
Automatic Generation of Test Cases for VerCors
Verification Cases Failing with Null Errors

Matthias Sleurink
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.sleurink@student.utwente.nl

ABSTRACT
VerCors is a toolset for static verification of concurrent
and sequential programs. However, the error messages it
creates for verification failures are not always the easiest
to understand. The code involved may not be completely
visible, and context from other methods may be missing
completely. We have created a system to automatically
generate a test case that displays how the error that Ver-
Cors finds can occur. Said system performs this task for
the small but frequent subset of errors that can occur,
the so-called ”nullpointer errors”. These occur when the
code assumes that an object has a value, but in reality it
does not (it is null). This generated test will allow more
efficient use of the VerCors toolset for this error case.

Keywords
VerCors, Test Generation, Software Verification, Null Safety

1. INTRODUCTION
Software correctness and reliability is very important. Bank-
ing software for example, must make sure that money is
correctly transferred, software in hospitals must register
medicine intake accurately, and self driving cars must be
able to stop in time. Failure from these or other software
systems can have catastrophic results. We need a system
that can contribute to guaranteeing reliability and finding
mistakes.

Many such systems already exists, users of IDEs have al-
most surely seen the result of such systems. The Intel-
liJ IDEA[4] IDE gives the programmer warnings for when
code cannot compile, it can warn the user when they use
code constructs that have faster alternatives, and it can
help the user investigate the nullity of variables.

Another example of such tools is VerCors. VerCors is a
toolset that uses static verification to verify concurrent
and sequential programs[3]. The error messages that Ver-
Cors generates can be hard to understand. The code in-
volved may not be completely visible, and context from
other places may be missing completely. We have added
functionality to VerCors that generates a test case for cer-
tain cases of failing verification. This adds more context
to the error messages that VerCors generates, and may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

help in the solving of these issues.

When the VerCors toolset reports an error it is reported to
the log with some context. This context includes the file
location, some surrounding lines, and an arrow that points
to the statement that causes the fault. When this error is
of the type PostConditionFailed:AssertionFalse or Assert-
Failed:AssertionFalse we know that this error is about an
annotation that Viper could disprove.

Then our tool kicks in. We analyse the error and the file
location that it occurs in. If the error is about a non-
null annotation on the return value of the method we add
a test case to the log. This test case can be seen as a
counterexample to the annotation. We show the user how
the annotation can be disproven by setting up the inter-
nal state of an object and calling the method in question
with specific parameters to show how the method can be
coerced to return null.

This generated test case can help the user in the investiga-
tion process, as it shows the user what state the program
needs to be in for the issue to occur. The user can then
either add more annotations to the method, for example
an annotation to restrict one of the parameter values, or
change the method code in such a way that the error does
not occur anymore.

2. BACKGROUND
In the following section we will clarify background infor-
mation that is used throughout this paper, as well as ex-
plain the context for which this tool was written.

2.1 Static Verification
Static verification is a technique where source code is anal-
ysed without being executed[12]. This technique is used
by tools to check source code for different types of faults.
From style concerns to performance issues to the correct-
ness of concurrency constructs and more[3, 4, 6, 11]. Static
analysis tools use their knowledge of a language to give ad-
vice or report errors to their users. VerCors is one of those
tools.

2.2 VerCors
VerCors uses annotations to add claims to methods, these
claims can be preconditions, where the user tells VerCors
about the input, postconditions, where the user makes
claims about the state after running a method, and other
features like loop invariants and permission logic. Pre-
and Post-conditions are used to tell VerCors things about
variables and state. These annotations can range from
limits on the value of variables, to nullity, to the length of
arrays, and more.

1

VerCors itself uses Viper[5] as a backend for verification.
VerCors transforms the source input into a state where
Viper can understand and analyse[3], and in turn inter-
prets the messages coming back from Viper to show them
to the user with some extra context.

Usage of the VerCors toolset is as follows. A user has a
source file with a number of annotations. VerCors runs,
and tells the user that it has found an AssertionError if
VerCors has found that one of the claims made by the
user is incorrect. Now it is on the user to find how this
could occur. To help with this VerCors shows the user the
statements involved in the error, and a number of lines of
code that surround the statement.

This analysis process is where our tool comes in. If the user
has written a postcondition like //@ ensures \result != null;,
but VerCors finds that the method can in fact return null
our tool shows a test case (or: counterexample) to show
how this happens. We show the user a runnable piece of
code that sets up the required values for instance variables
and method parameters alike, and then calls the method.
This can help the user to understand the error, and can
thus help in the investigation process.

3. IMPLEMENTATION DESIGN
In this section we will explain the implementation design
of our tool. We will first show an overview of what steps
our tool takes from start to finish. For each of these steps
we will then explain the interesting data structures and
algorithms involved below.

As illustrating example we will show for every section what
its code does with regards to the first example as shown in
section 4.1. The input code for that example is as follows:

pub l i c c l a s s example 1 {
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g (i n t [] inp) {

return inp ;
}

}

3.1 Overview
After VerCors has read the input, transformed it for check-
ing by Viper [5], executed Viper on the input, and then in-
terpreted the returned messages (see section 2.2 on page 1)
our tool is executed by VerCors.

Our first step is to interpret the errors that VerCors has
created from the Viper result. These errors contain a file-
name, a line and column number, as well as some error
categorisation information. From this we check if this is
an error that we can handle (null return errors).

If it is indeed a null return error we move along to step
two. Here we find out what flow control statements have
to be passed to gain access to the location of the error.
When we have found all these constraints we move along
to the next step.

The third step in the process is finding the variables that
are involved. We extract method parameters and instance
variables with constraints.

With these variable names in hand we move along to step
four, where we utilise these constraints and names to figure
out the value that these variables must have.

These required values are then converted into initialisers
in step five. Which we then convert into String form to
print to the output log.

With these initialisers we can set the value for the found
required instance variables and method parameters in step
six.

The seventh and last step is to use these method parame-
ters to set up the code to call the method in question and
print it to the log.

3.2 Interpreting Viper Errors
VerCors passes the input, after preparing it, to Viper.
Viper in turn reports on any issues that it finds. VerCors
then reads and interprets these issues, and passes them on
to our tool.

We have a system in place where any tool can look at
this error and check to see if they want to perform actions
upon it. For now the only tool that is registered is ours.
First we check if the error has two inner ”error locations.”
If it has two or more, then the first should fall on a return
statement. We check this by taking the location from the
first error. This location contains a file path, that we read
and parse with an Antlr4[8] parser, and a line and column
index. We use these two numbers to find the ParserRule
that is at that location in the file, if any. (More infor-
mation about how we do that in the section 3.3.) If this
ParserRule is a return statement then we know that this
error can be the correct type for our tool to work on.

We continue with the second error location. To help users
diagnose errors VerCors not only shows them the place
where the error occurs, but also why that is an error. So in
our case, where a method returns null but should not, the
first error points to the return statement, and the second
error points to an annotation. We use, once more, the line
and column indexes to get the statement at this second
location. If there is one we use a custom tree-walker -like
algorithm to check if the annotation is of the following
shape: ”//@ ensures \result != null;”

The advantage of using an Antlr4 Java parser instead of
reading the file and checking the characters ourselves lies
in the large amount of different ways that a VerCors post-
condition and a return statement can be written. We
would have to keep in mind whitespace, (block) comments,
multi-line statements, and more. Using the knowledge
that the VerCors Java parsers already have to circumvent
these issues is efficient from both an implementation ro-
bustness and development time standpoint.

In our example code Viper finds one error with two causes.
The error is of type PostConditionFailed:AssertionFalse.
Which is one of the types that we operate on. Then we find
that the first location points to a return statement. We
then look at the second error location. If the ParserRule at
this location is one that describes an annotation we check
to see if it is an annotation that describes the allowed
value of the return value. If this is the case we check if
it is compared with null, and if the comparator is ”!=”.
When this is all true, and for the given example it is, then
we know that this method has an annotation that tells us
the return is not allowed to be null. And that Viper has
found that it can be null. So our tool should generate a
test for this input.

3.3 Find at Location
To find out if the error is one that we are interested in we
need to check if certain locations of a java source file have a
specific meaning. For that we use an Antlr4 listener. This
listener takes a line and a column index, and ”listens” to
every parsed rule to find the most specific ParserRule that
is at the right location.

2

This system makes use of the handy feature that Antlr4
tree walkers have where they first visit a rule, and after
that, visit its children. Due to this, when you have visited
every rule, you can be sure that the last rule that matched
the location is as ”deep” or ”specific” as possible. This
makes it easier for users of this system to gather knowledge
from the result, as they will not have to walk into several
”wrapper” rules to find the one they are looking for.

This system is used several times in the given example.
Once, for example, to check if the first error points to a
return statement. In that case the finder receives the line
number and column index that are stored in the Viper
error. We store the ParserRule for which the line number
and column index match the numbers that are in the Viper
error and pass it on to the caller.

3.4 Constraints and Finding Them
Constraints are used for storing information about the lim-
its that are placed on the values that variables may have.
We store sources for variables, restrictions on their val-
ues, and a note that says if we want the test to be true
or false. (To make sure we enter the if or else part of an
if-else statement.)

For finding Constraints we also use an Antlr4 listener.
This listener builds up a stack of lists of constraints. This
structure is convenient for us, since it allows us to throw
away requirements that are irrelevant to our sought after
result easily by popping the stack. We push a new list onto
the stack when we enter a scope, and we pop the stack any
time we exit a scope or block for which it turned out that
the sources and tests are irrelevant to our goal.

We take special care when exiting an if statement, because
if there is an else statement after the if statement the guard
for the if block needs to be inverted and saved as guard
for the else block.

The saved constraints are found by the listener when enter-
ing ”guarded” scopes like if, else, and while statements, as
well as assert statements. Which can be seen as ”guards”
for the whole rest of the method.

In our example the first constraint is a ”source” constraint
for the parameter. The second and last constraint is the
return statement. Because this return statement is the
one that Viper pointed to as cause we stop searching for
new constraints.

The stack structure laid out above is built as follows. First
we enter the class, which is the first scope, then we enter
the method, which is the second scope. In that second
scope the parameter ”source” constraint is placed, as well
as the return ”restriction” constraint.

3.5 Method Parameter Extraction
To find the required values of method parameters we again
make our way to the Java Parser. Since we have access to
the return statement that causes the error (We found this
when interpreting the Viper Error in section 3.3) we can
find the method that our error occurs in. We do this by
recursively finding the parent of the parser rule, and check-
ing if that is a method definition. A return statement in
a well formed Java file is always inside a method defini-
tion[7], so this will eventually find the method definitions
Parser Rule.

From this parser rule we can take the parser rule that de-
fines the parameters. This is either empty (no parameters)
or a structure of tuples that either contain a parameter and
a reference to the next tuple, or just a parameter. (One
could compare this to a linked list.) From this we extract

a list of method parameters.

In our example we have one parameter. From the parser
rule that defines the parameters we see a linked list node-
like object with one parameter, and no reference to the
next. From which we conclude that there is only one pa-
rameter, which we return.

3.6 Finding Involved Instance Variables
We find involved instance variables from another perspec-
tive. Instead of starting at the parsed file we start at our
constraints, and extract the involved variable from those,
for every variable we check to see if it has a member dec-
laration. If so, this is an instance variable. By going from
this direction we make sure that we only perform calcula-
tions on variables that are actually constrained.

Our example does not contain an instance variable, so
for this section we will act like the method parameter
”inp” is an instance variable, and the return statement
is ”return this.inp;”.

Going through the constraints we see the constraint from
the return statement that points to variable ”inp”. We
look through the instance variable declarations for the
”example 1” class and find that there is indeed a variable
declaration named ”inp”. Since there are no other con-
straints we return a list of this one instance variable.

3.7 Resolving Required Values
Now that we have found all guards, instance variables,
and method parameters we can move on to finding their
required value. There are several cases possible here.

The first case is where the variable is the ”goal”. That is,
it is the variable name that must eventually become null.
The value for this variable is always null. The cases where
this variable also has requirements are not supported yet.

The second case is where the variable is not the goal, and
also has no constraints. In this case we make a default
value for a its type. (See section 3.8 below.)

The third case is where the variable is not the goal, but it
does have requirements. We then get the requirement, and
make it create a value. Since for now the only supported
constraints are simple if (varname) constraints this task
is easy. We return the boolean true or false that we have
stored as required value. Inverted if marked to be so.

Only being able to handle one requirement per variable is
a significant limit, more about this in section 5.3 on page
6 about the limits of this tool.

In our example we see one variable that we need to find a
value for, which is the method parameter. This is also the
”goal”. That is, it is the variable that should be null when
it is returned. So, we set the source for this variable, the
first method parameter, to null.

3.8 Default Values for Parameters Without
Constraints

The default value for a type is a relatively simple affair.
Most numeric types return 1 in their respective type. The
default String is empty, and the default Character is a low-
ercase a. For the float and double we chose 0.0. These val-
ues have not been chosen for any important reason apart
from needing to look reasonably default. A value of 0.66F
for a floating point method parameter could be quite con-
fusing for the user.

3

3.9 Variable Initialisation
Java calls the setting of a variables value initialisation[7].
In order to do this in text we take the following basic
format: <type> <name> = <initialiser>; We fill in the
type with the textual representation of the type that the
required value has. (This means that we only support ini-
tialising boxed primitives, but that is not a problem as
Java can convert those to primive on the fly.) For most
types we can simply take the String representation of a
variable as initialiser. For the Float we append an ’F’,
and for Character and String types we have to surround
the textual representation with the ’ and ” characters re-
spectfully.

At this point our tool does not support initialising cus-
tom classes, as this was considered out of scope. Other
projects that we know of (Like Java Spring) have methods
to do this (like Autowired), which require help from the
programmer to perform their task. We speak more about
this in section 6 about recommendations for the future.

For our example only the method parameter needs initial-
isation. We find its type to be int[] from its definition
as method parameter. The value that we find using the
previously mentioned system is null. For which the ini-
tialiser is ”null”. We add all that together to get the text
”int[] param0 = null;”.

3.10 Code to Call a Method
First we use the method described above to set up the re-
quired variables. Parameters are named param0, param1
and so on. If the method is an instance method we as-
sume that it has a default constructor (one that takes no
arguments [7]) and use that in the following structure:
”<classname> instance = new <classname>();”.

We can then use these known parameter names to create
the code that calls the method. We start with an empty
string. If the method is a static method we append the
classname, if not we append ”instance”. We append a
dot, the name of the method, and then opening paren-
theses. For as many parameters as there are we append
”param<N>, ”. Making sure not to add a comma after
the last parameter. We then add closing parentheses and
a semicolon to end the line.

For both the static and nonstatic case we assume that the
method does not have a private access modifier.

The method in our example is not static. So we have
to create an object. We get the class name from the
class definition and, (correctly) assuming that it has a
default constructor, we generate the initialisation like so:
example 1 instance = new example 1();.

We then use this object to call the method. Since it has
one parameter we add the name of that parameter between
the braces; instance.testing(param0);.

4. RESULTS
Before starting we formulated three example problems that
our tool should support. We will now show those three ex-
amples. After which we show some more examples that
show more advanced features.

4.1 Failure Dependent on a Missing Precon-
dition

For this example we run VerCors on a method that di-
rectly returns its parameter. The result is annotated to
be non-null , but the parameter is not. In the output our
tool calls the method with null as parameter to show the
issue.

pub l i c c l a s s example 1 {
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g (i n t [] inp) {

return inp ;
}

}

Our tool outputs the following piece of code that shows
that, when the first parameter is null, the postcondition
is violated.

c l a s s MainCounterexample {
pub l i c s t a t i c vo id main (St r ing [] a rgs) {

i n t [] param0 = nu l l ;
example 1 in s t ance = new example 1 () ;
i n s t ance . t e s t i n g (param0) ;
// Above w i l l be n u l l . But t h e r e i s a
// p o s t c o n d i t i o n t h a t c la ims i t i s not .

}
}

4.2 Failure Dependent on Global State
For this example we run VerCors on a method that returns
null if an instance variable is true. The result is annotated
to be non-null . In the output our tool sets the instance
variable to true and calls the method to show the issue.

pub l i c c l a s s example 2 {
pub l i c boo lean f a i l ;

//@ r e q u i r e s Perm(t h i s . f a i l , 1) ;
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g () {

i f (t h i s . f a i l) {
i n t [] a = nu l l ;
return a ;

} e l s e {
i n t [] a = new i n t [] { 1 , 2 } ;
return a ;

}
}

}

Our tool outputs the following piece of code to show the
user a global state that would invalidate the postcondition.

c l a s s MainCounterexample {
pub l i c s t a t i c vo id main (St r ing [] a rgs) {

example 2 in s t ance = new example 2 () ;
i n s t ance . f a i l = t rue ;
i n s t ance . t e s t i n g () ;
// Above w i l l be n u l l . But t h e r e i s a
// p o s t c o n d i t i o n t h a t c la ims i t i s not .

}
}

4.3 Failure Regardless of Parameters or Global
State

For this example we run VerCors on a method that returns
null regardless of any state. The result is annotated to be
non-null . In the output our tool calls the method to show
the issue.

pub l i c c l a s s example 3 {
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g () {

i n t [] r e s u l t = nu l l ;
return r e s u l t ;

}
}

4

Our tool outputs the following piece of code to show the
programmer that there is a null error regardless of global
state or parameters.

c l a s s MainCounterexample {
pub l i c s t a t i c vo id main (St r ing [] a rgs) {

example 3 in s t ance = new example 3 () ;
i n s t ance . t e s t i n g () ;
// Above w i l l be n u l l . But t h e r e i s a
// p o s t c o n d i t i o n t h a t c la ims i t i s not .

}
}

4.4 Failure Dependent on both Parameter and
Global State

This example shows that requirements for the instance
and the parameter state can be combined in one coun-
terexample. We run VerCors on a method that returns
the parameter if an instance variable is true. The result
is annotated to be non-null , the parameter is not. In the
output our tool sets the instance variable to true, the pa-
rameter to null and calls the method to show the issue.

pub l i c c l a s s example 4 {
pub l i c boo lean f a i l ;
//@ r e q u i r e s Perm(t h i s . f a i l , 1) ;
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g (i n t [] inp) {

i f (t h i s . f a i l) {
return inp ;

} e l s e {
i n t [] a = new i n t [] { 1 , 2 } ;
return a ;

}
}

}

In the output our tool creates an instance, sets the instance
variable fail to true, the parameter to null and calls the
method, which will return null.

c l a s s MainCounterexample {
pub l i c s t a t i c vo id main (St r ing [] a rgs) {

i n t [] param0 = nu l l ;
example 4 in s t ance = new example 4 () ;
i n s t ance . f a i l = t rue ;
i n s t ance . t e s t i n g (param0) ;
// Above w i l l be n u l l . But t h e r e i s a
// p o s t c o n d i t i o n t h a t c la ims i t i s not .

}
}

4.5 Failure Dependent on The Else Clause
This example shows that we can reverse requirements when
the goal is to enter the else block of an if statement. We run
VerCors on a method that returns null if an instance vari-
able is not true. The result is annotated to be non-null .
In the output our tool sets the instance variable to false
and calls the method to show the issue.

pub l i c c l a s s example 5 {
pub l i c boo lean succeed ;
//@ r e q u i r e s Perm(t h i s . succeed , 1) ;
//@ ensures \ r e s u l t != n u l l ;
pub l i c i n t [] t e s t i n g () {

i f (t h i s . succeed) {
i n t [] a = new i n t [] { 1 , 2 } ;
return a ;

} e l s e {
i n t [] a = nu l l ;
return a ;

}
}

}

In the output our tool creates an instance, sets the succeed
variable to false and calls the method, which will return
null.

c l a s s MainCounterexample {
pub l i c s t a t i c vo id main (St r ing [] a rgs) {

example 5 in s t ance = new example 5 () ;
i n s t ance . succeed = f a l s e ;
i n s t ance . t e s t i n g () ;
// Above w i l l be n u l l . But t h e r e i s a
// p o s t c o n d i t i o n t h a t c la ims i t i s not .

}
}

5. LIMITATIONS
In this section we discuss the limitations that our imple-
mentations has. The next section continues this topic with
a discussion about about recommendations for future de-
velopment.

5.1 Only Java is Supported
The VerCors toolset has support for a whole host of lan-
guages. Java, C, OpenCL, OpenMP, and its own Proto-
typal Verification Language PVL. It supports these lan-
guages by translating and simplifying features from those
languages into a common underlying structure. (Similar
to an AST) Due to a misunderstanding about the VerCors
code we supposed that this structure did not contain any
method bodies. Which would mean that the analysis that
the author needed to do would not be possible. Based on
this faulty knowledge we chose to limit ourselves to Java
code. When the tool was almost done, too late in the
research process to change this inherent flaw, did we re-
alise that this supposition was not true. And the decision
was made not to restart in the last several weeks, but to
continue working within this limit.

5.2 Understanding Expressions
To get to the faulty expression as found by VerCors our
tool needs to be able to understand expressions. For this
we mainly use two systems. One for getting a name, and
another for getting a constraint for the variable with that
name, from an expression. (Discussed in section 5.3.) This
is an inherently limited approach for several reasons.

One of those limits is the fact that the current architecture
only supports expressions with one name in it. This can
be resolved, but it is a limiting factor in the current state
of the tool. We describe two possible solutions for this
in our recommendations for the future. (Sections 6.1 and
6.2.)

5

Another limit comes from one of the abstraction layers we
built. We could split the system into (roughly) two stages.
One where we gather the information we need, and the
other to translate this information into names and required
values. In this second stage, when we are at the point that
we try to gleam knowledge from the gathered constraints,
we need to look up information about the surroundings of
these constraints. This knowledge was already available
at the point that we created these abstracted objects, this
abstraction is not an undeniable success. This is not so
much a limit on the capabilities of the tool in an inherent
sense, but it is a limitation regarding development speed
and easy of future development. (Further described in
sections 6.1 and 6.2.)

5.3 Supported Expressions
Our tool currently gathers any expression that limits the
flow of the program on its way to the return statement.
But the stage that interprets these expressions is not able
to interpret them all.

At this point our tool only supports guards for if and assert
statements in the form of simple expressions that consist
of one variable name, instance or local, or parameter, that
evaluates to a boolean value. These may be required to be
true or false. For the value of a return statement we also
only support expressions in the form of a variable name,
though these can be of any type. And must, due to the
goal of this tool, always evaluate to null.

Our recommendations about this limitation are further
described in sections 6.1 and 6.2.

5.4 Constructors and Public Variables
For calling the method that we need to call we serve both
the case where the method is in a static environment, and
the case where the method needs to be called on an in-
stance. For both cases we assume that the method does
not have a private access modifier. For the non-static
method case we make two more assumptions. First we
assume that there is a public default constructor for the
type involved. This means that an instance can be con-
structed without parameters[7]. We also assume that any
members that need to have a value are public. Making a
system that tries to find setters for certain fields if they
are non-public is certainly possible. Either by using Re-
flection or with more static analysis. More about this in
section 6.4 about future development.

6. RECOMMENDATIONS FOR FUTURE
DEVELOPMENT

The tool that we have created functions as a prototype
with some major areas ready for improvement that, for
time or scope reasons, have not been expanded upon in
this version. In the following sections we write about all
these sections and will lay out our recommendations for
the future.

6.1 Symbolic Execution
Our tool contains a rudimentary system for symbolic ex-
ecution. This system could very well be expanded in the
future with more capabilities, it is built with that in mind,
but future authors may also look into other tools for sym-
bolic execution, as there is already a whole host of well
known and powerful systems that can do this[2].

6.2 Understanding Expressions
Hand in hand with finding the required values of vari-
ables goes finding the constraints for these variables. This
project could be expanded with more support in that man-
ner, as the skeleton is already in place. Future authors may
also choose to use another system for this task, possibly
one that already knows how this works. They may look
in the direction of JetBrains’ Intellij[4] or FindBugs[1] for
projects that parse and ”understand” Java.

6.3 Custom Type Initialisation
This project has no support for custom type initialisa-
tion, though the we do recognise this field as one where
advancements could be helpful for the industry. As we
noted before, one prominent project that performs cus-
tom type initialisation is Java Spring. Said project is not
only relevant due to using Java, their size also makes them
an interesting target for improvements in library capabil-
ities. In 2020 the Stack Overflow Developer Survey[10]
found that 16.4% of the more than 42 thousand respon-
dents state that they use the Java Spring web framework.

Java Spring’s solution to custom type initialisation is the
Autowire and Bean system. The programmer registers a
way to create a new instance of a type based on some
inputs, and as long as those inputs also have a registered
factory, or are types that Spring knows to make out-of-
the-box, this type will be created during runtime.

Java Spring’s use of this feature clearly shows a market
for a tool that can generate the initialisation of custom
types with even less input from the programmer. A feature
like this would be an upgrade to our tool, to Java Spring,
as well as any other projects that require automatic type
initialisation.

6.4 Private Variables
As we described in section 5.4 about constructor and pub-
lic variable assumptions, our tool assumes that any method
and constructor involved is available and has a public ac-
cess modifier. Especially the access modifier limit is a
point for future development. One could use static anal-
ysis to find the real access modifier of variables. Other
projects like Jackson from fasterXML (which (de)serialises
JSON and Java objects) assume that the variable is either
public or looks for setters[9]. But that may not be viable
for this project, since we may not be in a position to put
requirements on the style of input code.

6.5 Code Generation
Code generation for our project is currently an ad-hoc sys-
tem that appends Strings together to gain a result. Ver-
Cors already includes a facility for more advanced AST-
like to source requirements, with support for other lan-
guages as well. It would certainly be a valuable addition
to our tool to be able to generate source with this system
instead of our own.

7. CONCLUSION
This paper gives a concise overview of how our tool works,
as well as a number of examples to show what it can do.
We also explain what the limits of its capabilities are, and,
using these limits, give recommendations for future devel-
opment of our tool.

The code for this tool can be found in the Authors fork of
VerCors. (https://github.com/Matthias-Sleurink/vercors)
Especially in the src / main / java / vct / experiments /
test generation folder.

6

The examples, with their generated output, can be found
in the same repository in the examples / test-generation
folder.

8. ACKNOWLEDGMENTS
I would like to thank both of my supervisors Prof. Dr.
M. Huisman and Dr. P. Van Den Bos for their advice
during every phase of creation. Their input was especially
valuable for getting the correct things on paper in the right
way. My last thanks go out to my brother Benjamin for
proofreading the final version of this paper.

9. REFERENCES
[1] N. Ayewah, W. Pugh, D. Hovemeyer, J. D.

Morgenthaler, and J. Penix. Using Static Analysis to
Find Bugs. IEEE Software, 25(5):22–29, 2008.

[2] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu,
and I. Finocchi. A Survey of Symbolic Execution
Techniques. ACM Comput. Surv., 51(3), 2018.

[3] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn.
The VerCors Tool Set: Verification of Parallel and
Concurrent Software. In IFM, volume 10510 of
Lecture Notes in Computer Science, pages 102–110.
Springer, 2017.

[4] JetBrains. IntelliJ.
https://www.jetbrains.com/idea/, 2007.

[5] P. Müller, M. Schwerhoff, and A. J. Summers. Viper:
A Verification Infrastructure for Permission-Based
Reasoning. In B. Jobstmann and K. R. M. Leino,
editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 9583 of LNCS,
pages 41–62. Springer-Verlag, 2016.

[6] Neil Mitchel. Hlint.
https://github.com/ndmitchell/hlint, 2006.

[7] Oracle. Java Language Specification. Oracle, se16
edition, Mar. 2021.

[8] T. Par. Antlr4, 2012.

[9] T. Saloranta. Jackson-Databind, 2019.

[10] Stack Overflow. Stack Overflow Developer Survey,
2020.

[11] The Clang Team. ClangFormat.
https://clang.llvm.org/docs/ClangFormat.html.

[12] B. Wichmann, A. Canning, D. Marsh,
D. Clutterbuck, L. Winsborrow, and N. Ward.
Industrial perspective on static analysis. Software
Engineering Journal, 10(2):69, 1995.

7

