Smart User Control in Wi-Fi Access Points

Bart Leenheer
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

b.leenheer@student.utwente.nl

ABSTRACT

Current cellular networks use a method called “slicing” to
improve speed and stability per user. Each slice has differ-
ent performance and service requirements, and each user
can be assigned the slice which comes closest to these spec-
ifications. This functionality is not present on the current
state of the art routers, which can impact user experience
significantly, especially when multiple users are connected
to the same access point. This research aims at investigat-
ing and collecting metadata from Wi-Fi packets in specific
use cases, which can act as a basis for an implementation
similar to slicing in mobile networks. Furthermore, a proof
of concept implementation will be presented that includes
a wireless optimization process and can act as a basis for
a possible “slicing” implementation.

Keywords

Wi-Fi, slicing, cellular, networks, improvement, stability,
metadata, channel, bandwidth, optimization

1. INTRODUCTION

Wireless Fidelity networking (Wi-Fi) is an invention which
is currently being used all across the globe and the internet
is becoming more available to people as we speak [1]. How-
ever, Wi-Fi access points still lack in some aspects, such as
the control over how much bandwidth is assigned to spe-
cific devices [2|. This means that someone who is watching
Netflix |3] might get information with a very low latency,
whilst it does not need it due to its buffering capabilities;
in the meantime, someone who is playing a video game
might have sub-optimal performance, because this requires
low latency, but not as much bandwidth. This problem
becomes increasingly noticeable when a high amount of
devices are connected to the same access point.

Cellular networks, on the other hand, already have this
problem solved. Most of this optimization is done by slic-
ing the single network into multiple smaller networks that
each have their own performance and service requirements
[4]. For example, one layer (or slice) could focus on low la-
tency and another could focus on having a low error rate.
Assigning the correct slice to the user, based on their re-
quirements, will optimize the user experience by providing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

35”” Twente Student Conference on IT July. 2nd, 2021, Enschede, The
Netherlands.

Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

what they need.

It should be possible to optimize Wi-Fi access points in a
similar way to this cellular optimization. To achieve this,
a good start would be made by analyzing the metadata
present in Wi-Fi packets, as this could indicate perfor-
mance and service requirements to make optimal use of
the Wi-Fi connection [5]. With a clear overview of the
metadata in specific use cases, statistics can be extracted.
This properly analysed data could then be used to de-
velop a smarter Wi-Fi access point - by implementing an
algorithm similar to slicing - to improve overall speed and
reliability.

2. PROBLEM STATEMENT

Even though Wi-Fi exists for quite some time now, there
are currently no commercially available Wi-Fi access points
that use optimizations similar to those of cellular net-
works; even simpler optimizations, such as optimal chan-
nel and bandwidth selection, are lacking. As mentioned
before, Wi-Fi works pretty well when a small number of
devices is connected, but the performance decreases sig-
nificantly when this amount increases, Especially if these
devices all have different use cases. Implementing network
slices, comparable to those in cellular networks, should
improve stability and performance. Furthermore, perfor-
mance can be impacted when neighbouring access points
have overlapping channels. Making use of better channel
selection should improve speed and stability as well.

To try to improve these shortcomings, the following re-
search questions have been composed:

RQ1 How can we extract useful information from a Wi-Fi
access point and store it in a way such that it can
be used to potentially improve network speed and
stability?

RQ2 How can a Wi-Fi access point be improved using
gained insight into metadata regarding specific use
cases?

3. SLICING IN 5G

5G makes use of a technique called slicing. This technique
allows one physical network to be split up into multiple
logical networks, each containing its own performance and
service requirements [4]. This way, the network is suitable
for many different use cases, each of which can make use
of a slice tailored for optimal performance. For example,
high-resolution video streaming in dense areas requires a
high average bit rate but does not (necessarily) need a low-
latency connection. On the other hand, extreme real-time
communication, such as remote robotic control in health
care, requires an extremely stable connection with a very
low latency [6]. Besides these two, there are a lot more use

cases and it is likely that more will emerge. This makes
using mobile slices in 5G seem very valuable.

5G seems to cover a bigger amount of use cases in compar-
ison to Wi-Fi access points; for example, mobile internet
in high-speed trains [6]. However, even within home net-
works, there can be a numerous amount of use cases, such
as playing video games or streaming videos. Therefore,
it could be valuable to implement a similar technique in
Wi-Fi access points.

4. METHODOLOGY

In this section, the approach to tackling the research ques-
tions will be explained. The first step is to obtain an ac-
cess point that can run custom firmware. This research
has been conducted with OpenWrt, which is a Linux op-
erating system that runs on routers and similar devices [7].
This operating system allows the user to add packages and
modify the file system directly, which are useful features
to have when doing research. The hardware used in this
work is a Raspberry Pi 4 instead of an actual router or
access point. This, unfortunately, means that there have
been some hardware restrictions. This will be further elab-

orated upon in the

The first question requires the investigation of metadata
from Wi-Fi packets and the extraction of the right data
and statistics. At first, a couple of packages have been
looked into such as Kismet [§] and aircrack |9]. However,
it became evident that these packages (and similar ones)
have a focus on hacking and are therefore quite extensive
and complex. A simpler approach is to use the tcpdump
package. With this package installed, it is possible to run
the command via the Secure Shell Protocol (SSH) [10] and
send the results of the tcpdump straight into your locally
running instance of Wireshark [I1] (see [Cisting]I). Once
the capture is done, it is saved and then the packets can
be inspected individually and the overall statistics can be
extracted.

After this analysis, a possible slicing implementation has
been researched (see [Section [5.2.1)), however, due to hard-
ware limitations (see [Discussion) this implementation is
not possible using the current setup. Instead, a proof of
concept implementation is created - using OpenWRT, SSH
and bash scripts [12] - that improves channel and band-
width selection. The first bash script executes on a laptop

running Linux [13] and the second is placed on the access
point and executed through the first script.

5. RESULTS

5.1 Packet capturing

As explained in the the packets could be
captured by running a tcpdump over SSH and then send-
ing the output into Wireshark, as shown in
When the relevant information is captured, it can be saved
and inspected in Wireshark. Within Wireshark, the num-
ber of packets, capture time and total byte size can be
extracted. From this data, statistics - such as average
packet size, bytes per second or packets per second - can
be calculated. Furthermore, Wireshark gives information
about the protocols used and the amount of Transmission
Control Protocol (TCP) Errors. The tables containing

this information per capture can be found in

The packet captures show interesting details about the us-
age for different use cases. In it becomes evident
that the packet sizes are significantly smaller when play-
ing video games than downloading or uploading or even
casually browsing the internet. This is likely due to the

high importance of the speed at which the packets are
received while gaming (reducing latency); to realize this,
the packets are kept small. And for the other cases, the
amount of transferred data is quite high, so in order to
reduce loading times, more information is sent per packet.
In the same table, we can see that the average bytes and
packets per second are at their highest whilst download-
ing or uploading. This number is lower for casual browsing
because, for that use case, the client only transmits and
receives packets whilst loading the page (or when the page
updates).

An interesting thing to note when inspecting the proto-
cols used in the captures (see is that a significant
amount of traffic makes use of the QUIC [14] protocol.
This protocol was proposed by Google and according to Qi
et al., [15] it might replace the Transmission Control Pro-
tocol (TCP) [16] in the near future because of its advan-
tages in encryption, low latency and multiplexing. QUIC
is based on the User Datagram Protocol (UDP) [17] and
- compared to TCP - it can establish a reliable and se-
cure connection quicker, especially when re-establishing a
connection. Whilst QUIC is based on UDP, it does al-
low for a reliable data connection and is therefore suitable
for use cases such as data transfer. Qi et al. do mention
that under high load, QUIC can perform worse than TCP.
This also seems the case in the downloads and uploads in
the captures, where the TCP connection achieves a higher
average bitrate than the QUIC connection (see [Table [3).
Furthermore, Wireshark does not seem to recognize outgo-
ing QUIC packets, as evident in the Drive Upload (QUIC)
capture where it is classified as Data under UDP.

Besides this, the division between protocols shows some
more information regarding different use cases. The gam-
ing captures primarily show (non-QUIC) UDP traffic, this
is likely due to the low-latency performance requirement
for gaming applications. Whilst UDP is faster than TCP,
it is not reliable. This means that packets sent from the
server might not reach the client and vice versa. Usually,
only the latest information is relevant for gaming applica-
tions, therefore retransmission of lost packets is not neces-
sary. File transfers or website visits often use TCP or - as
of recently - QUIC, as these protocols do allow for reliable
data transfer, which is required for these use cases.

5.2 Implementation

5.2.1 User control

For a possible implementation, the statistics from the packet
captures mentioned in [Section[5.1) can be further analyzed
and a lookup table can be created. Using this lookup
table, the connected client can be categorized and, with
this knowledge, the access point could move the user to
a separate network (possibly running on the same access
point) with the settings tailored to the user. This ap-
proach would be similar to network slicing, as explained in
The separate “slices” could have different (non-
overlapping) channels and different bandwidths in order to
cater to the needs of the users. For example, someone who
needs a low latency connection can be moved to a chan-
nel with few connected users to reduce congestion, whilst
someone who is streaming video could be connected to a
more populated slice with a higher bandwidth.

This implementation requires the ability to create multi-
ple wireless networks. Unfortunately, during this specific
research, the hardware used was not able to do this (see

, therefore this is unfortunately not a viable

solution for this specific work.

ssh USERQ@IP tcpdump -i wlanO -U -sO -w - 'mot port 22' | sudo wireshark -k -i -
Listing 1. Packet capturing command

5.2.2 Optimal channel and bandwidth selection

The final solutiorﬂ is a proof of concept that acts as a
start of what is possible with devices running OpenWRT.
The basic idea is to run this script on a mobile device such
as a laptop, which then changes the bandwidth and chan-
nel on the access point, waits until the device reconnects
and then it tests the speed and stability of the connection
through a series of ping commands. This is then done
for each possible bandwidth and channel combination and
a health score is calculated per combination (the lower
the score, the better the connection). This health score
is based on the average round trip time (RTT) and the
amount of packet loss (see line 14 in [Algorithm [1f). Af-
ter this is done, it selects the combination with the lowest
health score and sets that as the channel and bandwidth on
the access point. The pseudo-code for this is shown in [AH
Before the script starts determining the health
score, it first establishes whether or not the remote chan-
nel and bandwidth are correctly set, by comparing them
to the local channel and bandwidth. When this is not the
case, it means that the script running on the access point
has reset the channel and bandwidth to its default settings
and therefore it will not include this combination in its re-
sults. A table containing the health scores of one run can
be found in [Table[l] In this run, channel 108 with 40MHz
bandwidth has the lowest health score and is therefore the
combination which provides the best connection.

Setting the channel on the access point is done by sending
a command over SSH. The issue here is that commands
sent over SSH stop executing as soon as the connection is
lost. To solve this issue, a script should be placed on the
access point that starts a process that is disowned. This
moves the disowned commands to the background, which
means that it keeps on running, even when the SSH con-
nection is dropped. The pseudo-code for this script can be
found in This script also works as a fail-safe;
in case the access point switches to a channel and band-
width combination that cannot be reached by the device
executing the main script, it switches to a predetermined
combination from which it is known that it works. Exam-
ples can be seen in|[Table[l} channel 116 and 140 did give a
health score for 20 MHz, whilst they did not for 40 MHz.

6. DISCUSSION

Whilst one of the main goals of this research was to find
a way to enable a form of smart user control in regular
Wi-Fi access points, this goal was not feasible with the
hardware available for this work. Within OpenWRT, it
is possible to create multiple wireless networks, but the
Raspberry Pi does not support this. While OpenWRT
runs on this device, it is not made to be used as an access
point. Regular access points, on the other hand, often
have multiple antennas and are therefore able to create
multiple wireless networks.

Besides limitations, the Raspberry Pi does have its ben-
efits. The main one is that it is essentially a small com-
puter and therefore contains features such as expandable
storage, which allows bigger packages to be installed. For
future research, the user control implementation could be
further investigated by either using different hardware or

'The code used in this work is made available in
this repository: https://github.com/bartleenheer/
Optimal-channel-selection

Bandwidth | Channel | Health

36 568.96100
40 772.36177
44 611.48184
48 654.13126
52 736.18413
56 655.73734
60 638.62693
64 775.84108

20
100 789.22741
104 934.07736
108 735.817
112 756.25678
116 784.18870
132 650.13761
136 916.02584
140 663.17615
36 459.49020
40 621.42414
44 854.44830
48 579.90649
52 441.90240
56 612.80973

40 60 755.65695

64 430.49920
100 459.70740
104 490.30027
108 368.57049
112 393.04006
132 757.25991
136 461.04846

Table 1. Results optimal channel and bandwidth selection

adding wireless interfaces to the Raspberry Pi such as USB
Wi-Fi dongles.

Because this implementation became infeasible in this re-
search, live collection of statistics was not researched fur-
ther as well. This would likely need to be investigated in
order to determine the performance and service require-
ments of a specific user and assign them the correct “slice”.

In the implementation proposed in this work, the health
score is calculated by looking at the average round trip
time together with the packet loss in a series of ping com-
mands (see line 14 in[Algorithm[)). Whilst this does give a
good indication of the strength and stability of the connec-
tion, it might be better to calculate this health score differ-
ently, for example by taking the minimum and maximum

https://github.com/bartleenheer/Optimal-channel-selection
https://github.com/bartleenheer/Optimal-channel-selection

Algorithm 1 Best channel and bandwidth selection

1: channels < All possible channels

2: bandwidths < All possible bandwidths

3: for all bandwidth € bandwidths do

4 for all channel € channels do

5: Change access point to channel and bandwidth
6: Wait for reconnect

7

if local channel,bandwidth # remote channel,bandwidth then > No connection established within the given

timeout
8: Skip this combination
9: end if
10: health < 0
11: for interval < 0.1,0.01,0.001 do
12: for size +— 10kB, 30kB,60kB do
13: Ping access point with interval and size 100 times
14: health < health + (avg rtt * (1 + pct. packet loss))
15: end for
16: end for
17: Store health, channel, bandwidth in result file
18: end for
19: end for

20: bestchannel, bestbandwidth < channel and bandwidth corresponding to lowest health

21: Change access point to bestchannel and bestbandwidth

Algorithm 2 Change channel (on access point)

1: channel < parameter -c
2: bandwidth < parameter -b
3: disown

4: Turn wireless off

5: Use channel and bandwidth

6: Turn wireless on

7 while No wireless connections do

8: if Timeout reached then

9: Return to default channel and bandwidth
10: exit

11: end if

12: Sleep for 0.5s

13: end while
14: end disown

> Making sure it still executes when SSH loses connection

round trip time into account or assigning more weight to
packet loss. This way of determining the health score also
does not take the different protocols into account, but
only makes use of the Internet Control Message Proto-
col (ICMP) [18] used by the ping command. For a better
health score, TCP, UDP and QUIC could also be taken
into account as they can possibly have different perfor-
mance under similar conditions. For future research, dif-
ferent ways of calculating the health score could be com-
pared and the speed using different protocols could also
be tested and incorporated in this score.

Another future research could look into including the pre-
ferred “slice” in the header of packets sent to the access
point. This would require packet manipulation on the
client-side, but it could speed up the categorization on the
access point side because it only needs to read one packet
header instead of gathering statistics from metadata per
user.

7. CONCLUSION

Capturing packets and extracting data from access points
running OpenWRT can give a good indication of certain
performance and service requirements in specific use cases.
Loading the data into Wireshark eases the process of data
extraction, as it has capture statistics built-in. As men-

tioned in the live statistic extraction was not
researched in this paper, as it became irrelevant for the fi-
nal implementation. In this case, it was sufficient to store
the extracted data into a table. This gives a good overview
of the data for different use cases.

With this data collected and inspected, it is possible to
create a lookup table that links usage statistics to cer-
tain performance and service requirements. This could
then be used to categorize connected clients in separate
wireless networks that support these requirements. Un-
fortunately, as mentioned in the this imple-
mentation became infeasible due to hardware limitations.
Instead, this paper discussed a proof of concept implemen-
tation for optimal channel and bandwidth selection. This
implementation acts as a basis in order to show what is
possible within OpenWRT. Without the hardware limi-
tations, the original implementation idea could likely be
created, mostly because nearly everything within Open-
WRT can be changed or monitored from the command
line.

References
[1] H. R. Max Roser and E. Ortiz-Ospina, “Internet,”

Our World in Data, 2015, https://ourworldindata.org/internet.

[2] M. Nerini and D. Palma, 5g network slicing for wi-fi
networks, 2021. arXiv: 2101.12644 [cs.NI].

[3] Netfliz. [Online]. Available: https://www.netflix.
com/| (visited on Jun. 27, 2021).

[4] X. Foukas, G. Patounas, A. Elmokashfi, and M. K.
Marina, “Network slicing in 5g: Survey and chal-
lenges,” English, IEEE Communications Magazine,
vol. 55, no. 5, pp. 94-100, 2017, Cited By :343. [On-
line]. Available: www.scopus.com.

[5] J. Hui and M. Devetsikiotis, “Metamodeling of wi-fi
performance,” English, in IEEE International Con-
ference on Communications, Cited By :13, vol. 2,
2006, pp. 527-534. [Online]. Available: www.scopus.
cor.

[6] N. Alliance, “5g white paper,” Next generation mo-
bile networks, white paper, vol. 1, 2015.

[7] Openwrt. [Online]. Available: https : / / openwrt .
org/| (visited on Jun. 27, 2021).

[8] Kismet. [Online]. Available: https://openwrt.org/
docs/guide-user/network/wifi/wireless-tool/
kismet (visited on Jun. 27, 2021).

[9] Aircrack. [Online]. Available: https : / / openwrt .
org/docs/guide-user/network/wifi/wireless-
tool/aircrack-ng| (visited on Jun. 27, 2021).

[10] T. Ylonen, C. Lonvick, et al., The secure shell (ssh)
protocol architecture, 2006.

[11] How to capture, filter and inspect packets using tcp-
dump or wireshark tools. [Online]. Available: https:
//openwrt.org/docs/guide-user/firewall/misc/
tcpdump_wireshark (visited on Jun. 27, 2021).

[12] C. Ramey, “Bash, the bourne- again shell,” in Pro-
ceedings of The Romanian Open Systems Conference
& Ezhibition (ROSE 1994), The Romanian UNIX
User’s Group (GURU), 1994, pp. 3-5.

[13] Linuz. [Online]. Available: https : //www . linux .
org/| (visited on Jun. 27, 2021).

[14] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C.
Krasic, D. Zhang, F. Yang, F. Kouranov, 1. Swett, J.
Iyengar, et al., “The quic transport protocol: Design
and internet-scale deployment,” in Proceedings of the
conference of the ACM special interest group on data
communication, 2017, pp. 183-196.

[15] L. Qi, Z. Qiao, A. Zhang, H. Qi, W. Ren, X. Di, and
R. Wang, Performance Analysis of QUIC-UDP Pro-
tocol Under High Load, English, ser. Lecture Notes of
the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST. 2020,
vol. 331, pp. 69-77. [Online]. Available: www.scopus.

com.
[16] J. Postel et al., “Transmission control protocol,” 1981.
[17] J. Postel et al., “User datagram protocol,” 1980.

[18] A. CoNe, R. und Telematik, and C. Schindelhauer,

“Internet control message protocol,” 2008.

[19] Valve, Counter-strike: Global offensive. [Online]. Avail-
able: https://blog.counter-strike.net/| (visited
on Jun. 27, 2021).

[20] YouTube. [Online]. Available: https://www.youtube|
com/| (visited on Jun. 27, 2021).

[21] Ubisoft, Trackmania. [Online]. Available: https://
www.ubisoft.com/en-us/game/trackmania/trackmania
(visited on Jun. 27, 2021).

[22] Google, Google drive. [Online]. Available: https://
drive.google.com/ (visited on Jun. 27, 2021).

https://arxiv.org/abs/2101.12644
https://www.netflix.com/
https://www.netflix.com/
www.scopus.com
www.scopus.com
www.scopus.com
https://openwrt.org/
https://openwrt.org/
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/kismet
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/kismet
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/kismet
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/aircrack-ng
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/aircrack-ng
https://openwrt.org/docs/guide-user/network/wifi/wireless-tool/aircrack-ng
https://openwrt.org/docs/guide-user/firewall/misc/tcpdump_wireshark
https://openwrt.org/docs/guide-user/firewall/misc/tcpdump_wireshark
https://openwrt.org/docs/guide-user/firewall/misc/tcpdump_wireshark
https://www.linux.org/
https://www.linux.org/
www.scopus.com
www.scopus.com
https://blog.counter-strike.net/
https://www.youtube.com/
https://www.youtube.com/
https://www.ubisoft.com/en-us/game/trackmania/trackmania
https://www.ubisoft.com/en-us/game/trackmania/trackmania
https://drive.google.com/
https://drive.google.com/

APPENDIX

A.

CAPTURE STATISTICS

In this section, three tables containing general data and
statistics from the packet captures are presented:
[TableB] and [Tableld

A short description of each capture:

Casual browsing (1): During this capture, some ca-
sual browsing was performed. In this case, it means
that articles were visited and some online shopping
was done.

Casual browsing (2): This capture was performed in
a similar setting to Casual browsing (1).

Game (Counter-Strike): During this capture, the
game Counter-Strike: Global Offensive was
played, this is a highly competitive game. During
this game, it is crucial to have a low latency, because
it is important to be able to act upon movement
quickly. Having a high latency gives the opposing
team a significant advantage.

Streaming YouTube: This capture contains data
from watching YouTube , which is a streaming
platform where anyone can upload their content and
- unless the video is protected - anyone can view this
content.

Game (Trackmania): This capture contains data
from playing the video game called Trackmania .
This is a racing game that is time-based, this essen-
tially means that everyone finishes the track on their

own and the time taken is compared. This setup
means that latency is less important, as a small de-
lay will not influence the results.

Download (Counter-Strike): During this capture,
the download of the aforementioned video game
Counter-Strike: Global Offensive took place.

Drive Download (QUIC): During this capture, a
file of approximately five gigabytes was downloaded
from the web interface from Google Drive . This
specific capture had the chrome flag “Experimental
QUIC protocol” turned on.

Drive Download (TCP): During this capture, a file of
approximately five gigabytes was downloaded from
the web interface from Google Drive . This
specific capture had the chrome flag “Experimental
QUIC protocol” turned off and therefore uses the
regular Transmission Control Protocol (TCP) [16].

Drive Upload (QUIC): During this capture, a file of
approximately five gigabytes was uploaded to Google
Drive 7 using the web-interface. This specific cap-
ture had the chrome flag “Experimental QUIC pro-
tocol” turned on.

Drive Upload (TCP): During this capture, a file of
approximately five gigabytes was uploaded to Google
Drive , using the web-interface. This specific cap-
ture had the chrome flag “Experimental QUIC pro-
tocol” turned off and therefore uses the regular
Transmission Control Protocol (TCP) [16].

Capture name No. of Capture Total size (bytes) Avg pps Avg packet Avg Bps TCP

packets time (s) size Errors

Casual browsing (1) 283,511.00 1,914.57 268,654,000.00 148.08 947.60 140,321.17 1799
Casual browsing (2) 90,297.00 1,364.67 54,713,107.00 66.17 605.92 40,092.67 1302
Game (Counter-Strike) 161,736.00 1,162.43 76,935,092.00 139.14 475.68 66,184.65 842
Streaming YouTube 508,927.00 1,800.39 612,206,536.00 282.68 1,202.94 340,041.82 651
Game (Trackmania) 290,877.00 1,398.07 59,172,589.00 208.06 203.43 42,324.63 692
Download (Counter-Strike) | 265,641.00 107.23 282,479,611.00 2,477.42 1,063.39 2,634,456.62 5769
Drive Download (QUIC) | 4,029,126.00| 736.70 4,088,564,487.00 | 5,469.13 1,238.13 | 6,771,473.02 253
Drive Download (TCP) 3,490,767.00 667.62 4,900,986,808.00 5,228.68 1,403.99 7,340,993.60 369
Drive Upload (QUIC) 4,069,280.00 767.62 5,007,141,946.00 5,301.19 1,230.47 6,522,977.56 166
Drive Upload (TCP) 4,905,406.00 715.70 4,984,263,390.00 6,854.03 1,016.08 6,964,208.86 8974

Table 2. Statistics extracted from the captures.

Protocol

Capture name UDP
TCP Other
Total QUIC Data Other

Casual browsing (1) 74.9% 13.2% 56.0% 5.7% 25.0% 0.1%

Casual browsing (2) 55.8% 15.3% 39.4% 1.1% 44.2% 0.0%

Game (Counter-Strike) 90.8% 0.1% 90.3% 0.4% 9.2% 0.0%

Streaming YouTube 96.9% 96.8% 0.0% 0.1% 3.1% 0.0%

Game (Trackmania) 95.1% 0.1% 94.9% 0.1% 4.9% 0.0%

Download (Counter-Strike) 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%

Drive Download (QUIC) 100.0% 99.9% 0.0% 0.1% 0.0% 0.0%

Drive Download (TCP) 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%

Drive Upload (QUIC) 100.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Drive Upload (TCP) 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%

Table 3. Protocol division in the captures.
Capture name Packet length
0-19 20-39 40-79 80-159 160-319 320-639 640- 1280- 2560- 5120
1279 2559 5119 and

greater
Casual browsing (1) 0.00% 0.00% 9.76% 8.93% 4.30% 0.93% 50.45% 25.63% 0.00% 0.00%
Casual browsing (2) 0.00% 0.00% 24.95% 9.62% 29.28% 2.20% 4.21% 29.74% 0.00% 0.00%
Game (Counter-Strike) 0.00% 0.00% 3.39% 22.19% 26.57% 9.59% 32.02% 6.25% 0.00% 0.00%
Streaming YouTube 0.00% 0.00% 12.31% 1.35% 0.55% 0.24% 0.40% 85.14% 0.00% 0.00%
Game (Trackmania) 0.00% 0.00% 4.66% 60.83% 12.71% 20.11% 0.22% 1.46% 0.00% 0.00%
Download (Counter-Strike) 0.00% 0.00% 29.86% 0.23% 0.46% 0.45% 0.19% 68.81% 0.00% 0.00%
Drive Download (QUIC) 0.00% 0.00% 10.36% 0.79% 0.02% 0.18% 1.34% 87.31% 0.00% 0.00%
Drive Download (TCP) 0.00% 0.00% 5.52% 0.07% 0.00% 0.00% 0.00% 94.40% 0.00% 0.00%
Drive Upload (QUIC) 0.00% 0.00% 11.98% 0.07% 0.00% 0.04% 0.27% 87.63% 0.00% 0.00%
Drive Upload (TCP) 0.00% 0.00% 28.82% 0.96% 0.00% 0.00% 5.86% 64.36% 0.00% 0.00%

Table 4. Packet lengths division in the captures.

	Introduction
	Problem Statement
	Slicing in 5G
	Methodology
	Results
	Packet capturing
	Implementation
	User control
	Optimal channel and bandwidth selection

	Discussion
	Conclusion
	Capture statistics

