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ABSTRACT
Localization techniques are the basis for applications such
as pedestrian navigation, warehouse asset tracking, and
augmented reality. Indoor localization techniques based
on the Received Signal Strength Indicator (RSSI) exist
that take advantage of existing infrastructure, such as
WiFi routers and smartphones, present in practically ev-
ery building in our modern society. To overcome the chal-
lenges caused by the attenuation and scattering of wire-
less signals in indoor environments, machine learning ap-
proaches to improve fingerprinting localization have been
studied. Recurrent Neural Networks (RNNs), and in par-
ticular Long Short-Term Memory (LSTM), have been found
to be effective for indoor localization. Deploying finger-
printing localization with machine learning, however, is
expensive. As every environment has different character-
istics, a vast amount of data has to be collected for ev-
ery new environment to train the model on, in order to
obtain adequate accuracy. Transfer Learning (TL) tech-
niques have been developed to reduce the amount of re-
quired training data for RNNs, lowering deployment costs,
however this has not been a topic of research in LSTM-
based indoor localization yet. This paper proposes an
LSTM-based fingerprinting localization architecture, that
utilizes Transfer Learning techniques to provide high ac-
curacy and little deployment costs. This makes indoor
localization cheaper and easier to use, enabling it to be-
come more broadly available. A prototype of the proposed
model has been made to evaluate the accuracy and deploy-
ment costs. The proposed TL techniques significantly im-
prove LSTM-based fingerprinting and reduce deployment
costs for indoor localization.

Keywords
Long Short-Term Memory, Fingerprinting, Transfer Learn-
ing, Indoor localization, Recurrent Neural Network

1. INTRODUCTION
The demand for accurate indoor localization has become
higher over the past decades. The user’s location is the
basis for applications such as pedestrian navigation, as-
set tracking, and augmented reality. In outdoor environ-
ments, the Global Positioning System (GPS) can provide
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the user with this location. In indoor environments, how-
ever, GPS does not always suffice.
Requirements for indoor localization differ from outdoor
localization. Indoor environments are smaller than out-
door environments, and in general, objects are closer to-
gether. Less accuracy is needed to locate a building in a
street than to locate a door in an office corridor. The GPS
cannot provide such a high accuracy indoors, as the wire-
less signals used are attenuated and scattered by construc-
tion walls and roofs, which heavily influences the local-
ization precision. Therefore, another localization method
based on WiFi, and in particular on the Received Signals
Strength Indicator (RSSI) [14], has gained increasing in-
terest as an alternative in indoor environments.
RSSI fingerprinting localization uses existing infrastruc-
ture such as WiFi routers and smartphones with WiFi ca-
pabilities. Every location in an environment has a unique
combination of distances to neighbor routers, and signal
strength depends on the distance between sender and re-
ceiver. This implies that at each location, a unique set
of received signals, the fingerprint, can be observed. The
localization consists of two phases: the offline and the on-
line phase. In the offline phase, fingerprints are gathered
for a large number of locations and stored in a database,
called the radio map. In the offline phase, a fingerprint
is observed at an unknown location. This fingerprint is
compared to the radio map, which results in a predicted
location.
Wireless signals suffer from attenuation and scattering,
making the RSSI vary over time. This makes the process
of matching the fingerprint to the radio map not straight-
forward anymore. Several machine learning techniques
have been used in combination with WiFi fingerprinting
to overcome this challenge. During the offline phase, these
algorithms build an understanding of the environment tak-
ing into account attenuation and scattering. This machine
learning is done by analyzing a lot of data from the en-
vironment. The better the model is a representation of
the physical environment, the better the prediction of the
location will be.
The machine learning algorithm used in this paper is called
Long Short-Term Memory (LSTM), a Recurrent Neural
Network (RNN). Traditional RNNs work very well on se-
quence problems, but they might suffer from vanishing
gradient, and exploding gradient problems, which makes
them hard to train properly [7]. LSTMs try to solve this
problem. Since RSSI sequences are temporally correlative
[12], LSTM is a promising method for RSSI fingerprinting
for indoor localization.
Every building has different characteristics in terms of
wireless signal propagation. The model has to be trained
on each environment it is used in, as it has to represent
the characteristics of that particular environment. Data
collection and processing is an expensive process, and the
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requirement to carry it out for every new environment
makes this a disadvantage of machine learning-based fin-
gerprinting.

In this research, Transfer Learning techniques to teach a
Recurrent Neural Network (RNN) about one environment
by using the knowledge of another environment will be
studied. Transfer learning is a technique that aims to im-
prove the learning of the target predictive function in the
target domain, using knowledge from the source domain
[6]. This will lower the amount of data required for train-
ing in new environments, and will thus decrease deploy-
ment costs.

While quite some research has been done into the use of
Long Short-Term Memory as a promising approach for in-
door localization [12], as well as Transfer Learning for re-
ducing resources required for the learning phase [6], these
two techniques have not been examined together.
In this paper, an LSTM-based fingerprinting approach us-
ing Transfer Learning is proposed that reduces deployment
efforts for accurate indoor localization.

1.1 Research question
The problem statement can be specified with the following
research question:

• RQ1: How can Transfer Learning decrease the de-
ployment costs of LSTM-based indoor localization
while maintaining accuracy?

To answer the research question, the supplementary ques-
tions below will be addressed:

• RQ1.1: What knowledge of a trained LSTM-based
model of an environment can be used for training on
another environment using Transfer Learning?

• RQ1.2: How accurate is LSTM-based indoor local-
ization with limited training data using Transfer Learn-
ing techniques?

These sub-questions will be answered by literature research,
implementing a prototype, and evaluating the prototype’s
performance. The accuracy for indoor localization will be
defined by the mean absolute error, the distance between
the actual and the predicted location.
This research is expected to contribute with an LSTM-
based fingerprinting localization effort with Transfer Learn-
ing techniques that have reduced deployment costs and
similar performance as the state of the art.
The rest of this paper is organized as follows. In sec-
tion 2 related work on fingerprinting for indoor localiza-
tion, LSTM-based indoor localization, and Transfer Learn-
ing is reviewed. After this, the proposed architecture
with Transfer Learning is explained in 3. An experiment
that evaluates the performance is conducted and analyzed,
which is shown in section 4. Finally, in section 5 this paper
is concluded.

2. RELATED WORK
In this section, related work on fingerprinting for indoor
localization, LSTM-based indoor localization, and Trans-
fer Learning will be reviewed.

2.1 Fingerprinting
Indoor localization using WiFi was a topic on the IEEE
Data Mining Contest back in 2007 [13], which brought

up several approaches for predicting locations based on
WiFi, also taking into account variability of signal charac-
teristics over time. Multiple approaches have been taken
since then, with WiFi RSSI fingerprinting being the most
popular. Several aspects of RSSI fingerprinting have been
explored in [14]. This work explains the general idea of the
offline and online phases well. Yiu et al. also describe the
influence of architectural parameters such as the density
of access points and the density of the radio map.
Several algorithms for the online phase have been explored,
where Youssef et al. proposed a solution based on prob-
ability distributions [15]. Later on, K nearest-neighbours
[11] became the most popular algorithm to determine a lo-
cation based on RSSI fingerprints. These algorithms cer-
tainly proved that fingerprinting localization was promis-
ing, but scattering and attenuation still were a use chal-
lenge.

2.2 LSTM
When machine learning became more popular, the use of
Deep Learning for fingerprinting localization was a new
topic of research [4]. The idea was to lower the workforce
of deploying an indoor localization infrastructure, as less
manual work was needed with deep learning in comparison
to previous methods. One particular type of Deep Learn-
ing used for indoor localization is based on Convolutional
Neural Networks (CNN) [9]. Song et al. managed to cre-
ate a model with a high success rate on public data sets.
However, CNNs do not use the full potential of sequence
data.
The Long Short-Term Memory (LSTM) architecture, on
the other hand, is very capable of handling sequence data.
LSTM has been around for more than two decades and
recently became state of the art in many fields [2]. Greff
et al. discuss the internals of several LSTM architectures,
as well as several parameters and applications. Sahar et
al. found LSTM to be an efficient approach to finger-
printing localization[8]. They observed that bi-directional
LSTM outperforms other machine learning approaches by
a considerable margin. In [1] the focus is mainly on local
feature extraction to use in the LSTM fingerprinting ap-
proach, which also outperforms other techniques. Xu et
al. explored the same concept of LSTM-based RSSI fin-
gerprinting, but this time with Bluetooth [12]. One should
note that Xu et al. used simulations to evaluate the per-
formance, thus real-life performance might differ.
The research mentioned above proves that LSTM-based
fingerprinting is a promising approach to indoor localiza-
tion. The main reason is that RSSI sequences are tempo-
rally correlative, and LSTM is efficient for processing se-
quential data [12]. LSTM consist of memory cells, which
maintain their state over time, to use long-term dependen-
cies [2]. An LSTM cell has an input, forget and output
gate with separate activation functions, to manage state
flow. The design of the LSTM architecture makes the
LSTM solve the vanishing and exploding gradient prob-
lems [7].
In previous research, various hyperparameters are evalu-
ated for RSSI fingerprinting. Sahar et al. found that a
stacked LSTM with two layers, each with 50 cells, has
a high accuracy [8]. Furthermore, Sahar et al. also ex-
plained that the input of the LSTM should be normalized
to increase the effectiveness of the training. These val-
ues seem reasonable, and this research will use them as a
starting point for the model used in this research.

2.3 Transfer learning
The concept of Transfer Learning in its various forms has
been a topic of research for more than a decade[6]. Pan et
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al. discuss the various types of Transfer Learning in their
survey, as well as applications of the technique. They de-
fine Transfer Learning as the technique that aims to help
improve the learning of the target predictive function in
the target domain, using knowledge in the source domain,
where either the source and target domains are different,
or the source and target tasks are different. The goal of
Transfer Learning is to reduce the amount of data required
for training a machine learning model in new domains or
on new tasks.
More recent research also focuses this Transfer Learning
knowledge on indoor localization [10]. Sorour et al. pro-
posed a scheme for joint indoor localization and radio map
construction that can be deployed with a limited calibra-
tion load. Zhang et al. suggest a Fussy Clustering-based
approach with a Manifold Alignment Transfer Learning
technique [16], that shows decent accuracy. The downside
of this approach is the big time complexity. The problem
of an environment changing over time, for instance, be-
cause of temperature changes or variance in crowdedness,
is a topic of research in [17]. Zheng et al. make it possible
to transfer knowledge from a model to reduce calibration
effort for other points in time, in the same environment.
This research shows that Transfer Learning techniques can
be applied for indoor localization, but it does not address
the large amount of deployment effort required to local-
ize in a new environment. The variance of environmental
characteristics of wireless signals per environment is the
main topic in [5], where Pan et al. propose an approach to
transfer data from a trained model on one area to another
area. Pan et al. solve two problems for Transfer Learn-
ing in their work: what to transfer and how to transfer.
Previous work on Transfer Learning for indoor localization
shows that the technique is promising, and leaves room for
improvement by combining it with other state-of-the-art
Deep Learning techniques.

As shown, research on several aspects of (LSTM-based)
indoor localization and Transfer Learning has been con-
ducted, but these concepts have not been combined yet.
The literature can be used to understand the various as-
pects, which will be required to combine everything.

3. APPROACHES
This section will explain the localization and Transfer Learn-
ing process. We take e ∈ A,B to represent the environ-
ment, where A is the source environment, and B is the
target environment.

3.1 Fingerprint localization
Fingerprinting localization consists of two phases, the on-
line and the offline phase. These phases are shown in fig-
ure 1. In the offline phase, WiFi and Bluetooth signals
from sending nodes are measured at several known loca-
tions. These fingerprints are, labeled with their locations,
put in a database. This database is called the radio map.
In the online phase the RSSI values of all nodes in that
environment are observed, at an unknown location. This
fingerprint is compared to the radio map, from which the
location corresponding to this fingerprint can be retrieved.
In this research, the database is not a traditional look-
up table, but a machine learning regression model, as de-
scribed in 3.3. This model outputs the x and y coordinates
based on the given input, which should correspond with
the given fingerprint.

Figure 1: The offline and online phases of the fingerprinting
process

3.2 Problem Formulation
An environment consist of Ne sending nodes, being Access
Points (APs) or Bluetooth beacons. A sending node can
be individually indicated as ne

i , with i ∈ {1, 2, ..., Ne}. It
should be noted that NA does not have to be equal to
NB . In an environment measurements are taken in Le =
(x, y) different locations, individually indicated as lei , with
i ∈ {1, 2, ..., Le}. There are Mlei

different measurements
taken for each location, after each other as a sequence.
For simplicity, in this research MlAi

is the 30 for every

i ∈ {1, 2, ..., LA}, and MlBi
is 15 for all i ∈ {1, 2, ...LB}.

One measurement contains both the x and y coordinates,
as well as the received signal strength of all sending nodes
(−110.0 ≤ RSSIne

i
≤ 0) in the environment. If no signal

is received from a sending node, the value is set to -110, the
minimal value. A measurement for location lei is indicated
with Slei j = {x, y,RSSI0, RSSI1, ..., RSSINe}.
Ex represents the accuracy of our machine learning model,
which is the mean absolute error between predictions and
actual locations in meters. This research uses Transfer
Learning as described in section 3.4 to provide a model
where LB is significantly smaller than LA, while EB is not
significantly bigger than EA. As the deployment effort is
a function of Le and Mlei

, and LB is reduced compared

to LA, the deployment effort in the target environment is
reduced compared to the deployment effort in the source
environment.

3.3 LSTM regression
The radio map can not contain all fingerprints for all loca-
tions in an environment. Recording data for every point
would require too much data to capture and process, mak-
ing the localization unfeasible to deploy in practice. In-
stead, the algorithm should check which coordinates in the
radio map are the nearest and interpolate between those.
The variability of RSSI over time makes this process more
challenging. It turns out that an LSTM model is good at
such a problem.
Xu et al. found that the sequence of RSSI is temporally
correlative [12]. Therefore we capture a sequence of RSSI
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values per location. As LSTM is particularly good for se-
quence problems, this Recurrent Neural Network is used
in this research.

The model for environment A, which we call LSTM in
this research, consists of a normalization layer, two LSTM
layers, and three Dense layers. The structure is shown in
figure 2. The normalization layer centers all input values
around 0, with a standard deviation of 1. The LSTM lay-
ers both contain 100 cells. Then a dense layer with 100
cells and a dense layer with 50 cells are added. Exper-
iments indicated that these amounts of cells provide the
highest accuracy on our given problem. Finally, the last
Dense layer contains two cells, such that both the x and y
coordinate are output.
Figure 3 shows a visualization of the three-dimensional
input of the model. The first dimension represents the
number of samples. The more data available, the larger
this dimension will be. For environment A , the first di-
mension will be bigger than for environment B, as more
data is recorded in environment A.
The second dimension represents time-series. Even though
multiple measurements per location are obtained in se-
quence, experiments showed that setting the second di-
mension to 1 instead of Mlei

, gave better accuracy.
The size of the third dimension represents the number of
features. As NA 6= NB , the number of features is set to
the biggest of the two environments. The data set with
the least amount of features is padded with columns with
only the minimal value (-110.0 dB). In figure 3 the data
set with NB features, which is the yellow part, is padded,
with the brown part, such that the 3rd dimension of the
data set of environment B matches the 3rd dimension of
the data set of environment A.Adding a number of those
padding columns did not affect the performance. However,
when half the amount of features are added as padded
columns, and these columns were randomly shifted, the
accuracy dropped significantly. In that case, the effective-
non-padded - features of the target data set do not line
up with the useful features of the source data set. Certain
features of the source data set will be unused, as they are
mapped to padded columns in the target data set. In ad-
dition, certain features of the target data set cannot use
the trained features of the source data set, as they were
padded columns, which do not provide useful insights into
the environment. In this research NA > NB , which is a
valid assumption for other Transfer Learning problems, as
the data set of the source environment is way bigger than
the data set of the target environment. In this case, fea-
tures of the target data set will line up with features of
the source data set, and padding columns will not cause
lower accuracy.
The model in this research is trained using the Adam op-
timizer, with a default learning rate of 0.001. In the fine-
tuning step, which is explained in section 3.4, a learn-
ing rate of 0.0001 is used instead. The mean absolute
error is the loss function. Training and validation loss are
compared while training the model to prevent overfitting.
The validation split is 20%. Different amounts of data
require a different amount of training epochs. Therefore,
the amount of epochs varies per experiment.

3.4 Transfer learning with LSTM
Figure 3 shows the architecture of Transfer Learning. The
pink parts of the diagram are for environment A. The
yellow parts are for environment B. The model of envi-
ronment A, as shown in figure 2, is trained with a large
data set. From this model, the final three dense layers are
removed, and the LSTM layers are frozen. This model is

the base part of our model. A new layer is added, such
that we have a model for environment B, which is called
TL in this research. This model for the target environ-
ment is trained on a small data set. After this training,
the whole model for environment B, including the frozen
LSTM layers, is unfrozen. The model trains again on the
target data set, with a small learning rate. This step is
called fine-tuning. The model after this fine-tuning step is
called TL+FT in this research.
The degree to which the model represents the physical en-
vironment determines the accuracy with which the model
can predict locations based on its input. The Transfer
Learning architecture supports the model in learning the
characteristics of wireless signal propagation. In the source
environment, pink in figure 1, much data is available. There-
fore, the model represents environment A well. This model
is not a good representation of environment B, as that en-
vironment has different characteristics. There is another
number of sending nodes, and those nodes are at other
coordinates. Walls and furniture, which influence wire-
less signal propagation, are at different locations as well.
These features are high-level, meaning that they are spe-
cific to an environment. There are more abstract features
of the environment, that are shared between different en-
vironments. These features are called low-level.
Levels of abstraction are also present in machine learning
models. The first layers represent low-level features, and
the higher layers represent high-level features. The predic-
tion layer, the last layer of the model, is the most specific
to the environment, as it outputs coordinates that only
make sense in that environment. Only the low-level repre-
sentation of environment A is kept, as the higher layers are
removed. The LSTM layers that are kept are frozen, to
ensure that the knowledge is not overwritten while train-
ing on environment B. The newly added top layers can
learn to represent high-level characteristics of the new en-
vironment, by using the low-level characteristics of the old
environment. The low-level characteristics are helpful, as
only limited data is available in environment B. The low-
level representation does not map one-to-one on the new
environment, so at last, the whole model is fine-tuned.

Figure 3: Architecture of the Transfer Learning process

4. EXPERIMENTS
In this section, the experiments to validate the accuracy
of the proposed method are described. The setup of two
experiments is explained first, after which the results of
both experiments are analyzed.
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Figure 2: The LSTM model

4.1 Experimental setup

4.1.1 Data collection
Data for this research is collected in two buildings of the
University of Twente. The first building is the Designlab,
of which the floorplan is shown in figure 4. The floorplan
is the same as used in the research of Le et al. [3]. The
Designlab is the source environment (A). Note that the
shown distribution of Bluetooth beacons is outdated, since
not all beacons are active anymore, and some are moved.
Since this research does not use the location of sending
nodes, this can be ignored.

Figure 4: Environment A, the Designlab building, with
the (outdated) distribution of Bluetooth beacons.

The second building is the Ravelijn, of which the floorplan
is shown in figure 5. This map is taken from Google Maps
and represents the target environment (B).
Both environments contain WiFi APs and Bluetooth bea-
cons, which were already deployed. One should note, as
mentioned in [3], that the sending nodes are deployed to
provide the best signal coverage, and that the placement
is not necessarily optimal for WiFi-based localization. For
environment A the locations of these sending nodes are
displayed as an example. Since the positions of the send-
ing nodes are not needed in this research, they are not
displayed in environment B.

Figure 5: Environment B, the Ravelijn building
with data point locations, randomly distributed
in a test (blue) and a training (orange) data set.

An Android application has been developed for collect-
ing RSSI data. The exact location on the floorplan can
be indicated and measurement for that location can be
started. A single measurement requests a WiFi scan and
scans for Bluetooth signals for 2 seconds continuously. Af-
ter both WiFi and Bluetooth data is retrieved, the appli-
cation writes this data to a CSV file. At every location,
15 measurements are taken, which takes about 30 seconds
per location. Sending nodes that are not received in the
current scan default to the minimal value (-110dB).
In environment A, measurements at 152 different locations
are taken. Since two phones are used for data collection,
for every location 30 measurements are taken. In envi-
ronment B, measurements at 102 different locations are
taken, with 15 measurements each. Different models are
trained with subsets of this data, of which the results are
explained in section 4.2.

4.1.2 Description of experiments
Experiment 1 In environment A, the influence of the amount
of data on the prediction accuracy is examined. Different
numbers of measurement locations will be used to train
the model. The model will also be trained on all mea-
surement locations, providing a baseline accuracy. It is
expected that the more data is trained on, the higher the
accuracy will be.
Experiment 2 The next experiment takes various amounts
of measurement locations in environment B and compares
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three models. The first model, LSTM, is an untrained
model as described in figure 2, which is trained on the data.
This model does not apply Transfer Learning techniques.
It is expected that the accuracy is comparable to the model
in experiment 1. The second model, TL, will be the model
trained on environment A, with frozen layers and new top
layers. This architecture is as described in 3.4, without
the fine-tuning step. The third model, TL+FT, continues
the TL model with additional fine-tuning applied. It is ex-
pected that the third model will perform better than the
second model. It is also expected that the third model will
perform better than the first model, although with a lot of
data available the difference might not be very significant.

4.2 Experimental results
For all accuracy measurements, the data set is randomly
shuffled by location. To account for the random nature
of RNNs, the model is reset, trained, and evaluated five
times for each different configuration. This section reports
the averages of these results.
The data set for an experiment is split into a training and
a test set. The ratio between these sets defines how much
data is used for training. In other words, all data that is
not used for training is used for testing. This splitting of
the data set can be done in several ways. The data can be
randomly divided according to the ratio, or the data can be
grouped per location and then randomly divided according
to the ratio. For both experiments, the latter option is
used. If data has to be collected, it is more efficient to
record more data at fewer locations than to record fewer
data at more locations, since it takes a certain amount of
time to move to the next measurement location.
To train the base model for the second experiment, the
first approach of splitting the data set into a training and
test set is used. By using this method, the data set is as
diverse as possible. The accuracy is better if the model is
trained at more locations with less data, then if the model
is trained at less locations with more data.

4.2.1 Experiment 1
For this experiment, 4560 samples are collected in the De-
signlab building of the University of Twente. This data
represents 152 different locations, with 30 measurements
each. Table 1 shows the accuracy of this experiment. As
expected, the accuracy is higher when the model trains
on more data. The baseline accuracy of our model is 3.3
meters since this is the best accuracy obtained.
Sahar et al. found an accuracy of 2 meters for their LSTM
architecture [8]. They explain that deep neural networks
are very sensitive to hyper-parameter tuning. Our re-
search spent little time finding the best hyperparameters,
which might explain the difference in the accuracy. The
focus of this research is on Transfer Learning, not solely on
using the best LSTM-based localization. Chen et al. also
show that improving the LSTM architecture results in a
higher accuracy. They use feature extraction to obtain an
accuracy of 1.75 meter [1].

Training locations 122 92 61 31 15
LSTM accuracy (m) 3.3 3.7 3.9 4.2 5.2

Table 1: Accuracy (m) of the LSTM model for various
numbers of training data locations in the source environ-
ment

4.2.2 Experiment 2

For this experiment, 1530 samples are collected in the Rav-
elijn building of the University of Twente. This data is
collected at 102 different locations, with 15 measurements
each.
The result of the second experiment can be found in table
2 and figure 7. The table shows accuracies for the three
models trained on several numbers of training locations.
The graphs plotted in figure 7 show more insight into the
distribution of these errors. These plots show the per-
centage of errors that are within a range in meters. For
example, figure 7a shows that about 50% of all tests pre-
dictions have an error of 5 meters or less for both LSTM
and TL+FT. However, the worst 20% of predictions for
LSTM are worse than the worse 20% of predictions of
TL+FT. It is noticeable that for every amount of training
locations this is the case.

Training locations 82 61 41 20 10
LSTM accuracy (m) 4.8 5.4 6.3 11.6 17.1
TL accuracy (m) 6.9 7.5 8.4 8.7 13.1

TL+FT accuracy (m) 4.5 5 5.5 6.1 9.5

Table 2: Accuracy (m) of the second experiment for vari-
ous numbers of training data locations in the target envi-
ronment

Let us first take a look at the LSTM model that is trained
on data in the target environment. As the amount of
training locations decreases, the accuracy of this model
significantly decreases as well. For low amounts of data
points, the model has not enough data to learn environ-
mental characteristics, so it can never make good predic-
tions. One should notice the difference in accuracy be-
tween this model, and the model of experiment 1 (see ta-
ble 1). The number of training locations does not match,
but the accuracy of the same type of model is less for all
amounts of training locations than in experiment 1. In ex-
periment one, every data location had 30 measurements.
In other words, for the same amount of training locations,
the model had twice as much data. A model can learn
better if more data is available, which explains the higher
accuracy.
The accuracy of the model with some fine-tuning applied
(TL+FT ) is significantly better than the transferred model
without fine-tuning (TL). This final transfer learning model,
with fine-tuning, has higher accuracy than the LSTM model
that is solely trained on the target environment data set.
Not only the average error is lower, but the cumulative dis-
tribution shows that there are fewer large errors of more
than 10 meters. In other words, to obtain the same accu-
racy, less data is needed for the model that uses Transfer
Learning techniques compared to a basic LSTM model. To
visualize this result, figure 6 shows 10 random test loca-
tions, as well as the corresponding LSTM predictions and
the TL+FT predictions. This figure shows the case where
41 data locations in environment B are used to train.

5. CONCLUSION & FURTHER RESEARCH
In this paper, we propose an LSTM-based fingerprinting
architecture with Transfer Learning techniques. By train-
ing an LSTM model on a source environment data set and
applying Transfer Learning techniques, we have reduced
the amount of data required for the target environment.
We have developed a prototype in the form of an Android
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Figure 6: Environment B, with 10 random test locations
(blue) and the LSTM prediction (orange) and TL+FT pre-
diction (green), trained on 41 data locations.

application and have carried out experiments to evaluate
the performance of our model. The accuracy of the model
with Transfer Learning techniques applied is higher than
the model that did not use Transfer Learning. The goal
of this research is to reduce deployment costs. Since accu-
racy is correlated to the amount of data used for training,
we can conclude that deployment costs have decreased be-
cause of TL techniques.
Assuming a particular application of indoor localization
requires accuracy of X meters needs an amount of A data
to train on. A pre-trained model would only require an
amount B of data to get this accuracy. This research
shows that B is smaller than A. In other words, less data
is required for this application when a pre-trained model
with TL techniques is used. The effort takes to collect
data mostly defines the deployment costs. Since less data
is required, the deployment costs decreased.

This experiment has been carried out in two buildings
of the University of Twente. Those buildings have the
same WiFi and Bluetooth infrastructure. Future research
could be done on the performance of Transfer Learning for
LSTM-based indoor localization in more diverse environ-
ments.
This research uses two-dimensional regression, providing
x and y coordinates. Applications might benefit from a
third dimension, for instance, the floor level. The experi-

ments of this research could be repeated while taking into
account the z dimension.
During this research, buildings were only partially acces-
sible due to the Covid-19 pandemic. Therefore, it was not
possible to take data measurements at every desired loca-
tion in the environment. The distribution of data locations
is not uniform and might affect performance. The exper-
iment environments were static, in comparison to build-
ings in normal daily use. Due to university regulations,
furniture was at pre-defined places and not moved often.
People stayed at their locations most of the time and did
not walk around a lot. There were also fewer people in
the building than usual. All these factors might impact
the performance of the localization.
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