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Abstract— Computed tomography (CT) is one of the 

most essential tools in medical imaging and physicians 
obtain visual representations of a patient’s anatomy with 
the help of this x-ray based imaging modality. The 
carcinogenic properties of x-rays motivate the development 
of techniques that reduce radiation exposure. Low-dose CT 
is one such approach that uses low-intensity x-rays and a 
shorter exposure period to lower x-ray exposure. Due to 
reduced radiation dose, low-dose CT produces noisy 
projection data which in turn lowers the quality of the 
reconstructions. We turn to deep learning approaches to 
build quality reconstructions from noisy low-dose CT data. 
In this work, following its success in the fastMRI challenge 
that focuses on the reconstruction of undersampled 
magnetic resonance imaging (MRI) data, we investigate the 
use of invertible recurrent inference machines (iRIM) for 
low dose CT. 

Three iRIM models with likelihood gradient definitions of 
varying complexities were designed and trained uniformly 
on the LoDoPaB dataset. The image gradient iRIM model 
had the least complex likelihood gradient definition 
followed by the adjoint and FBP gradient iRIM models. Our 
adjoint gradient iRIM model performed the best and 
obtained an SSIM and PSNR mean and standard deviation 
of 0.8541 ± 0.1394 and 35.93 ± 4.74 dB on the LoDoPaB test 
data. It also achieved the best SSIM average of 0.8692 and 
secured an overall 4th position in the LoDoPaB challenge. 

Furthermore, the generalization capabilities of the 
developed iRIM models were tested on three chosen 
categories – anatomy, low-dose simulation noise level and 
x-ray source beam geometry. Amongst the iRIM models the 
FBP gradient iRIM model proved to be the most capable on 
this front. The iRIM models were able to produce good 
results on the generalization capability tests but the 
performance degraded when the model had to handle high 
level noise contaminations. In conclusion, the iRIM 
framework proved to be suitable for low-dose CT but there 
are still a few scopes of improvement that could be 
considered to further enhance its robustness.    

 
Index Terms— Computed tomography, deep learning, 

invertible neural networks, low-dose CT reconstruction, 
recurrent inference machine.  

I. INTRODUCTION 

OMPUTED tomography (CT) is an x-ray based imaging 

modality that can be used to precisely visualize the internal 

structures of an object. A CT scanner consists of a source and 

detector pair that measures x-ray absorptions at different angles 

by moving around a target that needs to be scanned. These 

measurements are combined through reconstruction algorithms 

to obtain the internal volumetric density distribution of the 

target [1].   

Since its advent, CT has been one of the most important tools 

in medical imaging. CT is predominantly used in preventive 

medicine, orthopaedics, and dentistry to detect pathologies such 

as infarctions, blood clots, calcifications and haemorrhages [2]. 

In oncology patients, CT can reveal the presence of tumours and 

help accurately locate them and estimate their size and 

structure. Due to this property, CT as a part of image-guided 

radiotherapy (IGRT) is used for treatment planning and further 

CT is also generally used to monitor the effects of cancer 

treatments on tumours [2]. 

The critical role of CT in clinical practice is evident from data 

in [3] that report the number of CT scans recorded in the 

member states of the European Union. The statistics presented 

show that in the five years leading up to 2018, there is a reported 

increase in the number of CT scans in all the member states of 

the European Union and these numbers are only expected to 

keep growing. This surge in the number of CT scans raises 

serious concerns about radiation-related cancer risks, as the 

ionizing radiation emitted by CT scanners can create free 

radicals or molecules causing damages to the tissues. Usually, 

the body can repair such damages, but when it does not, it can 

lead to the development of cancer [4,5]. Thus, to subdue the 

potential cancer risks linked to CT, there emerges a very 

compelling need to reduce the radiation dose but without 

making any compromises on the quality of the reconstructions 

that will be obtained for it.    

One way to lower x-ray exposure is to decrease the x-ray tube 

current and shortened the x-ray exposure time. While this low-

dose CT approach reduces the associated cancer risks, it 

produces noisy projection data due to reduced photon count. 

Thus, when analytical algorithms like filtered back projection 

(FBP) are employed for reconstruction, these noisy CT 

measurements can introduce unwanted image artifacts that 

degrade the quality of the reconstructions [6,7].  

Iterative approaches to CT reconstruction provide a partial 

solution to the low-dose reconstruction problem. Here, the 

reconstruction is considered as an optimization problem and the 

algorithm tries to fit a solution iteratively. Various iterative CT 

reconstruction algorithms have proven to perform well on low-

dose CT data at the cost of high computation time and 

complexity [6]. However, it might not always be feasible to 

wait for the algorithm to converge to obtain the reconstructions 

in practice. This led to a search for CT reconstruction 

approaches that rapidly produce results of high quality.   
Deep learning (DL) has revolutionized many fields of study 

including medical imaging [8]. A highly successful application 

of DL in the field of medical imaging is image reconstruction. 

DL models outperformed traditional reconstruction approaches 
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in various imaging modalities like magnetic resonance (MRI), 

positron emission tomography (PET) and CT [8]. The 

incorporation of DL into low-dose CT reconstruction is thus a 

promising approach to overcome the shortcomings of the 

classical algorithms with improved reconstruction speed along 

with artifact reduction [9,10].       

This work focuses on the invertible recurrent inference 

machines (iRIM), a deep learning model that was introduced by 

Putzky et al. [11,12]. Iterative inference problems can be 

unrolled in time and interpreted as a recurrent neural network 

(RNN). The recurrent inference machine (RIM) is one such 

RNN framework. Its primary advantage is that it does not need 

an explicit prior or inference procedure definition as these both 

will be implicitly learnt through its model parameters. The 

model was designed to learn an inference algorithm based on 

the given data and task. The invertible recurrent inference 

machine is an extension of the RIM that allows invertible 

learning during model training. This helps overcome memory 

constraints while also ensuring stable training even in the case 

of deep networks and large datasets. This is demonstrated by its 

performance on the fastMRI challenge, where the model was 

trained to reconstruct undersampled single and multi-coiled 

MRI data of the knee and brain to obtain results that are on par 

with the corresponding fully sampled data reconstructions 

[13,14].  

Following the notable results produced by iRIM frameworks 

in undersampled MRI reconstruction, this work examines 

whether the benefits of the iRIM translate to the low-dose CT 

reconstruction problem. We aim at designing and training an 

iRIM model to perform low-dose CT reconstructions to yield 

results that match the quality of full-dose reconstructions. In 

addition, we also aim at testing the generalization abilities of 

the trained iRIM models across CT data collected over different 

anatomies, low dose simulations at different noise levels and 

different x-ray source geometries. Ultimately, at the end of this 

research we aim at understanding whether iRIMs can be 

developed into robust low-dose CT reconstruction models.     

II. RELATED WORK 

The related work section starts with an introduction to CT 

reconstruction as an inverse problem. It is followed by a brief 

discussion on the classical CT reconstruction algorithms and 

their shortcomings. Lastly, the final part of the section focuses 

on the various DL-based approaches that have been proposed 

for CT reconstruction.  

A. Inverse Problem 

The inverse problem in CT reconstruction is shown in Fig. 1. 

The projection data or sinogram obtained from the scanners is 

denoted by 𝑦, the cross-sectional image reconstruction is 

denoted by 𝑥 and the forward operator associated with CT, the 

Radon transform, is denoted by ℛ. Given the tomographic 

image 𝑥, the projection data 𝑦 can be obtained by using the 

forward Radon transform operator ℛ. However, the inverse of 

Radon transform ℛ−1 is ill-posed and calculating the cross-

sectional image 𝑥 from the projection data 𝑦 becomes an 

inverse imaging problem [15].          

 
Fig. 1. CT Reconstruction – an inverse problem.  

B. Classical CT Reconstruction Algorithms 

As mentioned earlier, the inverse of the Radon transform 

ℛ−1 is unbound and ill-posed [15]. There are several algorithms 

that are in use to recover the tomographic image from the 

projection data and they can be broadly categorized into 

analytical and iterative algorithms.   

1) Analytical Algorithms 
Fig. 2(a) depicts the working of a CT scanner with a parallel-

beam x-ray source and Fig. 2(b) shows the sinogram obtained 

from the scanner data. The most commonly used analytical 

method to obtain the reconstruction from the sinogram is the 

filtered back projection (FBP) algorithm. As its name suggests, 

it consists of two steps, back projection (BP) and filtering.  

BP is the adjoint of Radon transform. It is an operation that is 

based on the Fourier slice theorem and it smears the projection 

data obtained at every projection angle back into the image 

space. There is an over-weighing of low-frequency components 

during the back projection operation. Thus this step of the FBP 

algorithm is only capable of recovering a smoothened version 

of the cross-sectional image, as shown in Fig. 2(c). This 

problem is addressed by the filtering step. The deblurred result 

obtained after filtering can be seen in Fig. 2(d).   

 
Fig. 2. (a) Parallel-beam CT scanning (b) The sinogram obtained after 

scanning (c) Result of back projection (d) Result of filtered back 

projection. 
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FBP is computationally very efficient and there are also 

variants of this algorithm to support different CT scanner 

geometries and acquisition techniques [6]. However, as a 

significant disadvantage of these analytical reconstruction 

algorithms, they demand noiseless data and regular projection 

angle distribution during data acquisition to yield images with 

acceptable quality. Thus, by imposing special conditions like 

low dose scanning in an attempt to reduce radiation exposure, 

it is made impossible to obtain good quality reconstructions 

using only analytical algorithms [6]. Iterative algorithms for CT 

reconstruction were developed to address this issue.   

2) Iterative Algorithms 

Iterative reconstruction (IR) algorithms treat CT 

reconstruction as an optimization problem and find a fitting 

solution iteratively. An ideal case of CT reconstruction can be 

denoted as a system of linear equations as shown in equation 

(1).  

                                         𝐴𝑥 = 𝑦                                        (1) 

Here 𝑦 is the projection data and 𝑥 is the image to be 

reconstructed. Radon transform is discretized through the 

matrix 𝐴. Each row in 𝐴 represents an x-ray beam and each 

column a pixel in the reconstructed image. Thus, each element 

𝑎𝑖𝑗  in 𝐴 represents the contribution of the 𝑖th projection data to 

the 𝑗th pixel. Rewriting equation (1) to solve for 𝑥 and adding 

measurement noise 𝑛 results in equation (2).  

 

        𝑥 = 𝐴−1𝑦 + 𝑛                 (2) 

 

Ideally, a unique solution for 𝑥 can be obtained if the matrix 

𝐴 and 𝑦 are in the same column space, matrix 𝐴 is invertible 

and all its columns are linearly independent (full column rank). 

However, in practice, in addition to the presence of noise, it is 

also not desirable to perform a CT scan with the required 

number of projection angles due to the need to reduce x-ray 

radiation exposure. Thus, the system of equations becomes ill-

posed and an approximate solution is obtained using iterative 

methods. There are numerous IR algorithms available and one 

of the simplest known algorithms is the algebraic reconstruction 

technique (ART) [16]. It was introduced by Gordon et al. in 

1970 and it was based on the Kaczmarz method that was 

initially proposed to solve a system of linear equations. ART 

and its variants come under a category of IR algorithms known 

as algebraic iterative algorithms.  

Another class of IR algorithms is the statistical iterative 

algorithms that model CT reconstruction into probability 

models and arrive at the solution with the help of various 

statistical methods like maximum likelihood, least squares or 

maximum a posteriori estimation [17]. 

The results of iterative reconstruction algorithms are 

qualitatively better than those obtained using analytical 

reconstruction algorithms. Iterative reconstruction algorithms 

are equipped to produce good results even with the presence of 

noisy data and non-uniform projection angle distribution 

making them suitable for low-dose CT reconstruction. 

However, the image outputs might sometimes appear blotchy 

and as a major disadvantage, they are computationally costly 

and time-consuming [18]. DL algorithms were introduced into 

CT reconstruction to overcome such problems compromising 

the reconstruction quality.  

C. Deep Learning in CT Reconstruction 

Deep learning (DL) applications in CT reconstruction can be 

categorized into five major groups: image domain processing, 

data domain processing, a hybrid domain, deep reconstruction 

methods and iterative reconstruction combined with DL. 

 DL Models for Image Domain Processing: These methods 

take as input the image that was reconstructed using a 

traditional algorithm like FBP. The reconstructed image may 

contain noise and artifacts due to various reasons like dose 

limitations, inconsistencies during scanning or high attenuation 

materials such as metal implants inside the body during 

scanning. Image domain processing methods take the 

reconstructed image 𝑥, as input and try to compute a function 

𝑔(𝑥) =  �̂� such that �̂� is as close to the ground truth (high-

quality images without noise and artifacts) as possible. DL 

models can be trained by using a sufficient number of noisy CT 

reconstructions and  the corresponding high-quality ground 

truths to achieve CT noise/artifact reduction. 

Chen et al. in [19] have proposed a convolution neural 

network (CNN) model for low-dose CT denoising. The 

disadvantage of using CNN on medical images is that the 

structural details that are important for clinical diagnosis could 

get lost during the convolution and pooling operations. Thus, 

inspired by auto-encoders, deconvolution layers and shortcut 

connections were introduced into the CNN architecture. An 

improved model for CT denoising known as residual encoder 

decoder CNN (RED-CNN) is introduced in [20] with 

symmetrically placed convolution and deconvolution layers. 

Another CNN based denoising network for low dose CT is 

introduced by Kang et al. in [21]. The authors propose applying 

the deep-CNN model on the coefficients of wavelet transform. 

The aim is for the network to learn and remove the CT specific 

noise and artifact components present in the high-frequency 

components. The idea to use a generative adversarial network 

(GAN) for CT denoising was first introduced by Wolterink et 

al. in [22]. Following its success, there were various 

advancements proposed in that aspect of CT denoising too.   
DL Models for Data Domain Processing: Following DL 

applications for image domain processing, another approach 

would be to focus on the data domain, that is, on the 

measurements obtained from the scanner. The lowering of x-

ray beam radiation dose for low dose CT scanning results in 

noisy sinograms. If the noisy low dose sinogram data is 

represented by 𝑦, then the data domain processing methods aim 

at finding a function 𝑓(𝑦) = �̂� such that �̂� is close to the ideal 

noiseless or full dose sinograms. The output sinograms are then 

reconstructed using conventional algorithms to obtained quality 

images. 

Lossau et al. in [23] have proposed a data domain processing 

algorithm for metal artifact reduction in cardiac CT images. The 

process contains three CNNs. The first is a segmentationNet 

that takes as input the raw projection data and creates a metal 

shadow mask. The second network is an inpaintingNet  that 

takes as input the metal shadow mask along with the original 

projection data to replace the metal-affected areas such that the 

reconstructions of the thus obtained sinograms are metal-free 

CT images. The third network, a reinsertionNet retrieves the 
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position of the metals based on a stack of partial back-

projections and the metal shadow mask. Claus et al. in [24] have 

also attempted metal artifact reduction by using a three-layer 

fully connected network to correct the affected values in the 

sinogram. Although there are probabilities to obtained good 

results, data domain processing is very limited as the operations 

in the data domain have a tendency to easily produce image 

artifacts.  

DL Models for Hybrid Dual-Domain Processing: Following 

a synergistic strategy, a dual-domain hybrid learning approach 

was introduced by combining the data-domain and image-

domain learning methods. The noisy sinograms are processed 

by a network trained for data domain processing. The 

sinograms that were obtained as outputs after data domain 

processing are reconstructed using a simple reconstruction 

algorithm. The images thus obtained are fed into a network 

trained for CT image denoising.    

Lee et al. in [25] have used a deep learning model that is based 

on a fully convolutional network and wavelet transform. The 

model was applied for sparse CT reconstruction through three 

different approaches – image domain, sinogram/data domain 

and hybrid domain. The results showed that the hybrid domain 

approach worked the best.   

DL Models for Direct CT Reconstruction: A model under this 

category is trained to take as input the sinogram data and give 

as output the reconstructed image. Initially, efforts to use neural 

networks for CT reconstruction were based on the classical FBP 

algorithm. He et al. in [26] have proposed a framework known 

as iRadonMap where two networks are cascaded. The first 

network is divided into two segments. The first segment is a 

learnable, fully connected filtering layer. The second segment 

is the back-projection layer that transfers the filtered Radon 

projections into an image. The second network is a residual 

CNN that is used to refine the quality of the reconstruction. 

AUTOMAP is an image reconstruction DL framework 

proposed by Zhu et al. in [27]. It contains three fully connected 

layers that transform data from the sensor domain to the image 

domain. These are followed by two convolutional layers and a 

deconvolutional layer for noise and artifact reduction. The fully 

connected layers that are used for domain transform give this 

framework the capability to be generalized for different 

imaging modalities but at the cost of an increased number of 

parameters that need to be learned during training.          

DL Models based on Iterative Reconstruction: Another DL 

approach to low-dose CT reconstruction would be to 

incorporate a DL model into an iterative reconstruction 

algorithm. Moraru in [28] has attempted to introduce a deep 

neural network into the simultaneous iterative reconstruction 

technique (SIRT). The network is trained to correct the update 

term at each iteration and has proved to facilitate faster 

algorithm convergence.    

Most DL models discussed so far, unlike the traditional 

algorithms, do not work based on any mathematical derivations 

or the physical modelling of the imaging modality. This may 

become a weakness and a cause for sub-optimal results. To 

overcome this effect, DL-based reconstruction networks are 

developed in reference to conventional iterative reconstruction 

algorithms. One such DL framework is the learned primal-dual 

algorithm proposed by Adler and Öktem in [29]. The forward 

model is accounted into the DL model by unrolling a proximal 

primal-dual optimization method where the proximal operators 

are replaced by CNNs. The model produced notable results 

when trained for low-dose CT reconstruction while also 

proving to be appropriate for time-critical clinical applications.  

The recurrent inference machine (RIM), introduced by Putzky 

et al. in [11], is a similar kind of DL model that learns an 

inference algorithm by unrolling it in time and interpreting it as 

a recurrent neural network (RNN). Invertible recurrent 

inference machine (iRIM), as its name suggests, is an invertible 

network implemented with RIM as the base. It was proposed by 

Putzky et al. in [12] with the aim to increase the expressiveness 

of a model while ensuring stable training with constant and 

reasonable memory requirements. Following its success in 

undersampled MRI reconstruction [14], we study its 

performance in low-dose CT reconstruction in this research 

work.   

III. METHOD AND MATERIALS 

This section begins with a description of the iRIM framework. 

Following that, the dataset that was used during model training 

and testing is described along with its pre-processing steps. 

Further, the definitions of the various image evaluation metrics 

that are later used during the model performance assessments 

are included.    

A. Invertible Recurrent Inference Machine 

Recurrent Inference Machines (RIM): To know about RIM, 

we start with an RNN. These are neural networks that have an 

internal memory. To compute the output at a given step, the 

RNN takes into consideration the current input and the output 

learnt from the previous input. This process is quite similar to 

an iterative algorithm that updates its current prediction based 

on its previous prediction. Thus an iterative inference algorithm 

can be unrolled and implemented as an RNN.   

RIM is one such RNN framework. It depicts an inverse 

problem as a probability model and uses an RNN to implement 

a statistical iterative algorithm that can optimize towards a 

maximum a posteriori (MAP) solution. For an inverse problem 

that is defined as per equation (2), equation (3) below shows a 

MAP solution for 𝑥 in terms of 𝑝(𝑦|𝑥), a likelihood term 

representing the noisy model and 𝑝𝜃(𝑥) a parametric prior over 

𝑥.       

max
𝑥

log 𝑝(𝑦|𝑥) + log 𝑝𝜃(𝑥)                     (3) 

Equation (4) represents a recursive function in its simplest 

form that can be used to arrive at this MAP inference for 𝑥 

where 𝛾𝑡 is the step size or learning rate and 𝑥𝑡 is the MAP 

estimate for 𝑥 at iteration 𝑡.  

𝑥𝑡+1 = 𝑥𝑡 + 𝛾𝑡∇(log 𝑝(𝑦|𝑥) + log 𝑝𝜃(𝑥)) (𝑥𝑡)        (4) 

The update term for 𝑥 is modified and written in the form of 

a function with learnable parameters 𝜙 as shown in equation (5) 

below.  

𝑥𝑡+1 = 𝑥𝑡 + 𝑔𝜙(∇𝑦|𝑥 , 𝑥𝑡)                         (5) 
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If we use ∇𝑦|𝑥 to denote ∇(log 𝑝(𝑦|𝑥)) (𝑥𝑡) and ∇𝑥 to denote 

∇(log 𝑝𝜃(𝑥)) (𝑥𝑡), combining equations (4) and (5) will give 

the below definition for the function 𝑔𝜙.  

      𝑔𝜙(∇𝑦|𝑥 , 𝑥𝑡) = 𝛾𝑡(∇𝑦|𝑥 + ∇𝑥)                      (6) 

Since the update term includes only the gradient, there is no 

need to learn an actual prior for 𝑥. On that account, the 

modification done on the update term allows the model to 

directly learn the gradient function ∇𝑥= 𝑓(𝑥𝑡) instead of 

learning a prior and then computing its gradient. Secondly, this 

modification also removes the need to estimate the step size 𝛾𝑡 

by including it implicitly into the learnable parameters of the 

inference model along with the prior gradient function ∇𝑥. The 

likelihood model that is part of the input ∇𝑦|𝑥 is the source of 

task-specific information. Unlike the prior gradient function 

and step size, ∇𝑦|𝑥 is kept as a separate input. Due to this 

property, the likelihood model of a RIM framework can be 

modified without changing the learned parameters 𝜙 of the 

inference model. This gives a RIM framework the capability to 

generalize across related tasks after just suitably adapting the 

likelihood model.    

Fig. 3 shows an outline of the update term modification. The 

red boxes represent the internal data-independent modules and 

the blue boxes represent the external data-dependent modules. 

Fig. 3(a) is a representation of the recursive function given by 

equation (4). Fig. 3(b) represents the modified model with 

trainable parameters that produces estimates based on the 

feedback from the likelihood model and that is given by 

equation (5).  

 

Fig. 3. (a) Block diagram representing the recurrent function for MAP 

inference. During an iteration 𝑡, the likelihood 𝑝(𝑦|𝑥) and 𝑝𝜃(𝑥) are 

calculated using the current estimate 𝑥𝑡. These are used as input to 

calculate the update term to produce the new estimate 𝑥𝑡+1 as shown 

in equation (4). (b) The modified model with the prior and step size 

estimation merged into one model with trainable parameters 𝜙. 

Graphical representation of equation (5). Figure sourced from [11] 

Equation (5) is fitted into an RNN that has a network ℎ𝜙 

within it to model the function 𝑔𝜙 and after adding a latent 

memory variable 𝑠𝑡, the update equations of the RIM take the 

below form. 

𝑥𝑡+1, 𝑠𝑡+1 = 𝑥𝑡 + ℎ𝜙(∇𝑦|𝑥 , 𝑥𝑡 , 𝑠𝑡)                        (7) 

A training loss function ℒ is defined to measure the similarity 

between the model prediction at a given step 𝑥𝑡, a function of 

the model parameters 𝜙 and the corresponding ground truth 𝑥. 

During the back propagation steps in the training process, the 

model calculates a total loss ℒ𝑡𝑜𝑡𝑎𝑙 based on the loss obtained 

at each RNN step. Equation (8) shows the total loss for a RIM 

model with 𝑇 steps. The model learns to improve the quality of 

the prediction through this loss function. 

ℒ𝑡𝑜𝑡𝑎𝑙 = ∑ ℒ(𝑥𝑡(𝜙), 𝑥)

𝑇

𝑡=1

                                (8) 

  Fig. 4 shows an unrolled RIM and its correspondence to the 

update equation in (7) could be seen. The loss estimated at each 

step during training is denoted by dashed lines. The dashed lines 

also indicate that this process occurs only during model training 

when the ground truth is fed into the model.  

 

Fig. 4. An unrolled recurrent inference machine. The input and the 

likelihood gradient module are represented in blue showing that they 

are data-dependent and externally defined. The learning modules 
and all the associated machine states are shown in red showing that 

they are data-independent internal modules of the RIM model. 

Figure sourced from [11]    

As mentioned earlier, the likelihood gradient module is an 

external module and needs to be defined explicitly according to 

the inverse problem at hand. Below are three possible 

likelihood gradient definitions for CT reconstruction that we 

explore in this study.   

Image Gradient: This is a likelihood gradient that has the 

simplest definition computationally without involving any CT 

forward operators within it. As shown in equation (9), it is the 

difference between 𝑥𝑡, the model prediction at the given 

iteration 𝑡 and the FBP reconstruction of the low-dose sinogram 

input 𝑦. The calculations are entirely done in the image domain 

and it does not involve the use of any information that is derived 

from the distribution of the model estimate in the sinogram 

domain. The aim of this likelihood gradient definition is to 

compare the performance of a model that is trained with a 

likelihood that does not include the CT forward operator against 

performances of models that are trained with likelihoods that 

include the CT forward operator.  

∇𝑦|𝑥= 𝑥𝑡 − 𝐹𝐵𝑃(𝑦)                         (9) 

Adjoint Gradient: The adjoint likelihood gradient is defined 

as per equation (10). The model estimate 𝑥𝑡, using the Radon 

transform ℛ, is projected into the sinogram domain, where its 

difference with the original low dose sinogram 𝑦 is computed. 

The likelihood gradient is used to compute the update term for 

the image estimate and thus it needs to be brought back to the 

image domain from the sinogram domain. For this purpose, the 
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adjoint of Radon transform denoted by  ℛ𝐻 is used as the back 

projection operator. This likelihood gradient definition is 

computationally not very costly and at the same time also 

includes information from the projection domain which is 

expected to improve the model reconstruction capability. 

∇𝑦|𝑥= ℛ𝐻(ℛ(𝑥𝑡) − 𝑦)                     (10) 

FBP Gradient: The definition of this likelihood gradient is 

similar to the previously defined adjoint gradient but instead of 

using back projection as the inverse operator, it uses the filtered 

back projection as shown in equation (11). Back projection 

yields as output a blurred or smoothened version of the actual 

reconstruction due to over-weighing of the low-frequency 

components. Thus, an additional filtering step is added into the 

inverse operator to compensate for the over-weighing. This 

modification is expected to increase the computation 

complexity of the likelihood gradient and at its cost feed more 

relevant information into the model to push it towards better 

quality CT reconstructions.        

∇𝑦|𝑥= 𝐹𝐵𝑃(ℛ(𝑥𝑡) − 𝑦)                    (11)  

Invertible Recurrent Inference Machines (iRIM): It is to be 

noted from the RIM architecture that ℎ𝜙 is a network that is 

contained within each of the RNN steps. Therefore, training the 

RIM will include back propagation through the RNN and within 

that another back propagation to train the network in each RNN 

step. This is referred to as back-propagation through time and it 

forces the imposition of limits over the depth and complexity of 

the networks to keep the memory requirements of the whole 

model within check. To overcome this constraint, Putzky et al. 

in [12] introduced the invertible RIMs (iRIMs) by proposing to 

use the reversible neural network architecture inspired by the 

work of Gomez et al. in [30]. This allows the restoration of 

intermediate activations from post activations and in turn 

memory saving by removing the need to store these activations. 

Thus, iRIMs are architecturally modified RIMs that are 

invertible. Apart from memory saving the iRIM frameworks are 

also equipped to remove training instabilities and have the 

ability to accommodate large volumes of training data. For 

further information on how a RIM framework is modified into 

an iRIM please refer to appendix I. More information can also 

be obtained from [12, 13].     

B. Dataset and Pre-processing Steps   

The public low dose parallel beam (LoDoPaB) dataset [31] 

was used to train the iRIM model for low-dose CT 

reconstruction. It is a highly heterogeneous collection of 

thoracic scans with tube peak voltages ranging from 120 kV to 

140 kV and tube currents ranging from 40 mA to 627 mA with 

a mean of 222.1 mA. This dataset contains 35820 training 

images from 632 patients, 3522 validation images and 3553 test 

images from 60 patients each. The projection data 

corresponding to each CT image is obtained using the Radon 

transform function provided by Python’s operator discretization 

library (ODL) [32] under a chosen setup of 1000 projection 

angles and 513 detector elements paired with a parallel beam x-

ray source. A low dose setting is modelled by using Poisson-

distributed noise with a mean photon count of 4096 per detector 

element before attenuation. 

The pre-processing steps to obtain the ground truth images 

and the steps that were used to simulate the low dose projection 

data are listed in algorithm 1. The pre-processing for ground 

truth images starts with  𝑖𝑚_𝐻𝑈, which is the available CT 

reconstruction in Hounsfield unit (HU) that is centre cropped to 

the size of 362 px × 362 px. Linear attenuations (𝜇) are 

computed from the HU values to obtain 𝑖𝑚_𝑀𝑈 as shown in 

step 1. 𝜇𝑚𝑎𝑥 is the maximum linear attenuation value calculated 

based on the maximum HU value and 𝑖𝑚_𝑀𝑈 is normalised 

using 𝜇𝑚𝑎𝑥 and clipped to obtain ground truth images with pixel 

values in the range [0,1]. 

For the low dose projection data simulation, 𝑖𝑚_𝐻𝑈 is first 

dequantized by adding uniform noise from the interval [0,1). 

Following this, HU values are converted to linear attenuations 

and then normalized and clipped to obtain 𝑖𝑚_𝑛𝑜𝑟𝑚 with pixel 

values in the range [0,1]. To avoid committing an inverse crime 

[33], before the forward projection operation, 𝑖𝑚_𝑛𝑜𝑟𝑚 is 

upscaled from 362 px × 362 px to 1000 px × 1000 px using 

bilinear interpolation. The projection data corresponding to the 

upscaled image is computed using ODL’s Radon transform 

function. Photon count per detector pixel is computed by 

assuming an initial photon count of 4096 and applying Beer-

Lambert’s law on the projection data as shown in step 6. Step 7 

models the low dose setting with the help of Poisson noise and 

replaces any zero photon counts with 0.1 so that the log 

transform in the next step produces only finite valued outputs. 

Beer- Lambert’s law is used again to acquire the low dose 

projection data and it is divided by 𝜇𝑚𝑎𝑥 to make it compatible 

with the previously obtained normalized ground truth images. 

More detailed explanations can be found in [30, 34].  

      

Algorithm 1 Steps to obtain ground truth images and to 

simulate low dose projection data 

               

𝜇𝑎𝑖𝑟  = 0.02 , 𝜇𝑤𝑎𝑡𝑒𝑟 = 20, 𝜇𝑚𝑎𝑥 = 81.36 

Pre-processing steps for ground truth images: 

1. im_MU = im_HU ∗
𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟

1000
 + 𝜇𝑤𝑎𝑡𝑒𝑟    

2. GT = clip(im_MU/𝜇𝑚𝑎𝑥 , min = 0; max = 1)  

Low dose projection data simulation steps: 

1. im_HU += dequantization_noise~𝒰(0,1) 

2. im_MU = im_HU ∗
𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟

1000
 + 𝜇𝑤𝑎𝑡𝑒𝑟    

3. im_norm = clip(im_MU/𝜇𝑚𝑎𝑥 , min = 0; max = 1) 

4. im_upscaled = bilinear_interpolation(im_norm) 

5. proj_data = Radon_transform(im_resize) 

6. photons = exp(−proj_data) ∗ 4096 

7. noisy_photons = max (0.1, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(photons)) 

8. proj_data𝐿𝐷 = − ln(noisy_photons/4096)/𝜇𝑚𝑎𝑥   
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C. Evaluation Metrics 

The dataset used contains ground truth images. Thus, all the 

evaluation metrics are full-reference objective image quality 

measures that compare original distortion less ground truth CT 

images with the test reconstructions. Below are the image 

similarity measures that were used to report the results obtained 

on the LoDoPaB dataset. We opted to use the same set of 

metrics for our experiments and performance evaluations.    

Peak Signal to Noise Ratio (PSNR): PSNR is the ratio 

between the maximum possible image intensity and the noise. 

The maximum possible image intensity usually lies far away 

from the range of expected values in the case of CT images. 

Therefore, it is replaced by the difference between the highest 

and lowest intensity values in the ground truth image. Below is 

the equation for PSNR calculation with this modification for a 

test image �̂� and its corresponding ground truth 𝑥 both of size 

𝑀 × 𝑁.  

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
[max(𝑥) − min(𝑥)]2

𝑀𝑆𝐸(𝑥, �̂�)
)                 (12) 

𝑀𝑆𝐸(𝑥, �̂�) =  
1

𝑀𝑁
 ∑ ∑[𝑥(𝑚, 𝑛) − �̂�(𝑚, 𝑛)]2

𝑁

𝑛=1

𝑀

𝑚=1

      (13) 

Structural Similarity Index Measure (SSIM): SSIM is an 

assessment method that is based on the characteristics of the 

human visual system (HVS). SSIM works on computing the 

overall structural similarity between the ground truth and test 

images by comparing the normalized local patterns of pixel 

intensities with the help of a sliding window. The sliding 

window creates 𝑀 local regions each on the ground truth and 

test image. Mean pixel intensities (𝜇), variance (𝜎) and 

covariance (Σ) are calculated on the 𝑀  local regions on the 

ground truth and test images and are used to compute the SSIM 

value as per the below equation. 𝐶1 and 𝐶2 are constants that 

were used to stabilize the division. The window size was set to 

7 × 7. 𝐶1 = 0.01 ∗ max(𝑥) and 𝐶2 = 0.03 ∗ max(𝑥). Python’s 

scikit-image library was used for SSIM calculation [35].  

𝑆𝑆𝐼𝑀 =
1

𝑀
∑

(2�̂�𝑗𝜇𝑗 + 𝐶1)(2Σ𝑗 + 𝐶2)

(�̂�𝑗
2 + 𝜇𝑗

2 + 𝐶1)(�̂�𝑗
2 + 𝜎𝑗

2 + 𝐶2)

𝑀

𝑗=1

         (14) 

IV. EXPERIMENTS AND RESULTS  

A. iRIM Models Training and Testing  

1) Model Training 

For the iRIM model structure, a framework similar to the one 

that was used by Putzky et al. in [14] for the fastMRI challenge 

was chosen. The chosen iRIM framework contains an RNN 

with 8 steps and a network that is 12 layers deep within each 

step. The number of channels was set to 64. Weight sharing was 

set to false, which means the parameters were not shared across 

the RNN steps. The resulting iRIM model contains about 275M 

learnable parameters. The models were trained on the LoDoPaB 

dataset with a batch size of 8. Each batch is a set of 8 low-dose 

sinograms along with the respective ground truth images. The 

model was trained using a structural similarity loss function 

with Adam optimizer for 10 epochs where one epoch 

corresponded to the model looping through the 35820 samples 

in the LoDoPaB training data. The learning rate was set to 10−4 

and was reduced by a factor of 10 after 5 epochs. 

Three iRIM models were built, each with one of the likelihood 

gradient functions defined in section III.A. configured into it. 

Python’s ODL library [32] was used to implement all the CT 

operators in the likelihood gradients. In order to make the 

operators compatible with the LoDoPaB dataset, all operators 

were initialised with a reconstruction geometry that 

corresponded to 1000 projection angles, 513 detector elements 

and a parallel beam x-ray source. The FBP operator, apart from 

the said configurations, needs a suitable filter. The ODL library 

uses the Ram-Lak filter by default and the same was used for 

the FBP operator in the likelihood gradient too. Apart from the 

likelihood gradient definitions, all other model configurations 

and training setups were kept the same for the three models. 

Each model takes as input the low dose sinogram 𝑦 and the FBP 

reconstruction of the low dose sinogram. The low dose FBP 

reconstruction is used as the initial model estimate 𝑥0 and the 

low dose sinogram 𝑦 is used in likelihood gradient estimation.  

The validation loss curves obtained during the training of the 

three models are shown in Fig. 5. The plot shows the average 

SSIM values obtained at the end of each validation cycle during 

which the models were evaluated on the 3522 images in the 

validation data. At the end of the training, for each likelihood 

definition the best model that gave the highest average SSIM 

against the validation data was saved. The three saved models 

were then evaluated on the test data. 

 
Fig. 5. Validation curves of the three iRIM models during training. The best models and the corresponding average SSIM value obtained on the validation data 

are also shown in the plot. 
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It is also important to note that the training time and the 

reconstruction time of the models increased with an increase in 

the likelihood gradient complexity. The FBP likelihood 

gradient definition is the most complex. The corresponding 

model’s training time for one epoch is approximately 36.7 

hours and the time required by the FBP gradient iRIM model 

for one reconstruction is close to 0.96 seconds on an NVIDIA 

Tesla-V100 GPU with 32 GB RAM. The next less complex 

model, the adjoint gradient iRIM model had a training time of 

16.1 hours for an epoch and a reconstruction time of 0.45 

seconds on the same GPU. The least complex model, the image 

gradient iRIM model had a training time of 16.8 hours and a 

reconstruction time of 0.44 seconds on an NVIDIA Tesla-P100 

GPU with 16 GB RAM. 

2) Results on the LoDoPaB Test Data 

All results are compared to two baselines. First, the FBP 

reconstructions of the low-dose sinograms. Second, the outputs 

that were obtained using the reference U-Net that was provided 

along with the LoDoPaB dataset [36]. A U-Net is a convolution 

neural network that consists of an encoding and decoding path. 

The encoding path contains convolution layers that remove 

redundant spatial information and performs a function 

analogous to feature extraction. The decoding path contains a 

series of up-convolution layers and concatenations that build 

the output from the features and information obtained from the 

encoding path. The U-Net model in this case is used as a 

denoiser and the chosen architecture contains 10 layers with 

approximately 610K learnable parameters. It takes as input the 

FBP reconstruction of the low-dose sinogram and performs a 

denoising operation to remove all the unwanted streaks and 

image artifacts. The U-Net model was trained on the LoDoPaB 

dataset using mean squared error (MSE) loss and Adam 

optimizer for 20 epochs. More details on the U-Net model used 

can be found in [30, 35]. 

Box plots representing the model performances on the 

LoDoPaB test data can be found in Fig 6. In addition to the 

quartiles shown in these boxplots, we report the mean and 

standard deviations, as is commonly done for the LoDoPaB 

dataset. The iRIM model with adjoint gradient likelihood 

showed the best performance amongst all the models with a 

mean SSIM of 0.8541. The same is also reflected by its PSNR 

mean of 35.93 dB which is the highest amongst the models in 

comparison.  

Fig. 7 shows a random sample ground truth image and the 

corresponding model outputs. On the second row are the error 

images that were obtained by calculating the difference 

between the ground truth and each of the model outputs. The 

model outputs visually do not appear significantly different but 

the SSIM and PSNR values can be seen to be varying. The error 

images also signify the fine differences amongst the model 

outputs

 
Fig. 6. Boxplots showing the distribution of the SSIM and PSNR values evaluated on the LoDoPaB test outputs obtained from the three iRIM models. The 

evaluations on the U-Net and low-dose FBP outputs are also shown for comparison. The corresponding mean (also represented by the dashed line) and 

standard deviation are displayed beside each plot.  

 

Fig. 7. Sample from LoDoPaB test outputs obtained from the three iRIM models, the U-Net and the FBP reconstruction of the low dose sinogram. The 

corresponding ground truth image is also provided for comparison. Image window: [-1001, 424] HU. The respective error images that were obtained 

by calculating the difference between the ground truth and each of the model outputs are on the second row. Image window: [-500, 500] HU.
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Fig. 8. Boxplots representing the performance of the iRIM models in the LoDoPaB challenge. Model 1, 2 and 3 are the low-dose CT reconstruction algorithms 

that currently hold the first, second and third positions respectively in the challenge.

3) Results of the LoDoPaB Challenge  

To compare our models with the other existing low dose 

reconstruction algorithms, we evaluated them on the LoDoPaB 

challenge dataset and submitted the results. This is a separate 

dataset for which we did not have access to the ground truth 

reconstructions. The adjoint gradient iRIM model was able to 

achieve an SSIM mean of 0.8692 and standard deviation of 

0.1122 and a PSNR mean of 36.08 dB and a standard deviation 

of 3.76 dB. Our model achieved the best SSIM average among 

all the submissions and secured an overall 4th position. The FBP 

gradient adjoint model yielded an average SSIM of 0.8602 and 

a standard deviation of 0.1129. The image gradient iRIM model 

gave an average SSIM of 0.8664 and a standard deviation of 

0.1155 on the LoDoPaB challenge dataset. Fig. 8 contains 

boxplots to compare the performances of the three iRIM models 

against the low dose CT reconstruction models that currently 

hold the top three positions in the LoDoPaB challenge. Model 

1, 2 and 3 represent the low dose CT reconstruction algorithms 

that currently hold the first, second and third position in the 

LodoPaB challenge. The boxplots show that the iRIM models 

have the ability to produce high SSIM means but lag on the 

PSNR front. There are notably large differences in the mean 

PSNR values of the other low-dose CT reconstruction 

algorithms and the iRIM models. The iRIM models were 

trained using a SSIM based loss function and that might be a 

plausible reason behind this particular behaviour of the iRIM 

models. 

B. Model Generalization Capability Tests 

From the performance of the iRIM models on the LoDoPaB 

challenge, it could be inferred that the models have the 

capability to generalize well within the dataset. However, this 

is not sufficient to analyse if the model has the capability to 

perform adequately in a real-world setting. All three trained 

iRIM models were thus evaluated for their generalization 

properties outside the LoDoPaB dataset. Three focus areas were 

chosen and the generalization experiments along with the 

results obtained subsequently are discussed below. All the 

evaluations are done on the iRIM and U-Net models that were 

trained on the LoDoPaB dataset and there was no sort of 

retraining involved during the generalization experiments.  

1) Anatomy 

The distribution and spatial configuration of soft tissue, bones 

and other structures within the body vary significantly as one 

moves from the head to the toes. Yet, it is essential for a CT 

reconstruction model to be able to perform well on any CT data 

irrespective of the anatomical structure being scanned. Thus, 

the performances of the trained iRIM models on CT data that 

belong to anatomical regions of the body that are structurally 

different from the training data need to be analysed. The data in 

the LoDoPaB dataset belong to the thoracic region. Therefore, 

to check the generalization capabilities of the trained models 

over different anatomies, CT data that belonged to the pelvic, 

head and neck regions were selected. The ‘other anatomy’ 

dataset created contains a total of 3453 two-dimensional CT 

images of which 2211 are head & neck images collected from 

12 different patients and the remaining 1242 are pelvic images 

collected from a set of 10 patients. The peak tube voltage was 

set at 120kV for all the scans and the tube current ranged from 

100 mA to 290 mA for the pelvic scans and from 128 mA to 

271 mA for the head and neck scans. The ground truth images 

and the low-dose projection data were obtained using the same 

set of LoDoPaB pre-processing steps as listed in Algorithm 1.  

Fig. 9 summarizes the performances of the models on the 

other anatomy dataset. The results obtained on the head and 

neck CT images and on pelvic CT images are kept separate. 

From Fig. 9 it can be clearly inferred that the adjoint and the 

FBP gradient models were able to generalise better to different 

anatomies than the image gradient iRIM model. Out of the 

iRIM models, the FBP gradient iRIM model showed the best 

performance. On the other hand, the U-Net was also able to 

extend its performance on the other anatomy dataset and was 

even able to produce results that were better when compared to 

the results from the image grad iRIM model. Fig. 10 shows the 

model outputs of two randomly chosen inputs along with the 

corresponding ground truths and error images. The first sample 

is a head CT and the second sample is a pelvic CT. The error 

and output images that belong to the image gradient iRIM 

model stand out and additionally prove that the adjoint and FBP 

gradient iRIM models are able to generalize better anatomy-

wise due to the added complexities in their likelihood gradients. 

On the head and neck CT data, the adjoint and the FBP grad 

iRIM models were able to show performances that were better 

than the performance of the U-Net but only by a narrow margin. 

Mean SSIM calculated on the U-Net outputs was 0.9566 and 

thus the narrow margin might be due to already high SSIM 

values obtained on the U-Net outputs. On analysing the pelvic 

CT data results, the performance of the U-Net with a mean 

SSIM of 0.9507 was found to be better than all the iRIM 

models. Along with the boxplots in Fig. 9, this result is also 

clearly reflected by the pelvic output images in Fig. 10.  
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Fig. 9. Boxplots showing the distribution of SSIM and PSNR values calculated on the model outputs that correspond to the other anatomy dataset. The 

performances on the head and neck CT data and on the pelvic CT data are displayed separately.  

 

Fig. 10. Sample model output from other anatomy dataset along with their ground truth and error images. The first two rows correspond to head and neck CT 

data and the last two rows correspond to pelvic CT data. The head CT images are displayed in an image window of [-390, 628] HU. For pelvic CT 

images the window is approximately [-512, 221] HU. All the error images are in the window [-400, 400] HU.   

2)   Noise Level 

The low dose projection data in the LoDoPaB dataset were 

simulated using Poisson noise. Although it is a good 

approximation, there are great chances for real-world low-dose 

conditions to be very different. Thus the performances of the 

models at different noise levels were examined to measure the 

immunity of the models against noise variations. For this 

purpose, two datasets were forged from all the 3553 test CT 

images of the LoDoPaB dataset and the 3453 other anatomy CT 

images. While the ground truth images remained the same, 

during the low dose sinogram simulations the mean photon 

count of the Poisson noise was reduced from 4096 to 2048. This  
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Fig. 11. Boxplots showing the distribution of the SSIM values calculated on the results obtained from the high and low noise dataset. The performance of the 

models on the LoDoPaB test images, head and neck CT images and on the pelvic CT images are displayed separately. 

 
Fig. 12. Sample outputs and the corresponding ground truth images from the high and low noise dataset results obtained from the U-Net and the FBP gradient 

iRIM model. The same set of ground truths from Fig. 7 and Fig. 10 are used. The FBP gradient iRIM model performed the best out of the three iRIM 

models and thus only its outputs are displayed along with the corresponding U-Net outputs. The previously mentioned image windows are also 
maintained. On the first row for the LoDoPaB test images the display window is [-1001, 424] HU. For the head images in the second row it is [-390, 

628] HU and for pelvic images in the last row it is [-512, 221] HU.       
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resulted in noisier projection data and these were used to create 

what was named the ‘high noise’ dataset. Similarly, low-dose 

sinogram simulations using Poisson noise with an increased 

mean photon count of 8192 that resulted in less noisy projection 

data were used to create the ‘low noise’ dataset.  

The trained iRIM models and the reference U-Net were 

evaluated on both the high and low noise datasets. Fig. 11 

contains the boxplots representing the distribution of the SSIM 

values. The performances of the model on different anatomies 

are displayed separately for better analysis. The boxplots show 

that the FBP likelihood gradient iRIM model was able to 

consistently maintain its performance and thus in Fig. 12 only 

the FBP gradient iRIM model output images are displayed 

along with the U-Net outputs for comparison. 

The boxplots in Fig. 11 show that the iRIM model is able to 

hold its performance on the high noise head and neck images 

while losing it on the high noise pelvic and LoDoPaB test CT 

data. The FBP gradient iRIM model gave the highest SSIM 

average of 0.9670 on the head and neck images. On both the 

high noise pelvic and LoDoPaB test images, the U-Net was able 

to show better performance than all the iRIM models with the 

highest SSIM average of 0.9317 and 0.8079, respectively. 

However, following the reduced performance on the high noise 

dataset, the performances of the iRIM models on the low noise 

dataset were considerably better, especially on the pelvic 

images. From Fig. 12 it could be noted that the improvements 

on the pelvic outputs are even visually evident. The adjoint and 

FBP gradient iRIM models performed better than the image 

gradient model and the FBP gradient iRIM model shows a 

slight edge over the adjoint version. The adjoint and FBP 

likelihood gradient iRIM models were also able to outperform 

the U-Net on all three anatomies while the image gradient iRIM 

model lagged behind the U-Net on all the cases considered. 

3) Source Beam Geometry 

  All the datasets that were used or that were created so far 

contained sinograms that were simulated under a chosen setup 

with a parallel beam x-ray source. In order to test the cross-task 

generalization capability of the iRIM models, a ‘low dose fan 

beam’ (LoDoFaB) dataset was created by replacing the parallel 

beam forward projection operator in the projection data 

simulation process with a fan beam forward projection operator.  

Before the performance assessments of the iRIM models, the 

parallel beam CT operators within their likelihood gradient 

function definitions need to be replaced with their fan-beam 

counterparts. The suitably collected outcomes from both iRIM 

and U-Net models were examined to deduce appropriate 

inferences on the abilities of the iRIM models to generalize 

across tasks. Fig. 13 contains the corresponding boxplots and 

Fig. 14 contains the set of sample outputs and ground truths 

along with the error images. Again, out of the three iRIM 

models, the FBP gradient iRIM model had the best 

performance. Thus only its output is displayed in Fig. 14 along 

with the corresponding outputs from the U-Net for comparison. 

Out of the three iRIM models, the FBP gradient iRIM model 

was found to have the best performance on the LoDoFaB 

dataset. While the image gradient iRIM model shows average 

performance, the adjoint gradient model breaks down. An issue 

of model incompatible fan beam adjoint operator is suspected 

to be the reason behind this observation. The results show slack 

in the U-Net performance especially in head and neck CT data 

while the FBP gradient iRIM model holds its performance. The 

error images that are displayed along with the model outputs in 

Fig. 14 also show that the iRIM model outputs are better than 

U-Net outputs. The iRIM model again shows performance 

issues on the pelvic images but that has been a common 

observation amongst all the previously obtained outputs. Thus, 

it could be seen that the iRIM model was able to retain its 

performance while the performance of the U-Net degraded.

 
Fig. 13. Boxplots showing the distribution of the SSIM and PSNR values calculated on the results obtained from the LoDoFaB dataset. The performances of the 

models are categorised based on the anatomy of the CT data. 
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Fig. 14. Sample outputs and the ground truth images along with the error images obtained from the LoDoFaB outputs. The FBP gradient iRIM model performed 

the best out of the three iRIM models and thus only its outputs are displayed along with the corresponding U-Net outputs for comparison. The same set 

of ground truth images and image display windows from fig. 12 are used. 

Tables containing all the performance evaluation figures 

calculated on all the results and outputs obtained from each of 

the iRIM and U-Net models through the course of all the 

experiments discussed so far can be found in Appendix II. 

C. Statistical Test 

To further analyse the performance of the iRIM models on 

each of the above discussed experiments, we use the Wilcoxon 

signed-rank test provided by python’s SciPy library [37]. It is a 

statistical hypothesis test that can be used for the pairwise 

comparison of outputs obtained from two models. Here, for 

each of the above discussed experiments, we compare the SSIM 

values obtained on the U-Net outputs with the SSIM values 

obtained on the outputs of the three iRIM models. The null 

hypothesis is that the median of the paired difference, 

𝑆𝑆𝐼𝑀𝑈−𝑁𝑒𝑡 − 𝑆𝑆𝐼𝑀𝑖𝑅𝐼𝑀 is positive against the alternative that 

it is negative. P-value close to 0 is interpreted as strong evidence 

against the null hypothesis. Table 1 shows all the p-values 

obtained. The p-values that are close to zero and thus that act as 

strong evidence against the null hypothesis are highlighted 

using bold text. 

It is to be observed that the p-values obtained for all the three 

iRIM models on the original LoDoPaB test images is zero. This 

shows that although we did not observe a considerable 

difference in the mean SSIM and PSNR values earlier, the 

performance of the iRIM models is statistically significant than 

the performance of the U-Net on the test data.  

The p-values of the adjoint and FBP gradient iRIM models 

obtained on the head and neck images are all close to zero. On 

the other hand, the corresponding p-values for pelvic and 

LoDoPaB test images are 1 for the high noise case and move 

close to zero for the low noise and LoDoFaB cases. This 

observation implies that the performances of the iRIM models 

vary with respect to anatomy and noise contamination level. For 

the above observation, we neglected the p-values obtained by 

the adjoint gradient iRIM model on the LoDoFaB dataset. As 

stated earlier, the reduced performance of the model is 

suspected to be due to incompatibility issues between the model 

and fan beam CT operators.  

D. Slice-wise Performance Variation  

Plots as shown in Fig. 15 are created to visualize the slice-

wise performances of the models and to investigate how the 

performance of the models vary with respect to the body’s 

anatomy with each slice. The first plot belongs to the head and 

neck scans of one randomly chosen patient from the other 

anatomy dataset. The SSIM values computed on the 

corresponding model outputs are arranged in the order of the 
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TABLE 1. P-values obtained from the Wilcoxon signed-rank test.  

 

Dataset 

LoDoPaB Test Images Head and Neck Images Pelvic Images 

Image 

Grad 

Adjoint 

Grad 

FBP 

Grad 

Image 

Grad 

Adjoint 

Grad 

FBP 

Grad 

Image 

Grad 

Adjoint 

Grad 

FBP 

Grad 

Original 0.0 0.0 0.0 1.0 2.07 x 10-217 1.16 x 10-291 1.0 1.0 1.0 

High Noise 1.0 1.0 1.0 5.30 x 10-09 2.98 x 10-93 1.38 x 10-284 1.0 1.0 1.0 

Low Noise 1.0 0.0 3.54 x 10-186 1.0 0.0 0.0 1.0 2.46 x 10-187 2.70 x 10-80 

LoDoFaB 1.0 1.0 1.90 x 10-22 0.0 1.0 0.0 0.99 1.0 1.14 x 10-26 
 

 

Fig. 15. SSIM values computed on the model outputs ordered slice-wise and plotted against the same. The first plot represents the results obtained on a randomly 

chosen patient’s head and neck scan. The scan begins at the patient’s neck region (slice zero) and moves towards the patient’s head with each passing 
slice. The second plot is the results obtained on another randomly chosen patient’s pelvic scan. The scan starts at the patient’s hip region and moves 

towards the patient’s thighs.  



15 

  

slices and plotted as shown in  Fig. 15.  Slice zero is a scan at 

the patient’s neck region and the scanner covers a width of 2 

mm while moving towards the patient’s head with each passing 

slice. Similarly, the second plot contains the SSIM values 

computed on the model outputs of a randomly chosen patient’s 

pelvic scans. Slice zero here belongs to a scan close to the 

patient’s hip region and the scanner covers a width of 3 mm 

while moving towards the patient’s thighs with each passing 

slice.  

Both the plots in fig. 15 clearly show that the performances of 

the adjoint and FBP gradient iRIM models are superior to that 

of the image gradient iRIM model. Apart from that, a pattern on 

how the performances of the adjoint and FBP iRIM models vary 

with respect to the U-Net could be observed. On the first plot in 

Fig. 15, the U-Net can be seen to have a slight edge on the slices 

close to the neck region, but as the plot moves towards the head 

region, both the iRIM models outperform the U-Net by a 

significant margin. On the second pelvic plot, the U-Net outputs 

can be seen to have higher SSIM values than the outputs from 

both the iRIM models in the beginning. However, as we move 

towards the thighs region, the performances of the iRIM models 

seem to improve and towards the very end the FBP gradient 

iRIM model is also able to surpass the U-Net performance by a 

small margin. 

V. DISCUSSION 

In this work, three iRIM models for low-dose CT 

reconstruction were designed with different likelihood gradient 

complexities and were trained uniformly on the LoDoPaB 

dataset. The performance of the trained models was initially 

tested on the LoDoPaB test and challenge dataset. Following 

that the generalization capabilities of the models to different 

scenarios were also tested.  

Results obtained show that the adjoint and FBP gradient iRIM 

models outperform the image gradient iRIM models in all the 

experiments and evaluation tests. Thus, it is evident that 

likelihood gradient definitions with CT operators have a clear 

advantage over the likelihood gradients that do not. The CT 

forward operators within the likelihood gradient feed in 

relevant information for better reconstructions.    

All the three iRIM models were able to outperform the U-Net 

when tested on the LoDoPaB test data. The p-values obtained 

from the Wilcoxon test also showed that the performances of 

the iRIM models on the LoDoPaB test data were statistically 

significant than that of the U-Net. Performances of our models 

with respect to other low-dose CT reconstruction approaches 

are put in perspective by the results that we obtained on the 

LoDoPaB challenge.  

Considering the performance figures from the generalization 

capability test across anatomies, the iRIM models were able to 

extend their performance to the head and neck CT data but 

failed to show performances of adequate quality on the pelvic 

data. Similar conclusions can be drawn from the results of the 

high noise dataset too. The iRIM models were able to give good 

results on the high noise head and neck images while their 

performances on the high noise Pelvic and LoDoPaB test 

images were subpar. The performance of the U-Net seems to be 

reasonably consistent throughout but the iRIM models were 

able to gain an edge over the performance of the U-Net on the 

low noise dataset. The iRIM models were able to produce good 

results on CT data across all three anatomies. The quality of the 

iRIM pelvic outputs improved significantly and the 

improvement is also visually evident through the model outputs 

displayed in fig. 12.  

The head is an anatomical region that is dominated by bony 

structures that absorb much of the x-ray radiation and on the 

other hand, the pelvic region is predominately composed of soft 

tissues that allow x-rays to pass through them. Also, there is a 

significant difference in the amount of tissue the x-rays traverse 

through in the head and then in the pelvic regions. The larger 

body contour and the lesser x-ray absorption in the pelvic 

region might contribute to noisier projection data due to 

increased photon scattering and other unwanted photon 

interactions. Since the iRIM model is able to produce good 

results on head images while being unable to extend it to pelvic, 

it could be hypothesized that the iRIM model does have the 

ability to generalize but the prior that has been learnt by the 

model is only strong enough to handle noise contaminations at 

low levels. The LoDoPaB test images also have a considerable 

amount of soft tissue distribution and large body contour. Fig. 

11 and the corresponding p-value from table 1 shows that the 

U-Net was able to perform better than the iRIM models on their 

high noise simulations. Thus proving the stated hypothesis. 

Additionally, the improved performance of the iRIM models on 

the low noise dataset and the pattern that was observed in the 

plots of Fig. 15 and described in section IV.D also supports this 

hypothesis. 

On the cross-task generalization capability test, the adjoint 

gradient iRIM model falls apart due to model and fan-beam CT 

operators incompatibility but the other iRIM models hold their 

performances. A significant observation was that the 

performance of the U-Net degraded while the FBP gradient 

iRIM model held its performance on the LoDoFaB dataset. 

Additionally, in support of the earlier stated hypothesis that the 

prior learnt by the iRIM model was only strong enough to 

handle noise contaminations at low levels. The results obtained 

on the head and neck images are superior to the ones obtained 

on the pelvic or thoracic (LoDoPaB) images.  

So far all the results were in terms of the two image 

evaluation metrics – SSIM and PSNR. Through Fig. 16 we try 

to focus beyond the SSIM and PSNR values and try to make 

deeper comparisons between the model outputs. A close look at 

the model outputs on the first row shows that the U-Net and the 

image gradient iRIM model outputs have moderately blotchy 

appearances. Unwanted smoothening effects can be noticed, 

especially on the spine. This effect can be seen to reduce as we 

move to the outputs of the adjoint and the FBP gradient iRIM 

models. Additionally, the zoomed versions in the second row of 

Fig. 16 also show that there is loss in information which 

decreases with increase in model complexity. The loss is 

minimum in the FBP gradient iRIM model output. The 

significance of the likelihood gradient definitions is evident 

from the observations stated above.   
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Fig. 16. Another set of outputs along with its ground truth image from the LoDoPaB test data. Slight blotchy or patchy appearance of the U-net and image 

gradient iRIM model outputs can be noted. On the second row is the zoomed version of the outputs. Unnecessary smoothening effect on the spine along 
with loss in information can be observed and in the iRIM model outputs the loss and the smoothening effect can be found to decrease with increase in 

model complexity.     

To conclude, the performance of the U-Net was fairly robust 

and consistent throughout the anatomy and noise level 

generalization tests. On the iRIM front, the results obtained on 

the LoDoPaB dataset and the head and neck CT data were 

notably good. It was also able to give a satisfactory performance 

on the LoDoFaB dataset showing its cross-task generalization 

capability. Problems emerged when the model needed to handle 

higher noise levels as in the case of pelvic images. This could 

be surpassed by equipping the model to learn an appropriately 

stronger prior. On that aspect, hyperparameter tuning might be 

a route to explore. The reference U-Net proved to be a fairly 

robust model with just 610K learnable parameters. 

Comparatively, the iRIM model is a huge DL framework with 

approximately 275M parameters. Although this did not lead to 

any notable overfitting, there are chances for this to be the 

reason for the slack in the generalization abilities of the iRIM 

models. Thus, reducing the iRIM model size might also help 

improve performance. On that aspect, an attempt to incorporate 

the U-Net structure into the iRIM framework could also be 

another step towards performance enhancement. Augmented 

training data with a wider assortment of CT data can also help 

the model learn a strong prior. Finally, a recommendation to 

overcome the limitations of the image quality evaluation 

metrics would be opting to use more practical tests relating to 

imaging tasks like segmentation or organ detection. In this way, 

we can actually quantify the usability of the model outputs 

instead of entirely depending on SSIM or PSNR values.      

VI. CONCLUSION 

Three iRIM models were designed and trained for low-dose 

CT reconstruction and the generalization capabilities of the 

trained models across CT data collected over different 

anatomies, low-dose simulations at different noise levels and 

different x-ray source beam geometries were tested. From the 

results, it could be concluded that iRIMs most certainly have 

the ability to perform low-dose CT reconstructions but there are 

still a few scopes of improvement that can enhance the overall 

robustness of the model. 
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Appendix I 

Invertible Neural Networks:  

A neural layer can be made invertible by splitting its input and output into two parts, 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1 , 𝑦2) 

and by modifying its architecture according to equations (1) to (4) where ℱ represents a function modelling the 

layer that is being made invertible. Equations (1) and (2) are the forward computations and equations (3) and (4) 

are the backward computations.   

𝑦1 = 𝑥1                           (1)                                                               𝑥2 = 𝑦2 − ℱ(𝑦1)             (3)                            

    𝑦2 = 𝑥2 + ℱ(𝑦1)          (2)                                                              𝑥1 = 𝑦1                              (4) 

Invertible Recurrent Inference Machines (iRIM):  

These are architecturally modified RIMs that are invertible. Apart from memory saving these frameworks are also 

equipped to remove training instabilities and have the ability to accommodate large volumes of training data.  

The challenge in making RIM invertible is that ℎ𝜙 takes three inputs (∇𝑦|𝑥 , 𝑥𝑡 , 𝑠𝑡) while giving only two outputs 

(𝑥𝑡 , 𝑠𝑡). The authors overcome this problem by introducing a function 𝑔 and modifying the update equations as 

shown below. Equations (5) to (7) are the forward computations and the equations (8) to  (10) are the reverse 

computations. It is to be noted that ∇𝑦|𝑥 in equations (6) and (9) are calculated from 𝑥𝑡
′. Also, the learnable 

parameters of ℎ are no longer shared over iterations 𝑡 as they were in RIM and this results in increased model 

expressiveness. Fig. 1 shows the forward and the reverse computations involved in an iRIM step.    

𝑥𝑡
′ = 𝑥𝑡                                (5)                                                  𝑥𝑡

′ , 𝑠𝑡
′ = ℎ𝑡

−1(𝑥𝑡+1
 , 𝑠𝑡+1

 )                                   (8) 

𝑠𝑡
′ = 𝑠𝑡 + 𝑔(∇𝑦|𝑥)             (6)                                    𝑠𝑡

 = 𝑠𝑡
′ − 𝑔(∇𝑦|𝑥)                                (9) 

𝑥𝑡+1, 𝑠𝑡+1 = ℎ𝑡(𝑥𝑡
′, 𝑠𝑡

′)      (7)                                                  𝑥𝑡 = 𝑥𝑡
′                                              (10) 

 

Fig. 1. Forward and reverse step of an iRIM framework. Its correspondence to the update equation (16) to (21) can be noted. Image sourced 

from [12]  

For ℎ𝑡 to be invertible, each layer within it must be made invertible. Putzky et al also introduce this invertible 

layer and it uses the following update equations.  

𝑥′ = U𝑥     (11)       𝑦′ = Uy                                           (15) 

𝑦1
′ = 𝑥1

′            (12)     𝑥1
′ = 𝑦1

′                                             (16) 

𝑦2
′ = 𝑥2

′ + 𝒢(𝑥1
′ )           (13)     𝑥2

′ = 𝑦2
′ − 𝒢(𝑦1

′ )                            (17) 

𝑦 = U𝑇𝑦′                 (14)                                              𝑥 = U𝑇𝑥′   (18) 



Equations (11) to (14) are the forward computations and equations (15) to (18) are reverse computations as shown 

in fig. 2 (a). U is an orthogonal 1 × 1 convolution and due to its orthogonality its inverse will be equal to its 

transpose U𝑇. This U−1 = U𝑇 property helps reduce computational cost during training. 𝒢 is a residual block with 

three convolution layers as shown in Fig. 2 (b). It takes as input 𝑘, the number of channels in the hidden layers 

and 𝑑, the downsampling factor. The first layer performs a spatial downsampling operation along with pixel 

shuffling using convolution with stride 𝑑 and filter of size 𝑑 × 𝑑. The second layer performs a 3 × 3 convolution 

with stride 1. The last layer is a transpose convolution layer that reverses the downsampling operation of the first 

layer. There is a ReLU layer added after the first and second convolution layers and a Gated Linear Unit (GLU) 

at the output.  

 

Fig. 2. (a) The invertible layer used within an iRIM model. This is a graphical illustration of the equations (2) to (29) and the resemblance 

can be clearly observed.  (b) The function 𝒢 defined to be used in the invertible layer. Image sourced from [12]



Appendix II 

TABLE 1. LoDoPaB Test Results 

 SSIM PSNR 

Mean Median Std Minimum Maximum Mean Median Std Minimum Maximum 

LD FBP 0.3586 0.3842 0.1466 0.0503 0.647 21.86 22.42 3.67 12.84 30.49 
U-Net 0.8443 0.9074 0.1501 0.1818 0.99 35.84 36.65 4.59 20.04 47.97 
Image  

Grad 
0.8497 0.9105 0.1458 0.1952 0.9909 35.84 36.68 4.63 20.03 47.89 

Adjoint  

Grad 
0.8541 0.912 0.1394 0.2286 0.9918 35.94 36.79 4.74 20.14 48.32 

FBP  

Grad 
0.8532 0.9107 0.1391 0.2318 0.9918 35.87 36.74 4.8 20.14 48.32 

TABLE 2. LoDoPaB Challenge Results 

 SSIM PSNR 

Mean Median Std Minimum Maximum Mean Median Std Minimum Maximum 

Model 1 0.8683 0.9152 0.1133 0.3597 0.9842 36.36 37.15 3.74 24.59 45.62 

Model 2 0.8667 0.9149 0.116 0.3347 0.9863 36.32 37.1 3.75 24.54 45.66 

Model 3 0.8659 0.9156 0.1189 0.327 0.9861 36.33 37.14 3.76 24.42 45.58 

Adjoint 

Grad 

0.8692 0.9159 0.1122 0.3637 0.9862 36.08 36.89 3.76 22.97 45.26 

Image 

Grad 

0.8664 0.9146 0.1155 0.3348 0.9857 35.99 36.77 3.67 24.17 44.95 

FBP  

Grad 

0.8602 0.9053 0.1129 0.3441 0.9828 35.48 35.95 3.5 24.35 44.65 

TABLE 3. Results obtained on the Other Anatomy dataset (SSIM) 

 Head and Neck Images Pelvic Images 

Mean Median Std Minimum Maximum Mean Median Std Minimum Maximum 

LD FBP 0.6691 0.6992 0.1339 0.3289 0.9159 0.3098 0.2903 0.0979 0.1646 0.6366 
U-Net 0.9566 0.9592 0.0175 0.8261 0.9854 0.9507 0.9506 0.0144 0.9169 0.9839 
Image 

Grad 
0.9369 0.9419 0.0264 0.8096 0.9816 0.9032 0.9088 0.0332 0.8178 0.9661 

Adjoint 

Grad 
0.9718 0.9794 0.0163 0.915 0.9927 0.9423 0.9453 0.0208 0.8832 0.9817 

FBP  

Grad 
0.9775 0.9864 0.0176 0.916 0.9965 0.9366 0.9412 0.0264 0.8612 0.9829 

TABLE 4. Results obtained on the Other Anatomy dataset (PSNR) 

 Head and Neck Images Pelvic Images 

Mean Median Std Minimum Maximum Mean Median Std Minimum Maximum 
LD 

FBP 
32.28 32.93 3.51 23.41 40.91 23.94 23.76 2.58 18.9 31.87 

U-Net 41.83 42.10 2.40 36.18 48.59 40.05 39.66 2.05 35.87 46.00 
Image 

Grad 
38.67 39.82 4.00 29.07 48.30 32.32 31.94 2.74 27.2 40.65 

Adjoint 

Grad 
42.05 42.44 2.79 35.76 52.49 39.06 38.73 2.35 33.53 45.43 

FBP 

Grad 42.56 42.99 2.94 35.85 53.96 39.01 38.71 2.57 33.32 45.74 

 

 

 



TABLE 5. Results obtained on the High Noise dataset (SSIM) 

 

TABLE 6. Results obtained on the High Noise dataset (PSNR) 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 20.53 21.39 4.50 9.71 30.28 29.87 30.61 3.63 20.86 38.14 21.32 20.92 2.55 16.27 29.78 

U-Net 33.93 34.41 4.16 19.92 45.37 40.51 40.82 2.44 34.96 47.27 38.54 38.18 2.03 33.80 44.67 

Image 

Grad 26.62 26.85 3.79 18.12 36.88 37.3 38.51 4.19 26.75 47.84 30.34 29.85 2.77 25.27 39.18 

Adjoin

t Grad 29.29 30.22 5.24 17.63 40.03 39.72 40.30 3.39 31.02 51.01 34.04 33.86 3.50 25.02 42.14 

FBP 

Grad 32.15 32.31 3.87 19.69 41.44 40.86 41.34 3.17 33.56 52.85 36.84 36.49 2.77 30.52 43.91 

TABLE 7. Results obtained on the Low Noise dataset (SSIM) 

 

TABLE 8. Results obtained on the Low Noise dataset (PSNR) 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 26.77 27.43 3.95 17.71 35.81 35.24 35.78 3.32 27.16 43.55 27.49 27.07 2.43 23.16 35.31 

U-Net 36.51 37.45 4.91 20.00 49.21 42.75 42.97 2.34 37.31 49.48 40.99 40.63 2.06 36.99 47.14 

Image 

Grad 31.29 31.45 3.85 19.31 41.02 40.00 40.97 3.60 31.19 48.5 35.11 34.64 2.51 30.23 42.50 

Adjoin

t Grad 36.23 37.05 4.76 20.18 48.58 43.21 43.5 2.55 37.43 52.89 40.92 40.59 1.99 36.8 47.01 

FBP 

Grad 36.40 37.15 4.84 20.08 48.50 43.81 44.21 2.72 37.77 54.39 41.03 40.65 2.25 36.53 47.38 

 

 

 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 0.2886 0.3056 0.1446 0.0226 0.6224 0.5665 0.5932 0.1397 0.2338 0.8476 0.2289 0.2025 0.0827 0.1199 0.546 

U-Net 0.8079 0.8612 0.15 0.1845 0.9797 0.924 0.9239 0.0244 0.7814 0.9724 0.9317 0.9319 0.0148 0.8908 0.9756 

Image 

Grad 0.6689 0.7072 0.1532 0.2144 0.9307 0.9273 0.9347 0.0336 0.8042 0.9796 0.8712 0.8742 0.0441 0.7411 0.9592 

Adjoi

nt 

Grad 0.6776 0.736 0.2025 0.1819 0.9515 0.9453 0.9644 0.0374 0.7832 0.9878 0.8332 0.8474 0.0821 0.5686 0.9607 

FBP 

Grad 0.7684 0.8089 0.1476 0.2106 0.9609 0.967 0.9804 0.0261 0.8721 0.9958 0.9042 0.9098 0.0414 0.7771 0.9743 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 0.5192 0.5636 0.1785 0.102 0.8411 0.7804 0.8126 0.1097 0.4614 0.9549 0.4529 0.4271 0.1029 0.2972 0.777 

U-Net 0.8512 0.9163 0.1519 0.1716 0.9912 0.9689 0.9743 0.0173 0.8472 0.991 0.9553 0.9551 0.0135 0.9238 0.9865 

Image 

Grad 0.8155 0.867 0.1469 0.1865 0.9755 0.9458 0.949 0.0204 0.8179 0.9824 0.9302 0.9356 0.0225 0.8755 0.9754 

Adjoi

nt 

Grad 0.8559 0.9157 0.1447 0.2301 0.9923 0.9783 0.9835 0.0119 0.9377 0.9942 0.9593 0.9606 0.0124 0.9262 0.9866 

FBP 

Grad 0.856 0.913 0.1446 0.2012 0.9911 0.9832 0.9898 0.0128 0.9393 0.9967 0.9576 0.959 0.0153 0.9182 0.9875 



TABLE 9. Results obtained on the LoDoFaB dataset (SSIM) 

TABLE 10. Results obtained on the LoDoPaB dataset (PSNR) 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 22.21 22.66 3.68 13.17 31.66 31.73 32.74 3.75 22.71 39.54 23.97 23.60 2.43 19.48 31.07 

U-Net 26.6 26.17 2.99 18.82 37.65 36.48 38.04 4.16 27.24 45.18 30.74 30.69 2.29 25.33 37.54 

Image 

Grad 23.00 23.04 3.44 15.31 34.68 35.23 37.33 5.08 23.2 45.68 26.89 26.52 2.87 20.98 34.34 

Adjoin

t Grad 13.12 12.90 2.10 8.13 19.00 17.13 17.28 2.66 11.37 28.32 12.55 12.27 1.30 10.26 17.93 

FBP 

Grad 30.14 30.15 4.13 19.34 41.14 41.33 42.10 3.59 31.97 51.71 35.90 35.74 2.76 29.54 43.02 

 

 LoDoPaB Test Images Head and Neck Images Pelvic Images 

Mean Median Std Min Max Mean Median Std Min Max Mean Median Std Min Max 

LD 

FBP 0.3676 0.3931 0.1606 0.0441 0.7219 0.3676 0.6662 0.7096 0.1402 0.3153 0.9013 0.3097 0.289 0.0876 0.1751 

U-Net 0.7266 0.7792 0.149 0.1402 0.9194 0.7266 0.7903 0.8109 0.096 0.4911 0.9476 0.8461 0.8636 0.0531 0.6617 

Image 

Grad 0.6069 0.6374 0.1508 0.2005 0.9204 0.6069 0.9166 0.9232 0.0391 0.7887 0.9775 0.8419 0.8428 0.0439 0.7125 

Adjoi

nt 

Grad 0.0511 0.0468 0.0292 0.01 0.1611 0.0511 0.0585 0.0549 0.0212 0.0231 0.143 0.0273 0.0242 0.0087 0.0174 

FBP 

Grad 0.7268 0.7691 0.1602 0.2101 0.9558 0.7268 0.9644 0.9809 0.0299 0.8518 0.9933 0.8823 0.8908 0.0544 0.7298 


