785618

Storey, M.-A., & Treude, C. (2019). Software Engineering Dashboards: Types, Risks, and Future. In
Caitlin Sadowski & T. Zimmermann (Eds.), Rethinking Productivity in Software Engineering (pp.

179–190). https://doi.org/10.1007/978-1-4842-4221-6_16

Treude, C., & Filho, F. F. (2019). How Team Awareness Influences Perceptions of Developer
Productivity. In Caitlin Sadowski & T. Zimmermann (Eds.), Rethinking Productivity in Software

Engineering (pp. 169–178). https://doi.org/10.1007/978-1-4842-4221-6_15

Van Eck, M. L., Lu, X., Leemans, S. J. J., & Van Der Aalst, W. M. P. (n.d.). PM 2 : a Process Mining

Project Methodology.

Vogel, J., & Telesko, R. (2020). Derivation of an agile method construction set to optimize the

software development process. Journal of Cases on Information Technology, 22(3), 19–34.

https://doi.org/10.4018/JCIT.2020070102

Wagner, S., & Murphy-Hill, E. (2019). Rethinking Productivity in Software Engineering. In C. Sadowski
& T. Zimmermann (Eds.), Rethinking Productivity in Software Engineering (pp. 69–84).

https://doi.org/10.1007/978-1-4842-4221-6

Watson, A. S. (2020). Our Company. https://www.aswatson.com/our-company/o-and-o-

strategy/#.YIu9MegzZPY

Wiesche, M. (2021). Interruptions in Agile Software Development Teams. In Project Management

Journal (Vol. 52, Issue 2). https://doi.org/10.1177/8756972821991365

Zieris, F., & Prechelt, L. (2019). Does Pair Programming Pay Off? In Caitlin Sadowski & T. Zimmermann

(Eds.), Rethinking Productivity in Software Engineering (pp. 251–259).

https://doi.org/10.1007/978-1-4842-4221-6_21

Page 67 of 92

Appendix

Appendix A Agile Manifesto
The twelve principles of the Agile Manifesto (Beck et al., 2001)

1) Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2) Welcome changing requirements, even late in development. Agile processes harness change

for the customer's competitive advantage.
3) Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4) Business people and developers must work together daily throughout the project.
5) Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.
6) The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7) Working software is the primary measure of progress.
8) Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.
9) Continuous attention to technical excellence and good design enhances agility.
10) Simplicity--the art of maximizing the amount of work not done--is essential.

11) The best architectures, requirements, and designs emerge from self-organizing teams.
12) At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Page 68 of 92

Appendix B Data analysis

Jira report cumulative flow diagram

Jira report control chart

Figure 44: Cumulative flow diagram

Figure 45: Control chart

Page 69 of 92

Jira report average age

 Figure 46: Average age report

Page 70 of 92

Jira report resolution time

Figure 47: Resolution time

Page 71 of 92

Script

Figure 48: Jira Script for data extraction

Page 72 of 92

Disco analysis

Figure 49: Control-flow perspective generated by Disco (100% activities, 100% path)

Page 73 of 92

Appendix C Survey

Page 74 of 92

Q2 - What is your function?

Q3 - From which Squad are you?

Q4 - How satisfied are you about the work pressure?

Page 75 of 92

Q5 - What process should be improved to make your job easier?

Ticket routing to second line support. Clear guidelines need to be followed by the person raising Topdesk tickets from
Productions Support to DEV

E2E proces and focus of tribe to improve E2E on a regular basis

The period before and during integration testing

There should be a better planning across domains and bus on projects that are started and running. This to prevent an
overload of change requests at the same time.

Planning for Siebel and ETL

Developers should do support on their developments to get feedback & learn. Look further than the length of your nose
;-)

In simple terms I do not wish to shuffle between development, analysis, helping testers, solving issue in test and
production environments and giving status to different people and chase people to get dependencies resolved. I want to
have clear set of things to be done with clear priorities to do my work easier. Now some management language ;) ,
There is also need to improve the way we measure productivity A. Not to confuse between OKRs and KPIs and setup

correct KPIs. B. Productivity is measured with same unit for all type of work which creates lack of transparancy.

The demand of CR's and project coming to us more spread over the year instead of everything at the same moment in
time. I know: wishful thinking ;)

streamline jira statusses to a clear definition to have common understanding what a status means.

Deliver according to agreed release roadmap.

Live tracking of work to be done

Expanding the team.

Less questions about working on other stuff. (But also a point of critique on myself is that I am not able to say no)

1.All instances are aligned so it will reduce time in comparing all 9 instances before starting development. 2. Data

availability to test development.

Q6 - Which metric(s) would make your job easier / better?

Sprint completion metrics inclusive of Topdesk activities.

Release burndown related metrics E2E improvements

Efficiency, Quality, predicatability

Findings/Bugs

Number of findings related to the number of changes Number of change requests scheduled for a certain release

Lead time of stories. Knowing when my team is the bottleneck. The status at which a story is the longest. Test finding
counts on GIC's

I prefer quality over quantity however even if a quality gauge could be set-up it wouldn't help

That needs to be decided based upon, as a tribe and as a squad, how we wish to measure our KPIs. What bottlenecks,
quality gaps and efficiencies we would like to monitor. May be on high level 1. The way quality assurance is achieved.
2. The way squad supports production and test env issues. 3. Development velocity of the squad. 4. Time wasted on

manual routine activities 5. Dependencies

No of findings for each squad in integration testing

Customer Love Score: I think it is most important to know how our (internal) customer is scoring is. This because I
believe that will lead to higher quality, on all levels.

Page 76 of 92

topdesk overview of statusses, closed ,etc

Lead times, cycle times, know if a change was moves from one release to the next

live status of the work to be done / in progress

A metric which takes into account time, cost and quality.

All metrics should be fine because you can create test data based on most important metrics

Not Sure, Every time needs to work with different data or tables.

Q7 - Do you have any further suggestions for the dashboard?

No

One dashboard for whole CRM Tribe with some general topics and some highlights per squad. Touchpoints to use it
within our Agile / Scrum rhythm so it becomes natural to use it. Not too much detail on it.

Would be nice if it is as realtime as possible so that it triggers people and motivates to improve on those area's. Also th e

question is how do you implement it so it is activily used.

No

Showing status of a functional release with dials / traffic lights per squad / per change request

I don't have a lot of time to figure out how it works nor create my own, so a app that is intuative and has out -of-the-box

reports (or reports are easily share-able) would be great.

Good luck

no

The more you can visualize data, the more it will bring

For my team I do not miss any dashboard item, however from tribe perspective I think it makes sense to have more
overview over teams.

Easy, quick, intuitive visuals

Colorful?

Page 77 of 92

Appendix D Systematic Literature Review

SLR – 1
The research question to be answered with this SLR is “What optimisations on Agile software

development teams to improve productivity are suggested in research?” The aim of this SLR is to create

a recommendation with suitable optimisations on how to improve productivity of Agile organised

software development teams suggested by research. In this appendix, step 2 to step 6 from the seven-

step approach are included.

Step 2 - Defining inclusion and exclusion criteria

Table 7: Inclusion and Exclusion criteria

Inclusion criteria Reason
Research on Scrum The main principles of Scrum are used in the A.S. Watson model,

therefore optimisations on the framework Scrum instead of on Agile
itself are included.

Improvements / changes /
development

Synonyms for optimisations are included.

Optimisations process in general of
Agile company

Research on the process in general is included since productivity is
one part of the general process.

Exclusion criteria Reason
Research that is not peer-reviewed An important aspect of the validity of research is that it is peer-

reviewed. Therefore, non-peer-reviewed literature is excluded since
valid research is important.

Research that is not cited When research has been cited by others, it is an indication of quality.
Since quality is important, non-cited papers will be excluded.

Papers in a different language than
English or Dutch

Translating research to a language I understand is hard and sensitive
for errors. Only qualitative research is included so therefore
research in another language will be excluded.

Research not suggesting
optimisations

The aim is to identify which optimisations are relevant. If the article
is not addressing this, the article is irrelevant to the research.

Inaccessible research If an article is not accessible it will be excluded.

Step 3 - Defining the databases

The databases used for the SLR are Business Source Elite, Google Scholar, IEEE, and Scopus. All

databases provide both cited research and peer-reviewed research. The first database, business source

elite, is chosen because research takes place within business. Google Scholar contains many literature,

also research which is hard to find while using the other databases. IEEE is chosen because it is a

technical database. Research takes place in a technical environment, which is the reason for choosing

IEEE. Scopus is a reliable database providing high quality literature.

Page 78 of 92

Step 4 - Search terms and strategy

The research question to be answered with this SLR consist of four main parts. Therefore, the search

term is separated in four concepts. For each concept, synonyms, broader terms, and narrower terms

are listed in Table 8. The applied strategy is to insert the different terms and find the most specific

results. The concepts/terms with the most specific results are used.

Table 8: Search terms

Key concepts Related terms / synonyms Broader terms Narrower terms

Agile Agile department Agile company Scrum, Spotify model,
Nexus model

Optimisations Improvement, development,
enhance, increase

Changes, suggestions,
influences

Better results

Productivity Productiveness Performance, Process Capacity, yield,
throughput

Software
development team

Software engineering, CRM
software

IT

Software

Step 5 - Results

Table 9: Initial search results

Date Database Search string Number of hits

20-05-2021 Business Source Elite (Agile) AND (Process)
AND (optimi* OR
improv*) AND
(“software develop*
team*”)

11

04-05-2021 Google Scholar allintitle: (productivity)
AND (software) AND
Agile

24

04-05-2021 Google Scholar allintitle: (productivity)
AND (software) AND
(scrum)

2

04-05-2021 IEEE (Improve* OR optimi*)
AND (productivity) AND
(Agile)

118

04-05-2021 IEEE (factor*) AND
(influence*) AND
(productivity) AND
("software
development* team*")

5

04-05-2021 Scopus TITLE (Agile) AND
(process) AND (improve*
OR optimi*)

72

04-05-2021 Scopus TITLE (“Agile improv*)
AND (productivity)

7

Initial number of results 239

Removing after applying inclusion and exclusion criteria -224

Removing duplicates -5

Included from references +3

Final selection 13

Page 79 of 92

Step 6 - Conceptual matrix

In Table 10, the final set consisting of 13 articles are defined. All articles provide factors affecting

productivity and suggestions on optimisations on the productivity level of an Agile organised company.

Table 10: Results

Journal Article title Authors Research topic Application to own
research

Information
and Software
Technology

Big Data analytics in
agile software
development: A
systematic mapping
study

K. Biesialska,
X. Franch,
V. Muntés-
Mulero

Providing an
overview of Big
Data analytics in
combination
with Agile
Software
development

Suggestions on how to use
Big Data

Project
Management
Journal

Interruptions in Agile
Software Development
Teams

M. Wiesche Providing an
overview of the
type of
interruptions in
Agile Software
Development
Teams

Identifying which
interruptions there are to
take into account and to
provide suggestions on
how to deal with it

Report Thinking Lean in Agile
Software Development
Projects

B. Kola A qualitative
study aiming at
providing ways
on how to
improve
productivity

Suggestions based on
survey results on how to
improve productivity

Proceedings –
46th Euromicro
conference on
Software
Engineering
and Advance
Applications
(SEAA)

Productivity, Turnover,
and Team Stability of
Agile Teams in Open-
Source Software
Projects

E. Scott
K. N. Charkie
D. Pfahl

Researching
productivity in
open-source
projects in agile
software
development
teams

Factors impacting
productivity

5th IEEE
International
conference on
management
of innovation
and
Technology

Agile Software
Development: Impact
on Productivity and
Quality

A. Ahmed
S. Ahmad
Dr. N. Ehsan
E. Mirza
S.Z. Sarwar

Analysis of Agile
methodologies
in practice

Impact on productivity

2018 IEEE
International
conference on
software
maintenance
and evolution

Team maturity in Agile
Software
Development: The
impact on productivity

S.L. Ramirez-
Mora
H. Oktaba

Identifying
factors affecting
productivity in
Agile Software
Development

Identifying factors
impacting productivity

2017 24th
Asia-pacific
Software
Engineering
Conference

Factors Influencing
Productivity of Agile
Software Development
Teamwork: A

I. Fatema
K. Sakib

Identifying the
factors
influencing
productivity of
an Agile

Identifying the factors
influencing productivity

Page 80 of 92

Qualitative System
Dynamics Approach

Software
Development
Team

2020
IEEE/ACM 42nd
international
conference on
software
engineering
workshops
(ICSEW)

Mining for Process
Improvements:
Analyzing Software
Repositories in Agile
Retrospectives

C. Matthies
F. Dobrigkeit
G. Hesse

Proposing new
Retrospective
activities based
on mining the
software
repositories

Suggesting the use of
mining in retrospectives

2013 20th
Asia-Pacific
Software
engineering
conference

Visualizations as a
Basis for Agile
Software Process
Improvements

T. Lehtonen
V. Eloranta
M. Leppänen
E. Isohanni

Identifying how
to improve
software
processes

Suggesting to use
visualisations based on
this research

International
Journal of
Productivity
and
Performance
Management

Improving productivity
with self-organised
teams and agile
leadership

D.W. Parker
M. Holesgrove
R. Pathak

Describing the
development
around
leadership of
self-organised
teams

Describing the importance
of leadership in self-
organised teams

Book Rethinking Productivity
in Software
Engineering

C. Sadowski
T. Zimmermann

Exploring what
productivity
means for
modern
software
development

Suggesting several options
to improve productivity

IEEE
Transactions
on Software
Engineering

Software productivity
measurement using
multiple size measures

B. Kitchenham,
E. Mendes

Identifying how
to measure
productivity

Describing how to
measure productivity

Journal of
Systems and
Software

Software development
risks to project
management

J. Jiang
G. Klein

Indicating
common
aspects of
project
effectiveness

Describing why insight in
productivity is important

Page 81 of 92

SLR – 2
The research question to be answered with this SLR is “What indicators are suggested for Agile

software development companies?” The aim of this SLR is to create a framework which explains

suitable indicators for software developing suggested by research. In this appendix, step 2 to step 6

from the seven-step approach are included.

Step 2 - Defining inclusion and exclusion criteria

Table 11: Inclusion and Exclusion criteria

Inclusion criteria Reason
Research on indicators specifically in
software developing companies

For all different types of companies, different indicators are
important. Since the research is on a software developing
department, this is an inclusion criteria. Otherwise, the suggested
indicators cannot be applied.

The term indicator as well as metrics
and KPI can be used

The term “metrics” is a common term used for indicators in Agile
organised companies. In other companies, KPIs are used. The
company is Agile organised, so the term is allowed to use.

Performance / data visualisation The research is on suggested indicators with the goal to visualise
data. Therefore, research on performance and data visualisation are
included.

Exclusion criteria Reason
Research that is not peer-reviewed An important aspect of the validity of research is that it is peer-

reviewed. Therefore, non-peer-reviewed literature is excluded since
valid research is important.

Research that is not cited When research has been cited by others, it is an indication of quality.
Since quality is important, non-cited papers will be excluded.

Papers in a different language than
English or Dutch

Translating research to a language I understand is hard and sensitive
for errors. Only qualitative research is included so therefore
research in another language will be excluded.

Research related to non-software
companies

Performance is measured in a different way in other types of
companies than software related. Results from research on other
types of companies cannot be used in my research.

Research not suggesting metrics /
indicators / KPIs

The aim is to identify which metrics / indicators / kpis are relevant. If
the article is not addressing this, the article is irrelevant to the
research.

Research only applicable to SMEs SMEs are small and medium-sized enterprises. Since the research
will be conducted at a very large company all over the world with a
lot of employees, it should be applicable to a large company. If only
applicable to a SME, the research cannot be applied.

Should be accessible If an article is not accessible it will be excluded.

Step 3 - Defining the databases

The three databases used for the SLR are Business Source Elite, Scopus, and Web of Science. All

databases provide both cited research and peer-reviewed research. The first database, business source

elite, is chosen because research takes place within business. After searching on Google for “database

for research in business”, this was the first suggestion. Both Scopus and Web of Science are reliable

databases providing high quality literature. Therefore, they are also chosen as databases to use.

Page 82 of 92

Step 4 - Search terms and strategy

The research question to be answered with this SLR consist of three main parts. Therefore, the search

term is separated in three concepts. For each concept, synonyms, broader terms, and narrower terms

are listed in Table 12. The applied strategy is to insert the different terms and find the most specific

results. The concepts/terms with the most specific results are used.

Table 12: Search terms

Key concepts Related terms / synonyms Broader terms Narrower terms

Indicator Metric, key performance
indicator, lead indicator

Performance indicator,
data visualisation

KPI
Productivity

Software
development

Software engineering, CRM
software

IT

Agile

Company Organisation, enterprise,
multinational

Business Software development
team

Step 5 - Results

When using the term “metric*” only, one specific database yields over 50.000 results. Therefore, only

three different databases are used to limit the search results. To further narrow down the results, the

scope of the search is limited to only title or title-abs-key. From the search terms included in table 12,

only the most relevant results are used in the end. Otherwise, there were too many unusable results.

The results are visualised in Table 13.

Table 13: Initial results

Date Database Search string Number of hits
02-04-2021 Business source elite (indicator OR metric*)

AND (“software
development*”) AND
(Agile)

66

02-04-2021 Business source elite (indicator OR metric*)
AND (Agile) AND
(productivity)

19

01-04-2021 Scopus TITLE (KPI* OR metric*)
AND (“agile”) AND
(software)

30

01-04-2021 Scopus TITLE-ABS-KEY
(kpi*) AND ("software
development*") AND
(Agile)

5

01-04-2021 Web of Science ("Software Metric*")
AND ("Agile Software
Development")

10

Initial number of results 130

Removing after applying inclusion and exclusion criteria -120

Removing duplicates -4

Final selection 6

Page 83 of 92

Step 6 - Conceptual matrix

In Table 14, the final set consisting of 6 articles are defined. All articles provide suggestions on which

metrics to use.

Table 14: Final results

Journal Article title Authors Research topic Application to own
research

Journal of
systems and
software

Quantitatively
measuring a large-scale
agile transformation

Olszewska, M.
Heidenberg, J.
Weijola, M.
Mikkonen, K.
Porres, I.

Measuring
changes of an
agile
transformation
by metrics

9 metrics are suggested,
those can be used

Journal of
Information
and Software
Technology

Using metrics in Agile
and Lean software
development – a
systematic literature
review of industrial
studies

Kupiainen, E.
Mäntylä, M.V.
Itkonen, J.

Increase
knowledge on
which metrics
are used in Agile

List of suggested metrics is
provided which are
relevant to the research

Informatica
Economia

Real Time Agile Metrics
for Measuring Team
Performance

Budacu, E.N.
Pocatilu, P.

Identifying most
important
metrics,
indicators,
measures, and
tools for Agile

Key agile methods are
identified, useful to own
research

International
Seminar on
Research of
Information
Technology
and Intelligent
Systems

Software metrics
classification for agile
scrum process: a
literature review

Kurnia, R.
Ferdiana, R.
Wibirama, S.

Reviewing
software
metrics and
their
fundamental
role

Software metrics are
classified in four groups
which are each a phase of
the Agile process. These
suggestions are useful to
my research

2015
Moratuwa
Engineering
Research
Conference

Use of software
metrics in agile
software development
process

Padmini, K. J.,
Bandara, H. D.,
& Perera, I.

Metrics
applicable in
Agile Software
Development

Recommended metrics
that can be applied to my
research

International
conference on
Agile software
development

A metrics model to
measure the impact of
an agile transformation
in large software
development
organizations

Heidenberg, J.
Weijola, M.
Mikkonen, K.
Porres, I.

Measuring the
impact of an
Agile
transformation
by metrics

Suggested metrics to use
to measure
transformations, these
suggestions serve as
relevant input

Page 84 of 92

Appendix E Data visualisation

Jira

Figure 50: Overview of tickets in Jira)

Page 85 of 92

Python

Figure 51: Anaconda platform

Figure 52: Installing jira library

Page 86 of 92

-*- coding: utf-8 -*-
"""

Created on Thu May 20 16:24:50 2021

@author: ceret
"""

Import dependencies
from jira import JIRA , JIRAError

Create instance for interacting with Jira
jira = JIRA(options={'server':'https://asw-git.atlassian.net'},

basic_auth=('x.xxxx@eu.aswatson.com','{API TOKEN}’))

Read issue resources

jql = "project in ('GIC') AND issuetype='Change' and status='Delivered' and created > -730"
jira_search = jira.search_issues(jql)

As an example: Extract status name of the first issue
jira_search[0].fields.status.name

Import dependencies
from jira import JIRA, JIRAError

from collections import Counter, defaultdict
from datetime import datetime

from time import sleep

import numpy as np

import pandas as pd
import networkx as nx

Read data from Jira
try:

 # Search issues
 block_size = 1000
 block_num = 0

 jira_search = jira.search_issues(jql, startAt=block_num*block_size, maxResults=block_size,
 fields="issuetype, created, resolutiondate, reporter, assignee, status",

 expand='changelog')

 # Define parameters for writing data

 index_beg = 0
 header = True
 mode = 'w'

 # Iteratively read data

 while bool(jira_search):
 # Container for Jira's data
 data_jira = []

 for issue in jira_search:
 # Get issue key

Page 87 of 92

 issue_key = issue.key
 # Get request type

 request_type = str(issue.fields.issuetype)

 # Get datetime creation
 datetime_creation = issue.fields.created
 if datetime_creation is not None:

 # Interested in only seconds precision, so slice unnecessary part
 datetime_creation = datetime.strptime(datetime_creation[:19], "%Y-%m-%dT%H:%M:%S")

 # Get datetime resolution
 datetime_resolution = issue.fields.resolutiondate

 if datetime_resolution is not None:
 # Interested in only seconds precision, so slice unnecessary part
 datetime_resolution = datetime.strptime(datetime_resolution[:19], "%Y-%m-%dT%H:%M:%S")

 # Get reporter’s login and name

 reporter_login = None
 reporter_name = None
 reporter = issue.raw['fields'].get('reporter', None)

 if reporter is not None:
 reporter_login = reporter.get('key', None)
 reporter_name = reporter.get('displayName', None)

 # Get assignee’s login and name

 assignee_login = None
 assignee_name = None
 assignee = issue.raw['fields'].get('assignee', None)

 if assignee is not None:
 assignee_login = assignee.get('key', None)
 assignee_name = assignee.get('displayName', None)

 # Get status

 status = None
 st = issue.fields.status
 if st is not None:

 status = st.name

 # Get information from changelog
 history_data = []
 histories = issue.raw['changelog'].get('histories', None)

 if histories is not None:
 for history in histories:

 for item in history['items']:
 if item['field'] == 'status':

 # Get history status, previous status, new status
 history_status = history.get('status', None)

 # Add data to data_jira
 data_jira.append((issue_key, datetime_creation, item['fromString'], item['toString'],

datetime.strptime(history['created'][:19], "%Y-%m-%dT%H:%M:%S")))

Page 88 of 92

 # Write data read from Jira

 index_end = index_beg + len(data_jira)
 data_jira = pd.DataFrame(data_jira, index=range(index_beg, index_end),

 columns=['Issue key', 'Datetime creation', 'From Status', 'To Status', 'Status
Changed@'])

 data_jira.to_csv(path_or_buf='data_jira.csv', sep=';', header=header, index=True,

index_label='N', mode=mode)

 # Update for the next iteration

 block_num = block_num + 1
 index_beg = index_end

 header = False
 mode = 'a'

 # Print how many issues were read
 if block_num % 50 == 0:

 print(block_num * block_size)

 # Pause before next reading – it’s optional, just to be sure we will not overload Jira’s server

 sleep(1)
 print(data_jira)
 jira_search = []

 jira.close()

except (JIRAError, AttributeError):

 jira.close()
 print('Error')

Page 89 of 92

Appendix F Dashboard

Figure 53: The dashboard

Page 90 of 92

Figure 54: Release health metric

Page 91 of 92

Figure 56: Days in status metric Figure 55: High priority issues

Figure 57: Lead time metric

Page 92 of 92

Figure 58: Average age metric

Figure 59: Cumulative flow metric

