
Malware detection in IoT devices using Machine Learning
Bram van Dartel
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

b.vandartel@student.utwente.nl

ABSTRACT
The Internet of Things (IoT) is growing rapidly all over
the world, while its security lacks behind. More than 30%
of all the infections observed in mobile networks were tar-
geted on IoT. Machine learning is suited for detecting mal-
ware on these, often unsupervised, devices and the results
are promising. At this point, however, such detection in a
single IoT node has not been done yet because IoT nodes
often have weak processors. In this project, the possibili-
ties of malware detection in a single IoT device are investi-
gated by trying to scale machine learning algorithms such
that a single IoT device can perform near real-time net-
work traffic anomaly detection, marking packets as ‘mal-
ware’ or ‘benign’. Using one of the machine learning algo-
rithms, it is possible to implement the proposed program
on an ESP32-chip that can classify data points from the
IoT-23 dataset. When fully implemented, this could mean
that, in the future, IoT devices will be able to check for
themselves whether a network connection is part of a mal-
ware attack or if it is a ‘normal’ connection.

Keywords
Machine learning, IoT, IoT Malware, Malware detection
IoT, IoT-23

1. INTRODUCTION
In 1999, the term“Internet of Things”was coined by Kevin
Ashton, with which he meant that devices should gather
data, instead of just people collecting data [1]. The cur-
rent meaning of the Internet of Things, also known as IoT,
is not that different. Nowadays, IoT is referred to as a
network of small devices, that can sense the physical envi-
ronment or act on the physical environment. An example
of such an IoT device is a self-driving car, as it both senses
the physical environment it is in and acts upon it.

The global market size of IoT grows rapidly [2] and with
approximately 10 billion devices in 2021 [3], there are more
of these devices than people in the world. Next to this in-
creasing amount of the devices, the amount of IoT devices
responsible for all infections observed in mobile networks
went up from 16.17% in 2019 to 32.72% in 2020 [4].

Since usually IoT devices are not supervised [4], they are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT Jul. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

attractive as a target for malware. Often there is not even
an option to monitor such a device. As the amount of
observed infections in IoT devices grows, it becomes more
clear that steps should be taken to combat these infections.
One of the possible steps is to use machine learning to ac-
tively detect malicious incoming traffic. Since IoT gener-
ates a lot of data, this can be used as a training dataset
for such a machine learning algorithm. One example of
such a dataset is the IoT-23 dataset [5].

Using machine learning to detect malware in IoT is not
something new. In earlier research on this IoT-23 dataset,
machine learning was used to try to classify the type of
malware [6]. Classifying the type of malware is not rele-
vant for an IoT device, however, knowing whether a con-
nection is malicious is. Letting each IoT device detect for
itself whether a connection is malicious is something that
has not been done yet. For this research, the following
goal has been set:

Goal Discover whether it is possible to make machine learn-
ing scalable such that a single IoT device can detect
malware attacks in real-time.

To achieve this goal, the following Research Questions
have to be answered:

• RQ 1: Does a machine learning algorithm for detect-
ing anomalies with only two labels (namely ‘benign’
and ‘malicious’) work better than algorithms where
the malware is defined by multiple labels?

• RQ 2: What is the time performance and storage
size of the malware classifier with only two labels?

• RQ 3: When comparing the newly proposed solution
in RQ 1 to current algorithms, which would better
fit a single IoT node?

• RQ 4: Would it be possible to implement the solu-
tion found in RQ 3 and, when looking at the time
performance on the chip, would it still be a good
solution?

By the end of the project, it is expected that this research
contributes by checking whether using only two labels in-
fluences the accuracy and time performance of malware
detection using machine learning. Furthermore, it con-
tributes by actually showing a proof of concept that ma-
chine learning for malware detection can be run on IoT
devices.

The structure of the rest of the research paper is as follows:
An overview of related work of malware detection in IoT
using machine learning will be given in Section 2. Then,

1

in Section 3, the methodologies used to answer the afore-
mentioned research questions will be discussed. Section 4
then will show the results that were obtained by following
the methodology. By using the results, in Section 5 a con-
clusion will be drawn, after which Section 6 will contain
the discussion and future work of this project.

2. RELATED WORK
In this section, an overview will be given of work related
to IoT malware detection using machine learning.

In 2020, Ngo et al. [7] already researched the possibilities
of malware detection in IoT and Android devices using
machine learning. In this survey, they mainly focused on
malicious files that could be executed. In the machine
learning algorithms, static features were used of the files,
such as the Opcodes or by running strings on a file. The
accuracy of the different methods ranges between 85% and
99.8%. The RIPPER-classifier used for the ELF-header is
interesting for comparison, since the classifying time of
this algorithm is only 0.75 seconds, while the accuracy is
99.8%. It should be noted, however, that the time perfor-
mance was not tested on a simple IoT device.

Diro and Chilamkurti [8] worked on a distributed attack
detection scheme for IoT in 2017. For this research, they
used deep learning to classify network traffic on an IoT
device. They created so-called distributed fog nodes which
are used for model training. Here, the deep model had a
precision of 99.36% (on benign data) for 2-class detection
and 99.52% (on benign data) for 4-class detection. Diro
and Chilamkurti used the NSL-KDD [9] dataset for their
model.

Hasan et al. [10] have worked on the dataset provided by
Pahl et al. [11] to classify network data according to eight
different labels, seven of which are malware types and the
eighth label for ‘normal’. The dataset that was used, has
13 features with which they managed to get an accuracy of
99.4% using the algorithms Decision Tree, Random Forest
and Artificial Neural Network. Looking at other metrics,
Random Forest performs comparatively better. It should
be noted that the data used in the research was based on
a virtual environment.

In 2020, Stoian [6] already worked with the IoT-23 dataset
[5] to find out the best machine learning algorithm to clas-
sify the different connections from the dataset. The result
for the project was a precision of 99.5% with the Random
Forest algorithm. In the comparison with other studies,
Stoian showed that the results using the IoT-23 datasets
are in line with what could be expected, given the other
works. In this research, ten different labels were used.

3. METHODOLOGIES
In this section, an elaboration is given on how the research
was performed.

3.1 Initial dataset
In this research, the IoT-23 dataset [5] is used. This
dataset contains 20 captures of malware executed in IoT
devices and 3 benign captures. The data was captured in
the Stratosphere Laboratory at the CTU University in the
Czech Republic. The dataset offers the captures both in
pcap format, which is the raw data capture, and in a la-
belled file with 23 different features. For this research, the
labelled files were used, since they contained all the data
that was needed. The 20 different labelled files together
form the dataset that can be used as input for a classifier.
In total, this means that the size of this dataset is approx-

imately 53 GB. The amount of data points, or packets, is
325,307,990 of which there are 294,449,255 malicious dat-
apoints.

The dataset contains, next to benign packets, malware
packets that were categorized in 14 different sub-labels.
Since this research focuses on malware detection and not
the classification of the malware category, the sub-labels
of the IoT-23 dataset are not deemed relevant. The orig-
inal dataset has 23 features that can be used to train a
classifier. The features, together with a short description,
are included in Table 1.

3.2 Modifying the dataset
To load the plain-text files in Python [12], some modi-
fications had to be done to the dataset. Next to these
modifications, some other changes had to be incorporated
as well to change the dataset into a dataset that was useful
for this research.

3.2.1 Loading the dataset
The first goal was to load the dataset consisting of dif-
ferent files into Pandas data frames [13] since these data
frames are easy to work with. To load the different files,
some modifications had to be done in the different text
files. There were still comments and a short explanation
in every single one of the files, so they had to be removed.
Furthermore, the different columns received their name,
so they could easily be worked with.

One thing that was noticed, later on, is that the divider
of the columns is not always the same, meaning that all
occurrences of three spaces after each other had to be re-
placed by the divider, which is the tab-character.

To train a classifier, later on, the different datasets had
to be merged. This was done by loading all the different
datasets into Pandas data frames and then merging them
into one. The new data frame was then stored as a CSV
file.

3.2.2 Formatting & Pre-processing the dataset
At this point, the whole dataset can be loaded from a
CSV file into one single data frame. There are however
some columns that have different types. For example, a
‘-’ - symbol is used in integer columns to represent the
number zero. This was replaced by modifying the data
frame using Pandas’ built-in functionalities.

Now, the features are manipulated to serve the goal of
this research. First of all, Stoian [6] already discovered
using statistical correlation analysis that the features ts,
uid, id.orig_h, local_orig, local_resp, missed_bytes
and tunnel_parents can be removed. This was due to
the weak relationship between the feature and the label.
Another reason was that of some columns, namely the last
three mentioned, there was not enough data such that a
correlation could be measured.

Before removing the ts-label, a new feature was created
that was based on the timestamp; the difference between
the timestamps, or the inter-arrival time. To retrieve this
interval, the whole dataset was sorted based on the times-
tamp. Now, the difference could be calculated and stored
in a new column time_diff.

Last, before going to the machine learning step, the dif-
ferent strings were translated to integers using the scikit-
learn LabelEncoder [14]. This means that a table is cre-
ated with an encoding from a number to a string so that
every unique string corresponds with a unique number.
Now that this encoding is done, machine learning can be

2

Name Name in dataset Type Description
Timestamp ts Float Timestamp of the packet
Unique Identifier uid String Unique identifier of the packet
Origin host id.orig_h String IP-address of the origin of the packet
Origin port id.orig_p Integer Port-number of the origin of the packet
Response host id.resp_h String IP-address of the responding host of the packet
Response port id.resp_p Integer Port-number of the responding host of the packet
Protocol proto Integer Protocol over which the data was sent
Service service String Service of the data in the packet (e.g. HTTP, DNS)
Duration duration Float Duration of the connection with the other host
Origin # of bytes orig_bytes Integer Amount of bytes sent by origin
Respondent # of bytes resp_bytes Integer Amount of bytes sent by respondent
Connection state conn_state String State of the connection
Local origin local_orig Boolean Did the connection originate locally?
Local response local_resp Boolean Did the response originate locally?
of missed bytes missed_bytes Integer Number of bytes missing in the packet
History history String History of the connection state
Originating packets orig_pkts Integer Amount of packets originated from host
Originating bytes orig_ip_bytes Integer Amount of bytes originated from host
Responded packets resp_pkts Integer Amount of packets responded by host
Responded bytes resp_ip_bytes Integer Amount of bytes responded by host
Tunneled parent tunnel_parents String Unique ID of parent if packet was tunneled
Label label String Classification of the packet (benign/malware)
Detailed label detailed_label String If the label is malware, the type of malware, otherwise empty

Table 1. The initial features of the IoT-23 labelled dataset.

performed on the dataset and the research questions can
be answered.

3.3 On answering RQ 1
To check whether a machine learning algorithm for detect-
ing anomalies with only two labels works better than algo-
rithms where the malware is defined by multiple labels, the
results of the two different methods should be compared.
To do this, first of all, the labelled file was adapted, so
that only the labels ‘benign’ and ‘malware’ would be used.
Then, different machine learning algorithms were used to
be able to compare the results of using only two labels
with the results of having multiple labels, as Stoian [6]
did.

The used algorithms are considered the more ‘simple’ ma-
chine learning algorithms, meaning that they might have
a higher chance of being able to run on a single IoT node.
This is both storage-wise and speed-wise. Also, these three
algorithms have been used in referenced work, meaning it
is possible to compare the results of this research with
results from other researchers.

To answer which of the two works better, a look was taken
at the accuracy, precision, recall, and F1-score. These
metrics are calculated by using the True Positive (TP),
True Negative (TN), False Positive (FP) and False Neg-
ative (FN) metrics. A comparison will be made between
this project and the work of Stoian, since that is the only
research that is currently done using the IoT-23 dataset.

3.3.1 Decision Tree
A Decision Tree is a tree with nodes and leaves. The
nodes can be interpreted as if-statements, while the leaves
contain the categories and thus are the result of the classi-
fication. When starting with the classification, one starts
at the start-node and follows the tree via the edges to a
leaf, like a flow-chart.

A Decision Tree is the computationally lightest algorithm
of the three. This means that a small chip should be able
to classify a data point. Decision Trees are not very robust
but can handle errors in the dataset [15]. Besides, Decision

Trees tend to over-fit on the training data, which can be
prevented by using a more complex classifier, such as a
Random Forest classifier, which has Decision Trees as a
basis.

3.3.2 Random Forest
The Random Forest classifier uses Decision Trees as a basis
for its classification. By computing multiple different Deci-
sion Trees and then taking an average, the Random Forest
often has higher accuracy than a Decision Tree [16]. The
problem of over-fitting is overcome since the trees picked
is randomised in the algorithm. Since a Decision Tree is
computationally light, a Random Forest does not become
much more advanced. The number of trees used in the
Random Forest does however have an impact on the size
of the classifier and, next to that, have an impact on the
time it takes to classify a data point. This means there
is a trade-off between accuracy and the complexity of the
algorithm.

3.3.3 Naïve Bayes
The Näıve Bayes algorithm is based on Bayes’ Theorem,
which is

P (A|B) =
P (B|A) ∗ P (A)

P (B)

Using this formula, one can calculate what the probability
is of a statement A given a statement B holds. In order
to calculate this probability, the probability of statement
B given statement A times the probability of statement A

should be divided by the probability of B.

Näıve Bayes classifiers are, just like the tree-based algo-
rithms, very fast. Also, these types of classifiers do not
need a lot of training data to already make excellent pre-
dictions [17]. Last, but certainly not least, Näıve Bayes
classifiers are computationally light, which also means they
do not take up much storage space when saved.

3.3.4 Metrics
The following metrics were used to determine the perfor-
mance of the classifier.

3

Accuracy
The accuracy is specified as the formula

accuracy =
TP + TN

TP + FP + TN + FN

and calculates the proportion of correctly classified points
over the total amount of classified points. Higher accuracy
means a better classifier.

Precision
Precision is defined as the ability of the algorithm to not
label a negative sample as positive. It is defined as

precision =
TP

TP + FP

Concretely, this means that precision is the ability of the
algorithm to not label a legitimate packet as malware.

Recall
The recall metric is specified as

recall =
TP

TP + FN

and constitutes the ability of the classifier to find all the
positive samples, so packets, in the test dataset.

F1-score
Since the classification that is done is only on two labels,
the true F1 metric can be used. It is the weighted average
of the precision and recall, defined by

F1 = 2 ∗ precision ∗ recall
precision + recall

3.4 On answering RQ 2
To answer this second research question, RQ 1 must be
answered. The two options, namely the dataset with only
two labels and the dataset with a label per type of mal-
ware, should be compared on the time they take to exe-
cute. A comparison was made between the options found
after answering RQ 1. This was done by running the test
subset of the dataset on the classifier and measuring the
time. When the complete dataset was classified, the total
time was divided by the number of points that were clas-
sified, to get an average time that the classifier takes per
point.

Next to the time, it is also important to see what the size
of the classifier is. Although training does not need to be
done on the small IoT device, the classifier itself, however,
needs to be stored on the device. The ‘pickle’ module in
Python [18] can store a Python object, in this case, the
classifier, in a file so that it can be retrieved at a later
point. In such a pickle file the classifier can be stored
and uploaded to the IoT device. The size of this file is
measured as the classifier size.

3.5 On answering RQ 3
The third research question is used to get to the goal of the
research. Now that RQ 1 and RQ 2 are answered, a com-
parison is made to find out which (if any) algorithm would
work better for a single IoT node to detect an anomaly in
the network traffic. This comparison is made based on
both the metrics mentioned at RQ 1, the size of the clas-
sifier and the time performance of the algorithm, which is
measured at RQ 2. A choice should be made here between

the different options to determine which algorithm would
fit a single IoT node best.

3.6 On answering RQ 4
The fourth and final research question is the moment of
truth; would it be possible to implement this on an ESP32-
chip [19]? This chip is one of the most common chips used
in the IoT since it is low-cost, low-power and has both
Wi-Fi and Bluetooth (Low Energy). If it is possible to
implement the proposed solution at RQ 3, it would be a
proof of concept. For this research question, the LOLIN32
[20] board has been used, since this board has 4MB flash
memory, which is sufficient for the classifier. Furthermore,
the board has a micro USB port, so it could be easily
connected to a computer to upload code.

To implement the proposed solution, it should be checked
first whether the size of the proposed classifier is not larger
than the storage space on the ESP32. Since this is the
case, the implementation can be continued. First, it was
tried to implement the algorithm using MicroPython [21],
which did not seem a viable option. This was due to the
several extra modules that had to be installed, which took
more storage space on the board than was available. An-
other method was used, namely using the Python module
‘micromlgen’ [22], which is made for the export of classi-
fiers from Python to C, such that small devices can also
run machine learning algorithms.

By using this library, it was possible to generate C-code
for the Decision Tree classifier. Of the other classifiers
used, only the Näıve Bayes would have fitted. Although
the file size of the Decision Tree classifier now was bigger,
namely 170KB, it still fitted easily on the board. By using
the ‘EloquentTinyML’ library [23] written for Arduino, it
was possible to write C-code such that datapoints, stored
as an array, could be classified.

4. RESULTS
This section will go more in-depth on the results that were
obtained by following the described methodology. First of
all, the experimental setup will be discussed, followed by
the analysis of the results retrieved from the research.

4.1 Experimental Setup
For the experimental setup, a dockerized virtual machine
was used to run the classification. The operating system
used is Ubuntu 20.04.2 LTS 64-bit. The processor used
was a 2x8-core Intel E5-2640 v3, CPU @ 3.40 GHz. The
memory of the machine was 768 GB RAM. Implemen-
tation has been done using Python 3.8.5 64-bit and the
module ‘Pandas’ for loading in the data in data frames and
generating correlation matrices. Furthermore, the module
‘scikit-learn’ has been used for the machine learning and
metrics.

Furthermore, as mentioned earlier, the LOLIN32 [20] board
has been used, which has the ESP32 chip on board with
512kB of RAM and a 240MHz dual-core processor. The
flash memory on this board is 4MB.

4.2 Result analysis
4.2.1 Research Question 1

For RQ 1, it was important to first implement the machine
learning algorithm with only two labels. To answer the
question of whether a machine learning algorithm for de-
tecting anomalies with only two labels works better than
algorithms where the malware is defined by multiple la-
bels, the results of Stoian [6] are also included. First of
all, in Table 2 the metrics per algorithm are shown.

4

Figure 1. DT Figure 2. RF (n=10) Figure 3. RF (n=100) Figure 4. NB

As can be seen in this table, there is a negligible difference
between the Decision Tree and Random Forest when look-
ing at the metrics. All the metrics perform almost equally
well, which is not surprising when there are only two labels
included in the machine learning algorithm. Although it
is negligible, it is interesting to see the confusion matri-
ces in Figures 1, 2, 3 and 4. As can be seen, the Random
Forest algorithm makes more mistakes in the classification
than the Decision Tree does. This is interesting, since a
Random Forest is an average of different Decision Trees,
meaning that it should perform better than a single De-
cision Tree. The number of trees used, first 10 and then
100, did not make a significant difference in the confusion
matrices. This points to the Decision Tree over-fitting
on the dataset. Furthermore, the Näıve Bayes performs
worse than the Decision Tree and Random Forest. Prob-
ably, this has to do with the fact that both the Decision
Tree and Random Forest only do classification, while the
Näıve Bayes algorithm gives back a probability of being in
a class. The Näıve Bayes algorithm is not made to have
classification as main-focus, which can be seen back in the
metrics.

DT RF (n=10) RF (n=100) NB
Accuracy 0.999 0.999 0.999 0.906
Precision 0.999 0.999 0.999 0.916
Recall 0.999 0.999 0.999 0.986
F1-score 0.999 0.999 0.999 0.946

Table 2. Results of the metrics for the algorithms Decision
Tree (DT), Random Forest (RF) and Näıve Bayes (NB).

When comparing the results to Stoian, see Table 3, it is
clear that the metrics of this project are better than his,
although it is just marginal. The conclusion that can be
drawn here is that using only the labels ‘benign’ and ‘mal-
ware’ for the classification of the packets has better met-
rics than classification in ‘benign’ and the distinguished
types of malware. It should be noted however, that this
project could be seen more as an anomaly detector, in-
stead of a real classifier. In the dataset, however, there
is more training data on the ‘malware’ label than there is
on the ‘benign’ label. The conclusion can be drawn in any
case that the different metrics are for all but one algorithm
better than when using multiple labels.

4.2.2 Research Question 2
The second question to answer is what the time perfor-
mance and storage size of the classifier with only two labels
is. First of all, some more explanation on the configura-
tion of the Random Forest classifier is needed. The depth

of a tree is automatically chosen by the scikit-learn mod-
ule. The number of trees has been tried with two different
settings; 10 trees and 100 trees. The accuracy when us-
ing 100 trees was negligible higher, namely smaller than a
tenth per cent. On the other hand, the size of the classifier
incremented from 3.2 MB to 31 MB, meaning that using
more trees is not worth it when looking at the size, since
there is only a limited amount of storage space on an IoT
device.

Classifier Size (KB) Time (ns)
Decision Tree 63.710 173.44
Random Forest (n=10) 3313.0 990.36
Random Forest (n=100) 32090 9,447.0
Näıve Bayes 1.098 350.68

Table 4. Measurements of the size and time for the different
classifiers. Random Forest has been included in both the
10 and the 100 trees variant.

In Table 4, the results of the average time that the classi-
fication of one point takes and the size of the classifier are
included. As can be seen, the Decision Tree has the low-
est size, while being one of the faster algorithms. It should
be noted that the time of the classification is really fast,
which is due to the experimental setup. When running
this program on an IoT device, the time a classification
takes will be significantly longer. This is due to the fact
that the processor on the small board is not as fast as the
processor used in the research environment. It is however
good to already have an overview of the ranking in the
speed of the classifiers.

4.2.3 Research Question 3
To check for malware in real time on a single IoT device,
there are two limiting factors: the time performance and
the size of the classifier. When, again, looking at Table 4,
it becomes clear that the Random Forest with 100 trees
certainly is not a good solution. The size of the classifier
is too large for an IoT device and next to that, almost the
same metrics performance can be guaranteed using the
Random Forest of only 10 trees.

Then, when looking at Table 2, the Näıve Bayes algorithm
does not perform that well in comparison with the other
two remaining classifiers. Then, only the Decision Tree
and Random Forest with 10 trees are left.

Looking at the metrics of the two algorithms, there is al-
most no difference, meaning that a look should be taken
again at the size and time performance of the two classi-
fiers. What is clear, is that the size of the Random Forest
is more than 50 times as large as the Decision Tree and

5

Research Best performing classifier Accuracy Precision Recall F1-score
Stoian [6] Random Forest 1.00 0.995 1.00 1.00
This project Decision Tree, Random Forest 1.00 0.999 1.00 1.00

Table 3. Comparison in metrics between this research and Stoian

that the time it takes for the Random Forest to classify
a data point is more than 5 times as long. Since the in-
fluence on the performance metrics is not substantial, the
Decision Tree classifier seems to be the best to implement
on a single IoT device to check for malware in real time.

4.2.4 Research Question 4
As mentioned in the methodology, it was possible to imple-
ment the Decision Tree classifier on the ESP32 chip. The
exported C-code of the classifier has been used, which has
a size of 170KB. When running the classification process
on 250 data points and then dividing the time it took by
250, it can be concluded that it takes approximately 0.24
ms per datapoint to be classified. It should be noted that
the total time is only measured per hundredth of a second,
meaning it is not very accurate.

Seeing only a short time and a small size that is taken
up for the classifier on the ESP32-chip, the Decision Tree
classifier still is a good choice to classify the data points
given in real time. The program running on the IoT device
that has the real IoT functionality for which the device was
bought can, storage-wise, run easily next to the malware
detection algorithm.

5. CONCLUSION
The goal of this research is to discover whether it is pos-
sible to make machine learning scalable such that a single
IoT device can detect malware attacks in real-time. First
of all, it is discovered that it is possible to do this. Using
the Decision Tree classifier and an ESP32, it is possible
to run the machine learning algorithm on a single IoT de-
vice. Next to only being able to run the algorithm on an
ESP32, the classifier itself also has excellent performance
metrics, meaning that it is also very accurate. It can be
concluded that malware detection on a single IoT device
is a promising possibility to reduce the number of infected
IoT devices.

6. DISCUSSION
This discussion will be split into two different parts. First
of all, the possible limitations of this project are discussed,
after which some optimisations and future research will be
mentioned.

6.1 Limitations
Some limitations can be found in this research. First of
all, the encoding of the strings in the dataset should be
mentioned. The origin host for example is an IP address
that was interpreted as a string, meaning it was encoded
according to it by the LabelEncoder. The LabelEncoder
encoded them by giving every unique string a unique num-
ber. When a text occured multiple times, they were en-
coded as the same number. IP addresses give away a lot
of information about the host, for example about the lo-
cation but also about the Internet Service Provider (ISP).
This means that if a lot of malware comes from a certain
IP range or location, there is no way to detect that using
this implementation. In future research, a solution may be
found that takes the IP address into account in a better
way than just encoding it as a string.

Next to the encoding of the strings, only three different
algorithms in machine learning have been used. Although
the time performance and metrics are excellent, it is al-
ways possible to improve. Now, the Decision Tree classi-
fier has been chosen as the best algorithm to implement,
but maybe another algorithm can be better. It should
be noted, however, that not all the different types of algo-
rithms are supported by the micromlgen module, meaning
that probably a different library should be used.

6.2 Future research
In this research, some optimisations might be possible.
The goal is to make the classifier as fast as possible, with
a small size, while also maintaining the highest metrics
possible. In the correlation matrix in Figure 5, it can be
seen that there are a lot of features that do not correlate
much with the label. There are only two features that
stand out in this matrix, namely the id.resp_p, which
is the respondents port, and the duration, which is the
duration of the connection. A possible optimisation could
be to only use these two features to reduce the classifier’s
size and increase the speed. The question remains whether
the metrics are as good as they are right now. The newly-
added feature of the inter-arrival time did only have a
negligible correlation with the label, meaning it was not
very useful for the classifier.

Figure 5. Correlation matrix of the complete dataset

Furthermore, now only the machine learning part has been
implemented on an ESP32-chip. Future research could try
to implement a whole program that gathers the internet
packets received, extracts the features that are used and
classify them. To really implement the real time malware
detection on a chip this size, the whole process should only
take a fraction of a second, which is still something that
needs to be researched.

There are still a couple of data points that are misclas-
sified. Although the count is negligible for the Decision
Tree and Random Forest, it is interesting to see whether
all these points are from the same type of malware. It
might be the case that the algorithm finds it (just a bit)
harder to classify malware from a certain type, but also
to make such conclusions there should be extra research

6

diving into this topic.

7. REFERENCES
[1] A. Kevin, “That ’ Internet of Things ’ Thing,” RFiD

Journal, p. 4986, 2010.

[2] Lionel Sujay Vailshery, “Forecast end-user spending
on IoT solutions worldwide from 2017 to 2025,”
2021. [Online]. Available: https://www.statista.
com/statistics/976313/global-iot-market-size

[3] A. Holst, “Number of Internet of Things (IoT)
connected devices worldwide from 2019 to 2030,”
2021. [Online]. Available:
https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/

[4] Nokia, “Threat Intelligence Report 2020,” Tech.
Rep., 2020. [Online]. Available:
https://onestore.nokia.com/asset/210088

[5] A. Parmisano, S. Garcia, and M. J. Erquiaga, “A
labeled dataset with malicious and benign IoT
network traffic.” 2020. [Online]. Available:
https://www.stratosphereips.org/datasets-iot23

[6] N.-A. Stoian, “Machine Learning for Anomaly
Detection in IoT networks: Malware analysis on the
IoT-23 Data set,” Ph.D. dissertation, University of
Twente, 2020. [Online]. Available:
https://essay.utwente.nl/81979/

[7] Q. D. Ngo, H. T. Nguyen, V. H. Le, and D. H.
Nguyen, “A survey of IoT malware and detection
methods based on static features,” ICT Express,
vol. 6, no. 4, pp. 280–286, dec 2020.

[8] A. A. Diro and N. Chilamkurti, “Distributed attack
detection scheme using deep learning approach for
Internet of Things,” Future Generation Computer
Systems, vol. 82, pp. 761–768, may 2018. [Online].
Available: https://linkinghub.elsevier.com/retrieve/
pii/S0167739X17308488

[9] M. Tavallaee, E. Bagheri, W. Lu, and A. A.
Ghorbani, “A detailed analysis of the KDD CUP 99
data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense
Applications. IEEE, jul 2009, pp. 1–6. [Online].
Available:
http://ieeexplore.ieee.org/document/5356528/

[10] M. Hasan, M. M. Islam, M. I. I. Zarif, and
M. Hashem, “Attack and anomaly detection in IoT
sensors in IoT sites using machine learning
approaches,” Internet of Things, vol. 7, p. 100059,
sep 2019. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S2542660519300241

[11] M.-O. Pahl and F.-X. Aubet, “All Eyes on You:
Distributed Multi-Dimensional IoT Microservice
Anomaly Detection,” IEEE, 2018. [Online].
Available:
https://ieeexplore.ieee.org/document/8584985

[12] “Python.” [Online]. Available:
https://www.python.org/

[13] “pandas - Python Data Analysis Library.” [Online].
Available: https://pandas.pydata.org/

[14] “scikit-learn: machine learning in Python.” [Online].
Available: https://scikit-learn.org

[15] L. Rokach and O. Maimon, Decision Trees. Boston,
MA: Springer US, 2005, pp. 165–192. [Online].
Available: https://doi.org/10.1007/0-387-25465-X 9

[16] L. Breiman, “Random Forests,” Tech. Rep., 2001.

[17] H. Zhang, “The Optimality of Naive Bayes,” Tech.
Rep. [Online]. Available: www.aaai.org

[18] “pickle — Python object serialization.” [Online].
Available:
https://docs.python.org/3/library/pickle.html

[19] “The Internet of Things with ESP32.” [Online].
Available: http://esp32.net/

[20] “LOLIN D32 Pro — WEMOS documentation.”
[Online]. Available: https:
//www.wemos.cc/en/latest/d32/d32.htmlhttps:
//docs.wemos.cc/en/latest/d32/d32 pro.html

[21] “MicroPython - Python for microcontrollers.”
[Online]. Available: https://micropython.org/

[22] “GitHub - eloquentarduino/micromlgen: Generate C
code for microcontrollers from Python’s sklearn
classifiers.” [Online]. Available:
https://github.com/eloquentarduino/micromlgen

[23] “GitHub - eloquentarduino/EloquentTinyML:
Eloquent interface to Tensorflow Lite for
Microcontrollers.” [Online]. Available: https:
//github.com/eloquentarduino/EloquentTinyML

7

https://www.statista.com/statistics/976313/global-iot-market-size
https://www.statista.com/statistics/976313/global-iot-market-size
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://onestore.nokia.com/asset/210088
https://www.stratosphereips.org/datasets-iot23
https://essay.utwente.nl/81979/
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17308488
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17308488
http://ieeexplore.ieee.org/document/5356528/
https://linkinghub.elsevier.com/retrieve/pii/S2542660519300241
https://linkinghub.elsevier.com/retrieve/pii/S2542660519300241
https://ieeexplore.ieee.org/document/8584985
https://www.python.org/
https://pandas.pydata.org/
https://scikit-learn.org
https://doi.org/10.1007/0-387-25465-X_9
www.aaai.org
https://docs.python.org/3/library/pickle.html
http://esp32.net/
https://www.wemos.cc/en/latest/d32/d32.html https://docs.wemos.cc/en/latest/d32/d32_pro.html
https://www.wemos.cc/en/latest/d32/d32.html https://docs.wemos.cc/en/latest/d32/d32_pro.html
https://www.wemos.cc/en/latest/d32/d32.html https://docs.wemos.cc/en/latest/d32/d32_pro.html
https://micropython.org/
https://github.com/eloquentarduino/micromlgen
https://github.com/eloquentarduino/EloquentTinyML
https://github.com/eloquentarduino/EloquentTinyML

	Introduction
	Related Work
	Methodologies
	Initial dataset
	Modifying the dataset
	Loading the dataset
	Formatting & Pre-processing the dataset

	On answering RQ 1
	Decision Tree
	Random Forest
	Naïve Bayes
	Metrics

	On answering RQ 2
	On answering RQ 3
	On answering RQ 4

	Results
	Experimental Setup
	Result analysis
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Conclusion
	Discussion
	Limitations
	Future research

	References

