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ABSTRACT
In machine learning, one often looks towards biology to
find mechanisms to replicate. One of these mechanisms
we observe in biology is synaptic plasticity rules. Plastic-
ity rules allow for an artificial neural network to learn new
tasks. By changing synapse weights based on these rules,
an agent can adapt itself. Choosing proper rules then be-
comes a new challenge. Previously, gradient descent has
been used to optimize one such set of rules. We use an
evolutionary algorithm, specifically evolution strategies, to
learn rules for recurrent neural networks. These are algo-
rithms based on biological evolution which do not require
a measure of error and may thus be applicable to a wider
set of problems. Our results show that this approach may
have potential, obtaining better-than-chance performance
on classification tasks. This results in a proof of concept
that enables further research in this area.

Keywords
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1. INTRODUCTION
Biology has produced agents capable of performing and
learning complicated tasks. It is no surprise then, that
in the past decades, research has often looked towards bi-
ology to solve machine learning problems. A well-known
example is artificial neural networks (ANNs), which are
inspired by biological neural networks (BNNs) [12]. These
ANNs can be seen as a very basic model of a brain, and
analogous terminology is used when talking about BNNs
and ANNs. An ANN consists of a number of neurons that
are interconnected. Each connection has a certain synap-
tic weight. By adapting the weights of the connections, an
ANN can be trained to perform a task [1].

ANNs are often trained using the back-propagation algo-
rithm [13]. While very high accuracies can be achieved
on classification tasks [4], this method has a few limita-
tions. Firstly, a network trained using back-propagation
on one classification task will not do well on another. For
instance, a network trained to recognize letters can not
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recognize flowers. Would you later want to retrain the
network on a new task, it will forget how to do the first [9,
8]. A second issue is that back-propagation needs infor-
mation about the correctness, or rather error, of the pre-
dicted result to train [13]. In certain tasks, this is either
very difficult or even impossible to determine. Further-
more, although not a problem in itself, back-propagation
is not biologically plausible, i.e. it is highly unlikely BNNs
learn in this way [7].

One proposed solution to the second problem (needing a
measure of correctness) is evolutionary algorithms. These
algorithms, based on biological evolution, can be used to
adapt the weights of an ANN without knowing anything
about the correctness of an individual action [19]. All
one needs is a measure of fitness, that is, how well the
ANN performs overall. Since evolutionary algorithms use
similar principles as those that drive biological evolution,
they are also more biologically plausible. However, us-
ing evolutionary algorithms on the weights of the network
directly does not solve the generalization problem. A net-
work trained on a certain task or dataset will still not be
able to learn another. After all, the trained model is still
the same as when using back-propagation.

Looking towards biology again, a way of providing more
generalizability is synaptic plasticity rules [14]. Synaptic
plasticity is a process wherein the weight of synaptic con-
nections changes over the lifetime of an individual. We
then speak of a plastic network. Applying plasticity rules
to an ANN introduces a way to learn a new task [5]. If
plasticity rules are determined that allow an ANN to adapt
itself, it could generalize from one problem to another, be-
ing able to teach itself in a way. A question is then, what
form do these plasticity rules take?

An early proposed rule from biology is Hebb’s rule [6].
It states that if a neuron is involved in the firing of an-
other neuron, the synaptic weight between these neurons
increases. Using this rule in ANNs has problems (weights
keep growing for instance [15]), but it can serve as an
inspiration. We can use rules of this same form, i.e. de-
termining a change in the weight of a connection based
on the pattern of firing of the neurons it connects [18]. A
simple abstraction gives four different rules for the change
in weight of the connection between neuron A and B, one
for each possible combination of neurons A and B firing or
not. An issue is that this might be too simple, the space
of possible rules is very small.

A way to increase the complexity of possible rules is to
consider recurrent neural networks (RNNs) [5]. Take an
RNN with a hidden layer that fires a certain amount of
times before propagating an output signal. We can now
determine rules based on the history of firing over these
iterations. This allows for more complex relationships be-
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tween firing patterns and the change in weights.

The problem we are left with is determining these plastic-
ity rules. Previously, these rules have been learned using
gradient descent [5], however, this reintroduces the prob-
lem of needing a gradient measure of error for a single
action. A solution to this would be to use evolutionary
algorithms to learn these rules, needing only an overall
fitness.

From this problem we can derive the following research
questions:

1. How do evolutionary algorithms perform compared
to gradient descent for learning plasticity rules of a
neural network?

2. How well do plasticity rules learned by evolutionary
algorithms generalize to unseen problems when com-
pared to ones learned by gradient descent?

We attempt to answer these questions by using the model
proposed by Cristian et al. [5] and learning the rules us-
ing both back-propagation as well as evolution strategies.
We train on a classification problem, using both generated
datasets as well as MNIST and compare results.

We begin by discussing similar approaches to solve ma-
chine learning problems in the Related Work section. In
our Background section, we explain the necessary state of
the art concepts, and then introduce our novel approach
in Methods. Under Experimental Setup, we introduce our
experiments and then discuss the outcomes in the Results
section. We finally discuss the limitations of our paper
and future research directions in Discussions, ending with
Conclusions.

2. RELATED WORK
Recently, plastic networks have been explored, usually with
some form of evolutionary algorithms to learn rules with
which the network can adapt during its lifetime. Soltog-
gio et al. [14] explore these evolved plastic artificial neural
networks (EPANNs).

Multiple recent papers build upon their work with new
concepts. Such as Najarro and Risi [10] who use synapse-
specific Hebbian-like learning rules learned by evolution
strategies in networks with randomly initialized weights.
A later work by Pedersen and Risi [16] uses similar rules
but merges these rules during learning so multiple synapses
use the same rules. The decrease in the number of rules
shows better adaptability.

Yaman et al. [18] introduce the concept of deterministic
Hebbian-like rules, trained using genetic algorithms and
show that these can produce networks that learn to adapt
to changes in environments. The deterministic nature and
small search space allow for interpretable rules.

Cristian et al. [5] build upon these principles but attempt
to increase the rule space by collapsing feedforward net-
works with multiple hidden layers into recurrent networks
in which a single hidden layer fires a certain amount of
recurrent steps before readout. Rules based on the firing
patterns over these steps are then trained using gradient
descent.

In [17], Yaman et al. introduce a different way of con-
sidering the firing history of neurons into plasticity rules,
namely neural activity traces (NATs). They use RNNs
which keep track of the firing pattern frequency during an
epoch and apply rules afterwards based on these frequen-
cies.

Input Hidden Output

Figure 1. Visual representation of the network, here with
2 input neurons, 3 hidden neurons and 2 output neurons.
First the input layer propagates to the hidden layer, then
the hidden layer has its recurrent steps and lastly the hid-
den layer propagates to the output.

3. BACKGROUND
3.1 The Network
We consider RNNs such as described by Cristian et al.[5],
consisting of an input layer, a recurrent hidden layer and
an output layer (See Figure 1). After computing the ac-
tivation of the hidden layer from the input layer (as in
Equation 1), the hidden layer performs a number of recur-
rent steps. During such a step, the activation of a neuron
is determined by summing the original activation of all
hidden layer neurons with their last activation, applying
the weight of the connections and summing all resulting
values as in Equation 2. A hidden layer neuron is con-
nected to all hidden layer neurons apart from itself. After
the recurrent steps, the output is computed as in Equation
3.

aT=0 = f(winputainput) (1)

aT=n = f(whidden(aT=0 + aT=n−1)) (2)

aoutput = f(woutputaT=N ) (3)

Where f(x) is the activation function, aT=n are the acti-
vations of the hidden layer neurons at a certain timestep
where aT=0 denotes the activation before any recurrent
step and aT=N after the last recurrent step, ainput are the
activations of the input layer (and thus the input), winput

are the weights of the connections between the input layer
and the hidden layer and whidden are the weights of the
connections between the hidden layer and itself, woutput

are the weights of the connections between the hidden
layer and output layer.

For the hidden layer, the activation function is in two
parts. First, a conventional activation function is applied
(such as ReLu) and then a cap[11] is applied. The acti-
vations are ranked on their intensity and only the highest
ones get propagated. The post-synaptic neuron is then
said to have been activated. The lower activations are set
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to zero. The network keeps track of the activation patterns
during the recurrent steps.

3.2 The Rules
We consider rules as proposed by Cristian et al.[5]. These
rules are based on the activation patterns of the hidden
layer. After every iteration through the whole network,
the weights of the network are updated based on these
rules. They are real-valued numbers that are summed with
the existing weight as follows:

w = w + η∆w

where η is a given step size and ∆w is the value that follows
from the rule.

For each layer. ∆w is determined by a mapping between
the activation patterns of the hidden layer and a real value.
The activation patterns are determined by taking the ac-
tivations of each timestep (aT=0 through aT=N )) and dis-
cretizing them with s(x) as in (4). We then, for each
hidden neuron, take its discretized activation from each
timestep and thus get N + 1 values, where N is the num-
ber of recurrent steps. We label these a0 through aN .

s(x) =

{
0 x = 0

1 x 6= 0
(4)

For the connections between the input layer and hidden
layer, we only consider the hidden layer neuron activation
pattern. For connections between the hidden layer and
itself, we consider the activation pattern of both the pre-
synaptic and post-synaptic neurons. For the connections
between the hidden layer and output layer, we consider
the activation pattern of the hidden layer neuron, as well
as whether the output layer neuron is the correct label.
Tables 1, 2 and 3 show an illustration of the input, hidden
and output layer rules respectively, for an example net-
work with 2 recurrent steps (N = 2). Here xk are some
real value, ai denote pre-synaptic neuron activations and
aj denote post-synaptic neuron activations.

Table 1. Input layer rules
a0 a1 a2 ∆w
0 0 0 x1
0 0 1 x2
... ... ... ...
1 1 1 x8

Table 2. Hidden layer rules
ai,0 ai,1 ai,2 aj,0 aj,1 aj,2 ∆w
0 0 0 0 0 0 x1
0 0 0 0 0 1 x2
... ... ... ... ... ... ...
1 1 1 1 1 1 x64

Table 3. Output layer rules
a0 a1 a2 Correct label? ∆w
0 0 0 No x1
0 0 0 Yes x2
0 0 1 No x3
... ... ... ... ...
1 1 1 Yes x16

4. METHODS
For our evolutionary algorithm we choose evolution strate-
gies [3]. These are applicable for real valued parameters
[2]. Furthermore, they have been shown to produce good
rules in similar scenarios [10, 16]. For the genotype, we
choose the mapped real value for all of the rules and put
these all in a vector. This leads to a search space of
2N + 22N + 2N+1 real values (where N is the number of
recurrent steps). For our fitness function, we first let the
network go through all samples once and then compute
the accuracy on a test set.

To allow for a fair comparison between gradient descent
and evolution strategies, we first set a baseline. We obtain
this baseline by reproducing the results of Cristian et al
[5].

To compare the performance of both approaches, we train
the network on a simple generated dataset as well as a
common machine learning dataset. The network is trained
using both gradient descent and evolution strategies. Achieved
accuracies on both the training and test set, as well as
speed of convergence are then considered to make a com-
parison.

To compare generalizability, after training using the above
method, we generate a new dataset en then show this
dataset to the network, all the while keeping track of the
accuracy. Here we no longer train the rules, only apply
them.

5. EXPERIMENTAL SETUP
5.1 The Datasets
For our generated dataset we use scikit-learn [?] to cre-
ate a classification dataset. The dataset has 10 features
which are all informative, and 4 classes. This creates 8
clusters of points normally distributed about vertices of a
10 dimensional hypercube, with sides of length 20. Each
class gets assigned 2 clusters. Interdependence between
features as well as further noise is then added to the data.
We generate a total of 5000 samples and use 4000 for the
training set and 1000 for the test set. For the dataset we
use to test generalizability, we generate a new dataset in
the same way.

We also perform the experiment with the MNIST dataset.
MNIST is a common dataset for evaluating machine learn-
ing performance. It consists of 70.000 28x28 pixel images
of handwritten digits (See Figure 2 for some examples.
60.000 of these form the training set, and 10.000 form the
test set.

Figure 2. Some example images from the MNIST dataset.

5.2 The Hyperparameter Settings
The choice of hyperparameters is based on both the work
of Cristian et al [5] as well as preliminary testing with a
range of parameters. Both performance and training time
are taken into account.

We consider a network with 3 recurrent rounds. All weights
are initialized randomly using a standard normal distribu-
tion. The same goes for the plasticity rules. We use a step
size of 0.01 when updating the weights. For the MNIST
dataset, we use a network with 1000 hidden layer neurons
and a cap of 500 activated neurons. For the generated
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dataset we use a network with a hidden layer of 20 neu-
rons and a cap of 10 activated neurons. For the input and
hidden layer we use a sigmoid activation function before
the cap. On the output layer we apply a softmax activa-
tion function.

For both approaches, we present the samples in batches of
100 at a time. The weights of the network are reset after
every batch during training of the rules. The weights are
then updated using the plasticity rules after each shown
sample. When subsequently showing a new dataset, we do
this one sample at a time, allowing the network to change
its weights after each sample. We show the whole dataset
50 times, never resetting the weights of the network.

For the gradient descent method, we train the rules using
Adam optimization with cross-entropy loss and a learning
rate of 0.01. The loss is computed by, after having gone
through the batch while updating the weights, showing
the batch to the network once more without updating the
weights.

For the evolution strategy, we use a population size of
10 and a mutation rate of 0.01. We generate an initial
population by picking from a standard normal distribution
for the vector values. We calculate fitness by first showing
the batch to the network while updating weights and then
computing the accuracy over the batch without updating
weights.

5.3 The Comparison
We train the RNN with both gradient descent as well as
evolution strategies. We try to keep the model and train-
ing scenario as similar as possible to allow for a fair com-
parison.

6. RESULTS
6.1 Generated Dataset
The results of both approaches on training with the initial
generated dataset are shown in Figure 3. After training
rules using both methods, we then also apply these rules
to another generated dataset without training the rules
further. The results of this experiment are shown in Figure
4.

6.1.1 Gradient Descent
The accuracy of the gradient descent approach stays at
25% during training. The reason being the model almost
always classifying all samples under the same label. An
effort was made to solve this problem, and multiple issues
were identified, but no conclusive solution was found. For
a more detailed discussion on this see Appendix A. When
we look at the loss of the gradient descent training, we can
see it decreasing in the beginning but then flattening out.
When, after training, we show the model a new dataset,
perhaps unsurprisingly, it still classifies everything under
the same label.

6.1.2 Evolution Strategy
When training using evolution strategies, the model does
better in our experiments. The training accuracy quickly
gets to around 40% with the test accuracy being slightly
lower (See Figure 5). We can observe a continuing slightly
increasing trend. Perhaps with more training epochs, the
model can improve. When looking at the loss, the situ-
ation is similar. There seems to be a slight downwards
trend, even slightly increasing towards the end. It seems
that the model needs some time before improving. When
we show the model a new dataset after training, the accu-
racy significantly decreases. It hovers around 25%, which

would be the same as random classification. The accuracy
is thus similar to the gradient descent approach. However,
where in the gradient descent approach it always classifies
every sample under the same label, in the evolution strat-
egy trained model it is different. Even when the total
accuracy is around 25%, this is not always due to 100% in
one class and 0% in the rest.

6.2 MNIST
The results of both approaches while training on MINST
are shown in Figure 6.

6.2.1 Gradient Descent
With gradient descent the results are much the same as
with the generated dataset, namely hovering around the
equivalent of classifying randomly. Also here it seems to
always classify all samples under the same label.

6.2.2 Evolution Strategy
For the evolution strategies, it is also much the same as
with the generated datasets. It has more promising results
than gradient descent but still not very high performance.
It seems however though, that compared to the generated
dataset, it does not increase performance over time.

7. DISCUSSIONS
7.1 Limitations
While effort was put in to optimize hyperparameters, this
was not approached very systematically, mostly due to
time constraints. We can not exclude that our choice in hy-
perparameters is the cause for the difference observed be-
tween gradient descent and evolutionary algorithms. Pre-
vious research has gained significantly better results with
gradient descent on very similar problems with very simi-
lar models and hyperparameters. This may be due to the
method being very sensitive to changes in the model, or
our having overlooked something in our experimentation.
The cause behind the network converging towards classify-
ing all samples under the same class has been studied with
some effort, however, no conclusive reason has yet been
found. Further systematic testing could be done. Ap-
pendix A gives some pointers towards mechanisms that
might play a role, but the problem still persists. With-
out any rigorous analysis, it cannot be concluded that the
training methods are the cause for the issue.

7.2 Future work
Our work can be replicated with significant effort put into
hyperparameter optimization for both methods. This way,
a best-case scenario can be tried for both methods to al-
low for a better comparison. In our experimentation, we
were unable to try for generalizability on more complicated
datasets. An interesting experiment would be to apply
learned rules on a dataset as MNIST to other datasets
such as MNIST or notMINST, or perhaps even datasets
with different dimensions such as CIFAR-10 or CIFAR-
100. An interesting question is what the influence of the
number of recurrent rounds is on the performance of the
network. The number of rounds in our experiments was
somewhat arbitrarily chosen, based on some preliminary
testing and the tests of Cristian et al. [5]. More system-
atic testing would prove useful in determining a proper
number of rounds. While our research only considered
classification tasks, one of the benefits of using evolution-
ary algorithms is the lack of need for a measure of error. It
would be interesting to apply the method to reinforcement
learning tasks. The model can be easily adapted for such
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Figure 3. Results of training on the generated dataset. The trendlines are moving averages over 40 batches. For the evolution
strategy we take the best performing sample of each generation. For the gradient descent approach accuracy measurements
were only done very 40 batches.

Figure 4. Results when trained on one generated dataset and shown a new generated dataset.
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Figure 5. Results of the best individual in the first 20
batches when trained on one generated dataset with evolu-
tion strategies. The first population seemed to have a lucky
randomly generated individual.

scenarios by removing the correct label part of the output
rules and perhaps introducing a modulatory signal.

8. CONCLUSIONS
All in all, it seems evolution strategies may be a promising
alternative to gradient descent in training the discussed
models. While the answer to our research questions re-
mains largely inconclusive, we have at least proven that
evolution strategies can do better than chance. Perhaps
with further improvements, they can approach the state of
the art. In our experiments, evolution strategies do bet-
ter than gradient descent every time, so the answers to
our research questions seem to tend in favour of evolution
strategies. Previous research has, however, attained much
better results with gradient descent than we have, so more
rigorous experimentation is in order before being able to
answer fairly and conclusively.
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[2] T. Bäck. Evolution strategies: An alternative
evolutionary algorithm. In Artificial Evolution, 1995.

[3] H.-G. Beyer and H.-P. Schwefel. Evolution strategies
– a comprehensive introduction. Natural Computing,
1(1):3–52, 2002.
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Figure 6. Results of training on MNIST. The trendlines are moving averages over 40 batches. For the evolution strategy we
take the best performing sample of each generation. For the gradient descent approach accuracy measurements were only
done every 600 batches. The evolution strategy approach was trained in less batches due to a longer training time per batch.

APPENDIX
A. PROBLEMS ENCOUNTERED DURING

TRAINING
When reproducing the results of Cristian et al. [5] us-
ing their implementation, a problem was quickly encoun-
tered. After a few rounds of training, the network would
converge to classifying each sample under the same class.
Since this was believed to be an issue with the training
method, work on implementing the evolution strategies
began before being able to get promising results with the
gradient descent implementation. The evolution strategy
implementation was observed to have the same problem,
although it seemed to happen less quickly. To find the
cause of the issue, the training was attempted on very
simple generated datasets, to follow the activations and
weights through the network. After some digging around,
multiple factors were found to be contributing to the is-
sue. The main cause seemed to be that the activations of
the output layer were either all enormously big or all zero,
causing either the one that just happened to be a little
bigger to always be chosen or in the case of zero always
the first class. Different causes for both issues were identi-
fied. One of them was an initialization of all weights to 0.
This caused the same rule to always be applied to many
neurons, causing their weights to either ever increase or

ever decrease, because they keep on having the same ac-
tivation pattern. Initializing all weights randomly seemed
to make the problem less frequent. The issue of very large
activations was tackled by applying softmax over the out-
put layer activations. While not solving the root cause,
this did seem to alleviate the problem somewhat. Now we
are left with the problem of weights growing still, this is
solved by, after each update, scaling the outgoing weights
from a neuron by their norm. There was still a problem
with activations going to zero. This was expected to be
due to the ReLu activation of the neurons. Since having
all outputs to zero is pretty close to having all outputs on
zero and one at 1, while learning it wants to keep the acti-
vations close to zero. However, because of ReLu, this can
be achieved by having very negative activations, these get
turned into zero anyway. By simply having a linear activa-
tion function, the problem seems to be lessened. All this,
combined with some tweaking of hyperparameters seems
to have alleviated the issue on very simple datasets, now
getting results significantly higher than chance. However,
on more complicated datasets, such as MNIST or even
a slightly more complex generated dataset, the problem
seems to prevail. At a later stage, a bug was discovered in
the implementation where selecting the rule for the input
layer was done incorrectly. This did not seem to contribute
to the problem but hindered training in other ways.
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