
Active Learning during Federated Learning for
Object Detection

Jelte van Bommel
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.r.vanbommel@student.utwente.nl

ABSTRACT
Convolutional Neural Networks (CNNs) are currently among
the most successful machine-learning techniques for ob-
ject detection. One weakness of CNNs is that they re-
quire many labelled examples in order to train a model.
This gives problems when training a model on decentral-
ized data, such as in federated learning, where labels may
not be available. Training on decentralized data is prefer-
able, due to the benefits in privacy, and decreases in cen-
tral data storage. Active learning can solve the unlabeled
data problem, by selecting a portion of the unlabeled data
and labelling it with an oracle. This paper explores, im-
plements and evaluates several schemes which use active
learning to label images locally and then use federated
learning to train a global object detection model. Analy-
sis shows the schemes maintain average precision close to
centralized learning for homogeneous data. A novel ap-
proach based on a chain of devices allows for increased
precision, while decreasing communication costs. The pa-
per shows feasibility of training object detection models
with active and federated learning, bringing the benefits
of federated learning to the field of object detection.

Keywords
Federated Learning, Active Learning, Object Recognition,
YOLO, Autonomous Vehicles, Autonomous Driving.

1. INTRODUCTION
As autonomous vehicle technology improves, the amount
of data that is being created by these vehicles increases
at a rapid rate as well. S. Heinrich from the luxury car
company Lucid Motors, estimated that vehicles generate
roughly 5 gigabyte of data per second [1]. Autonomous
cars come with a large variety of features that aid and
augment the driver, such as autonomous lane changes, ob-
stacle avoidance, adapting the speed and detecting stop
signs and traffic lights. This functionality is made possi-
ble through sensors, cameras and radars that collect in-
formation about the environment. This collected infor-
mation can then be used to make decisions which result
in a collision-free optimal path for the car [2]. As vehi-
cles become fully autonomous, i.e. requiring no interven-
tion from the driver, they can play an important role in
improving the safety (by reducing accidents) and conve-
nience of drivers on the road [3]. Since the amount of data
that is generated by vehicles is too large to analyze with
traditional algorithms, machine-learning has to be used to
process the data [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July. 2nd, 2021, Enschede, The
Netherlands. Copyright 2021, University of Twente, Faculty of Electri-
cal Engineering, Mathematics and Computer Science.

Supervised learning is the most common machine learn-
ing category in computer vision. The key concept behind
supervised learning is that a dataset is available that has
been labeled in advance. In the case of a traditional au-
tonomous vehicle, data is generated in a vehicle, and up-
loaded to a central location. Human labelers are then put
to work to label the dataset. In an interview, Elon Musk,
CEO of car-manufacturer Tesla, explained that Tesla was
planning on employing 1000 highly skilled labelers [5]. A
model is trained using the dataset at the central location,
which is then downloaded again and applied to the car.
In order to transmit the datasets, vast amounts of band-
width are required, as well as storage in the central loca-
tion. The data that is transmitted is raw data, which can
contain privacy sensitive information as well, e.g. who was
on the road at which time, imagery of pedestrians or even
the insides of homes as captured through windows.

Federated Learning (FL) is a newly emerging machine
learning paradigm, which enables users to collaboratively
train a machine learning model. An important aspect of
federated learning is that the user’s privacy is preserved:
the raw data that is collected on a device, never leaves
the device. The idea of FL is to create a global model
through model aggregations, rather than data aggregation.
By training models on multiple device and aggregating the
models created by each device, a global model can be cre-
ated [6]. When massive amounts of data are generated on
local devices, federated learning is an attractive technique
as it does not require the data to be centrally collected
and stored.

Due to the scale and privacy concerns, federated learning
appears to be an excellent fit for usage in AI-based mod-
els for autonomous vehicles [7]. Federated learning for the
edge of vehicular networks has been considered in several
works, such as [8] and [9], [10]. The assumption behind
federated learning, however, relies on supervised learning
on clients. It is for this reason that federated learning
is specifically useful in environments where users gener-
ate data and label this data implicitly [8]. Tasks which
allow the vehicle to automatically generate labels, such
as driving decisions, estimating movement intention and
traffic flows [11], are considered to mainly benefit from
FL. If in addition to those tasks, federated learning could
be used for improving object detection, time-consuming
human annotation on large privacy-sensitive datasets can
be prevented, preserving privacy and resources. Addition-
ally, by being able to utilize larger sets of data, edge cases,
which might not be transmitted in centralized learning,
can be taken into account when training the models. One
of the techniques that can be used to overcome the large
unlabeled federated data problem, is active learning (AL).
In active learning, a portion of the unlabeled images are
selected to be labelled by a (human) oracle. In the case of
autonomous driving, this could be the driver.

The goal of this research is to explore and evaluate possible
schemes which use active learning techniques in federated

1

learning for object detection. The focus is on labeling only
a portion of the dataset on a device, without transmit-
ting the data to a central location, and still ensuring the
object detection performs with similar precision as tradi-
tional centralized learning. The main contributions of the
study can be summarized as:

1. Creating a scheme in which a global object detec-
tion model is built by utilizing the unlabeled data
available at devices, part of which is labeled through
active learning.

2. Experimental analysis of aforementioned scheme, with
three different active learning sampling techniques,
using the YOLOv5 object detection model on a real-
world dataset.

3. Creation and analysis of a novel method for quickly
converging federated active learning models.

2. PRELIMINARY CONCEPTS
In this section several techniques are discussed that are
essential for the implementation of the schemes, in which
active learning is used with federated learning for object
detection. A brief overview of the research related to this
work is also presented at the end of the section.

2.1 YOLO
Convolutional neural networks uses different layers to ex-
tract information from an image. Each layer generates
activation functions based on inputs to the layer, and out-
puts values to the next layer. The first few layers usu-
ally extract features such as edges, whereas later layers
detect more complex features. Simpler tasks, like hand-
writing recognition can work well with just a few layers,
whereas tasks such as object detection requires more lay-
ers to perform. The activation functions in the layers use
weights, which are tuned by training on large amounts
of data [12]. Various architectures exist for convolutional
neural networks, such as VGGNet and ResNet [13, 14].
In this study we will use the YOLOv5 object detection
system. YOLOv5’s layers can be seperated into two com-
ponents: a backbone which focuses on feature extraction
and a classification part. There is no formal paper pub-
lished for YOLOv5, but it is largely based on YOLOv3,
details for which can be found in [15].

YOLO (You Only Look Once) is a state-of-the-art object
detection system, which is known for having fast perfor-
mance, while maintaining high accuracies. Traditional ob-
ject detection frameworks apply classification models to
sliding windows and marks high-scoring regions as detec-
tions. YOLO unifies this into a single neural network,
which uses features from the entire image to predict bound-
ing boxes for all classes. To do this, YOLO divides the
image into grid cells. Each grid cell can independently
predict whether it contains the center of an object, what
the bounding box dimensions for the object are, and what
the object class is. Each grid can predict multiple bound-
ing boxes, where each boundary box has a box confidence,
and a conditional class probability. The box confidence is
a score that stands for the likeliness that the box contains
an object and the accuracy of the boundary box itself. The
conditional class probability is the probability that the de-
tected object belongs to a given class. A conditional class
probability is given for each class that can occur in the
image. CNN’s regularly use a softmax layer for class pre-
dictions [14]. YOLO (since v3) uses independent logistic
classifiers for each class [16, 15]. This means that classes
are not mutually exclusive, i.e. objects can have multiple
classes.

x y w h Confbox Pr(Class1|Object) . . . P r(Class5|Object)

Figure 1. An example of an output vector for a grid cell

An example of an output vector for a grid cell in YOLO
can be seen in Figure 1. In this output vector, x, y de-
note the coordinates of the center of the object, whereas
w, h represent the width and length of the bounding box
prediction. YOLO (from v3) uses relative offsets (to the
corner of the grid cell) provided by the model to calcu-
late the coordinates. Confbox is the box confidence score.
Pr(Class1|Object) is the conditional class probability. In
Figure 1 the grid contains only a single bounding box, and
there are 5 classes.

2.2 Federated Learning
Federated Learning (FL) is a collaborative form of ma-
chine learning. It aims to train a machine learning model
by bringing the model to the data. This means that the
training data is not stored in a central location, but dis-
tributed over a large amount of clients. A central server
selects a set of clients which will improve the model. The
server sends the current model to these clients, after which
the clients will improve the model using the dataset they
have individually collected. Instead of sending datasets di-
rectly, the client devices send the local gradients of learn-
able parameters to the central server. These gradients
were derived by training on the datasets. The central-
ized server aggregates these gradients (which can arrive
asynchronously) and updates the parameters of the global
model accordingly. The updated global model is then
transmitted back to all clients. This repeats until the
model accuracy is deemed sufficient [6, 17, 18].

Federated Learning is a relatively recent development, the
first practical case of which was introduced by Google AI
in 2017 in a blog post “Federated Learning: Collabora-
tive Machine Learning without Centralized Training Data”
[18]. Recent research has been conducted in improving
the communication efficiency of Federated Learning [19,
20], the privacy and security of Federated Learning [21,
22], the client selection in heterogeneous clients [23, 24]
and the model aggregation methods [11, 25]. A commonly
used Federated Learning aggregation method is FedAvg.
In FedAvg the server distributes the model at round t, Wt,
to N selected clients. The N clients update these models
locally, denoted as W 1

t ,W
2
t ,W

3
t , · · · ,WN

t , after which the
clients send the models back to the server. The server up-
dates the model Wt+1 using the aggregated information:

Wt+1 =
1

N

N∑
i=1

αi ∗W i
t (1)

Where αi can be equally weighted, or custom weights cho-
sen based on device characteristics [6].

2.3 Active Learning
The key principle behind AL is that a machine learning al-
gorithm can perform better with less data and training, if
it can choose the data it learns from. In a supervised learn-
ing system, often thousands of labeled instances are used
to train a model. It can occur that these labeled instances
have significant overlap. As such multiple samples of the
same instance might not contribute to the model’s perfor-
mance as much as a different sample could. Active learning
algorithms select those unlabeled data points from which it
expects the model will improve the most. AL then queries
an oracle (which can be a human, or some other model)
to label the data point. The labelled data point can then
be used for training like in supervised learning. With this
method active learning aims to achieve high accuracies,
while using as few labeled samples as possible, minimizing

2

the cost of retrieving labeled data [26].

Active learning can be divided into three categories: mem-
bership queries [27], stream-based sampling [28] and pool-
based sampling [29]. In this study we focus on pool-based
sampling, which assumes there is a large pool of unla-
beled data U , from which a learner draws data according
to some valuation function and queries the oracle for la-
bels. Pool-based active learning can thus form a solution
to the unlabeled data problem in training object detection
models with federated learning.

2.4 Related Work
A group of researchers from the University of Michigan
and Facebook proposed a strategy to use ideas from ac-
tive learning in federated learning [30]. The researchers
use a value function which can be evaluated locally on a
client, to determine the utility of training on that client.
A central server collects the evaluations from the clients
and uses the evaluations to create an informed choice on
which clients will be selected to improve the global model.
The value function used in this case is the distribution of
values within a binary class. The result of the research was
that the federated learning iterations could be decreased
by 20% to 70%. This approach would need significant
adaptation for object recognition, as it is more complex
than binary classification: there can be more than two
classes in an image and bounding boxes have to be pre-
dicted.

The concept of using active learning to select interesting
data points in a dataset, which are then used for feder-
ated learning, is also used in a 2020 research by Ahmed
et al [31]. In the research on image classification, an ora-
cle picks and labels new training data points from a large
unlabeled pool of images available at a client device. The
data points are picked such that they are useful to the fed-
erated learning model. A method that is discussed in the
work is uncertainty sampling, which selects those images
for which the active learning algorithm is very uncertain on
the label. The labeling in the work happens automatically,
without human input. It is possible to do this automati-
cally because of a seed dataset, which has previously been
manually labelled, that is stored on each device. Using
the seed dataset, a classifier is trained, which then clas-
sifies the selected unlabeled data. This can create biases,
and requires the storage of a dataset on each device, which
may not be possible in constrained applications. Addition-
ally, the work appears to use the classifier that is trained
on the seed dataset for uncertainty sampling. In a fed-
erated learning setting where the model is continuously
improved by distributed clients, it appears more intuitive
that data points are selected of which the global model is
still uncertain.

Image classification is a completely different task than ob-
ject detection (as object detection also requires the pre-
diction of bounding boxes). In this study we expand on
the research and rough techniques of the Ahmed et al [31]
research for the specific application of object detection on
a real-world dataset.

Speaking of real-world datasets, [32] introduces a labelled
real-world dataset containing the images captured from
cameras. The authors show it is possible to use object
recognition in federated learning by training different CNNs
on the dataset. In the work, the authors assume the data
is already labelled on each device. To do this in prac-
tice, an active learning scheme like proposed in this study,
would be needed. The dataset described in the work is not
of use in this study, as it contains imagery from stationary
cameras and this study is mainly focused on autonomous
driving. The work shows it is viable to train object detec-

tion in a federated setting, granted there are enough labels.
It is the focus of this study to create a federated learning
scheme in which active learning creates these labels on the
devices.

3. METHODOLOGY
Active learning is used to overcome the unlabeled data
problem when training object detection in a federated
learning environment. In this section a scheme is built
that utilizes the unlabeled data available at devices, la-
bels part of it through active learning, and conducts fed-
erated learning for the YOLO object detection framework.
As an initial step the proposed active learning steps are
discussed, after which an initial algorithm for the active
learning process is outlined in Algorithm 1. The algorithm
is integrated in a federated learning algorithm, to produce
Algorithm 2. A novel variation on Algorithm 1 and 2 is
discussed, to create Algorithm 3, which converges in less
communication rounds.

3.1 Active Learning Process
3.1.1 Confidence Sampling

To overcome the labelling problem in federated learning,
active learning is used to selectively label images. The de-
vices participating in the federated learning each have a
pool of unlabeled data, from which a sample will be se-
lected for human annotation. Various criteria have been
established for selecting such a sample. In this study we
focus on the commonly used uncertainty sampling [33].
There are many different algorithms θ to calculate uncer-
tainty, such as least confidence and margin of confidence.
Least Confidence (LC) sampling was introduced by Cu-
lotta and McCallum in [34] and calculates the difference
between the most confident prediction and 100% confi-
dence:

θLC(x) = 1− max
y1,··· ,yn

P (y1, · · · , yn|x) (2)

where y is the prediction of a label, and x is the proba-
bility distribution created by some model. Some authors
normalize this score between 0 and 1, if there can be differ-
ent classes in different images. In this study, the amount
of labels in the AL iterations are similar, and normaliza-
tion is thus not needed. Scheffer et al [35] propose another
strategy, margin confidence (MC), which queries based on
the difference between the top two most confident predic-
tions:

θMC(x) = P (y1|x)− P (y2|x) (3)

Here y1 and y2 are the first and second best label predic-
tions.

The motivation behind uncertainty sampling is to find un-
labeled samples that are near some sort of decision bound-
ary. Least confidence does this by selecting images which
may or may not even belong to a class. Margin confidence
does this by selecting an image that could almost belong to
another class. These approaches cannot be used directly in
our implementation, as margin confidence and least confi-
dence sampling assume there is one true label per image.
It is thus best used in an image classification task. In
object detection with YOLO, there can be multiple ob-
jects per image, as well as an image belonging to multiple
classes. Selecting images near a decision boundary, like in
margin confidence sampling does not make much sense as
the classes are not mutually exclusive. E.g. an image that
is sampled because the difference in confidence between la-
bels ‘Person’ and ‘Woman’ is very low, does not contribute
much. It is likely intended: the detection is a person and
a woman. The least confidence sampling method can be

3

used, but requires an aggregation technique, to aggregate
the scores of multiple detections in an image.

3.1.2 Aggregation
The Brust et al research [26] proposes three simple and effi-
cient aggregation strategies: sum, average and maximum.
These methods calculate an aggregated least confidence
metric for each of the detections i in an image x.

The sum aggregation method prefers images that have
multiple uncertain detections. Empty images and boxes
are valued zero. This aggregation method selects images
that have boxes with high confidences last. The value for
an image x with detections i can be calculated as follows:

θsum(x) =
∑
i∈x

θLC(i) (4)

The sum method is sensitive to the amount of detections
per image. By averaging over the amount of detections
per image, the scores can be made comparable between
images, such as in the average aggregation method:

θavg(x) =
1

|x|
∑
i∈x

θLC(i) (5)

As a final method, the maximally uncertain value θLC(i)
can be used for an image x containing i detections. This
helps when there are many (noisy) detections per image,
but also causes information loss: the value of just a single
box is considered, instead of the whole image.

θmax(x) = max
i∈x

θLC(i) (6)

3.1.3 YOLO’s Confidence
There is still one missing part to the recipe for active
learning, getting some sort of confidence measure out of
the YOLO model. Regular CNN’s use a softmax layer
to create a probability distribution of class confidences.
YOLO uses a specialized layer, which outputs for each
grid cell multiple bounding boxes, along with a box con-
fidence score P (Object) and conditional class confidences
P (Classi|Object) for each class i. This allows for creating
a confidence score that measures both the confidence on
classification and localization. This confidence measure is
calculated as in eq. (7):

P (Classi) = P (Classi|Object) ∗ P (Object) (7)

YOLO creates a ‘detection’ for the bounding boxes that
have the highest P (Classi) in a grid cell. However, since
every grid cell creates multiple bounding boxes, most of
the bounding boxes in an image have a low (or zero)
P (Classi). YOLO therefore uses a threshold for the con-
fidences. Only boxes with a confidence higher than the
threshold are considered. The scores P (Classi) above a
threshold of 0.25 are used in the active learning strategy
of this study.

The algorithm that implements active learning for YOLO
with a sum aggregation method for θlc is described in Al-
gorithm 1. Algorithm 1 starts by labelling all images in the
unlabeled data pool. The confidences for the detections in
the image (for which P (Classi) > 0.25) are aggregated to
determine a score for every unlabeled image. Based on the
scores, a selection of unlabeled images are labeled by an
oracle and added to the labelled set.

3.2 Federated Learning
Active learning takes place locally on the device and cre-
ates a set of labelled images which can be used for training
the YOLO object detection model with federated learning.
The federated aggregation method in this study is chosen
to be the common FedAvg. Many platforms have been

Algorithm 1 Active Learning in YOLO with sum aggre-
gated θLC

Input: (small or non-existent) labeled set L, pool of unlabeled
data U , classes C, object detection framework D, oracle
H, active learning iterations N where A images are queried
each round. ;

Output: Augmented set U and L
1: for k = 1, ..., N do
2: for image ∈ U do
3: initialize sum to 0
4: res ← results of labeling image using D
5: for gridcell ∈ res do
6: boxes ← select boxes for which P (Classi) is the

maximum of any class i ∈ C in the gridcell
7: for box ∈ boxes do
8: if P (Classi) > 0.25 then
9: sum← sum+ (1− P (Classi))

10: end if
11: end for
12: end for
13: store sum with image
14: end for
15: Ubest ← highest scoring A images of all images in U

according to sum.
16: U ← U \ Ubest
17: label Ubest with oracle H
18: L ← L ∪ Ubest
19: train D using L
20: end for

developed to boost research into federated learning, which
contain the FedAvg algorithm. However, these platforms
are mostly tailored for a real-world practical implementa-
tion of FL [36]. As such, they come with networking capa-
bilities out of the box. In this study, the federated learning
is simulated over multiple devices, but takes place on only
a single computer. The networking capabilities add ex-
tra unneeded overhead, and have thus been removed, to
create the pseudo-FL algorithm as described in [32]. Al-
gorithm 2 can be created by integrating the pseudo-FL
algorithm with the active learning steps in Algorithm 1.

Algorithm 2 conducts a local iteration of AL, then trains
the model locally and aggregates these local models glob-
ally, which are distributed for another iteration of AL,
and so on. This can mean that a lot of communication
rounds are used, before a significant part of the local data
is labelled. An alternative is thus to postpone the com-
munication rounds, until the model has sampled a certain
amount of images using AL. This is done by setting input
P of Algorithm 2.

3.2.1 Federated Learning with Chains
While the method in Algorithm 2 seems intuitive, it will
require many communication rounds before the model can
be deemed accurate [32]. This is due to the fact that
FedAvg does not converge fast. In FedAvg all clients train
on a given global model, and create their own local models.
These local models are tailored to that device’s dataset.
However, when the models are averaged out, depending
on the amount of clients, local deviations in the weights
caused by specific instances in the dataset, are largely lost.
This contributes to the generalizability of the model as the
amount of communication rounds increase, but hinders
the speed of convergence of (parts of) the model in early
communication rounds.

A novel scheme is therefore proposed, where the feature
extraction layer is trained in just the first iteration. To do
this, each device should be able to contribute to the fea-
ture extraction as much as possible. Therefore a ‘chained’
approach is implemented, where one device trains a model
with the newly labeled images, after which another devices
reuses that model and trains it with its newly labeled im-
ages. This continues for an arbitrary amount of clients,
essentially creating a chain. This allows individual de-

4

Algorithm 2 AL in FL for YOLO

Input: N client parties {ck}k=1..N , with unlabelled sets
{Uk}k=1..N and labeled sets {Lk}k=1..N , local client
epochs E, client selected AL samples per iteration A, max.
selected AL samples X, AL (aggregated) evaluation func-
tion θ, total rounds T , the amount of rounds to postpone
communication P and server side S;

Output: Aggregated Model w
1: S initializes federated model parameters, and saves as

checkpoint. Client parties {ck}k=1...N load the checkpoints

as w(0).
2: for t = 1, ..., T do
3: for k = 1, ..., N do
4: if t > P or t = 1 then
5: wk ← client party ck loads wt−1.
6: end if
7: if |Lk| < X then
8: client {ck} does one local active learning iteration:
9: Ubest ← highest scoring batch of A images in U

according to θ using the checkpoint.
10: Uk ← Uk \ Ubest
11: Lk ← Lk ∪ Ubest labeled using human oracle
12: end if
13: client {ck} does local training:
14: for i = 0, 1, ..., E do
15: client {ck} computes gradients ∇`(wk, Lk)
16: update with wk ← wk − η∇`(wk, Lk)
17: end for
18: save wk result to checkpoints
19: end for
20: if t ≥ P then
21: S loads checkpoints and get averaged model w(t) =

1
N

∑N
k=1 wk

22: end if
23: end for
24: return w(T)

Figure 2. A simplified diagram showing Algorithm 3
vices to have a greater impact on the training. Specific
devices can cause issues when the data is not homoge-
neously distributed over the devices, i.e. a device is defi-
cient of a class. Therefore an aggregated model is created
by weighing the best models of the devices with a valu-
ation function. This valuation function can use a score,
such as the recall on a class, or the local dataset distri-
bution. After the feature extraction layer is trained, the
model can continue training with a frozen backbone in a
similarly chained approach (device-to-device), or in a fed-
erated approach (FedAvg). Since the backbone is frozen,
less weights have to be updated, causing training times
to drastically decrease. The backbone does not have to
be communicated by the server in communication rounds,
saving bandwidth as well. Additionally, the chained struc-
ture can be beneficial in certain network structures, e.g.
where some devices cannot directly connect to a central
server. The algorithm for the scheme can be seen in Algo-
rithm 3, and a schematic representation in Figure 2.

4. EXPERIMENTS
Algorithm 2 and 3 are trained on a real-world dataset and
evaluated. This section starts by describing the dataset
that is used and how the data is split over devices. After
which the setup for the experiments and the evaluation

Algorithm 3 Chained FL

Input: N client parties {ck}k=1..N , with unlabelled sets
{Uk}k=1..N and labeled sets {Lk}k=1..N , containing X
classes, local client epochs E, total client selected AL sam-
ples A, AL (aggregated) evaluation function θ, total rounds
T , validation set V , and server side S;

Output: Aggregated Model w
1: S initializes federated model parameters, and saves as

checkpoint.
2: for k = 1, ..., N do
3: if k = 1 then
4: client party c1 loads the server checkpoint.
5: else if k > 1 then
6: client party ck loads the last checkpoint from ck−1.
7: end if
8: client {ck} does one local active learning iteration:
9: Ubest← highest scoring batch of A images in U according

to θ using the checkpoint.
10: Uk ← Uk \ Ubest
11: Lk ← Lk ∪ Ubest labeled using human oracle
12: client {ck} does local training:
13: for i = 0, 1, ..., E do
14: client {ck} computes gradients ∇`(wk, Lk)
15: update with wk ← wk − η∇`(wk, Lk)
16: evaluate wk on validation set V
17: save highest scoring mAP wk result as best checkpoint
18: end for
19: save wk result as last checkpoint
20: send best checkpoint and last checkpoint to S
21: end for
22: S loads best checkpoints of each client and gets aggregated

model wagg according to some valuation function f (e.g.
recall on each of the classes):

23: Cbest← highest scoring clients according to valuation func-
tion f on the results of the best checkpoint of each client.

24: for k ∈ Cbest do
25: wagg ← wagg + wk

|Cbest|
26: end for
27: Continue training with a frozen backbone using wagg in

a similarly chained approach, or continue with FedAvg
rounds with a frozen backbone for T rounds.

28: Chained approach:
29: for t = 2, ..., T do
30: for k = 1, ..., N do
31: if k = 1 then
32: client party c1 loads the last checkpoint from cN .
33: else if k > 1 then
34: client party ck loads the last checkpoint from ck−1.
35: end if
36: for i = 0, 1, ..., E do
37: client {ck} computes gradients ∇`(wk, Lk) except

for gradients of backbone
38: update with wk ← wk − η∇`(wk, Lk)
39: end for
40: save wk result as last checkpoint
41: end for
42: end for
43: return w

(T)
N

criteria are defined. The section concludes by reporting
and analyzing the results from the experiments.

4.1 Dataset
In order to evaluate our method, the publicly available
KITTI Object Detection Benchmark dataset is used, re-
leased in 2012 by Geiger, Lenz and Urtasun [37]. The
dataset contains 7481 real-world images collected in the
mid-size city Kalsruhe. The benchmark set has 2D bound-
ing boxes which can be used for training. Images in the
dataset can contain multiple bounding boxes, which can
be for any of the 9 possible classes. The resolution of the
images is (mostly) 1242x375. KITTI has a separate vali-
dation set, which is unlabeled. The validation dataset is
not used in the experiment, as it would require manual la-
belling to actually validate results. To create a validation
set, the training set is split into two parts: 70% train and
30% validation.

The KITTI dataset cannot directly be used in this exper-

5

iment, as its format is incompatible with YOLO. YOLO
requires labels to be formatted as

<class_number> <x_center> <y_center> <width> <height>

Whereas the labels in KITTI are given by the class name
and the coordinates of each corner of the 2D bounding box.
The KITTI dataset is thus first converted to a YOLO-
compatible format. The images in KITTI also come in
the uncompressed PNG format, for performance reasons
(quickly loading images into cache), the images have been
compressed to JPEG. One of the classes in KITTI is the
‘DontCare’ class. Regions are labeled as DontCare when
they have not been labeled. This class is not used in the
experiments.

From the YOLO-compatible dataset, two different datasets
are created: 2-class and 8-class. In the 2-class dataset,
only the ‘Pedestrian’ and ‘Car’ class are used. In the
8-class dataset ‘Car’, ‘Van’, ‘Truck’, ‘Pedestrian’, ‘Per-
son sitting’, ‘Cyclist’, ‘Tram’ and ‘Misc’ are used. From
each of these datasets, 220 images are reserved for pre-
training of the model. The remaining images from the
2-class dataset are randomly selected and split over 9 de-
vices, such that each device has roughly the same amount
of images (560 ± 1). While this does not guarantee that
each class is identically distributed over the devices, this
does make the dataset (close to) IID. The remaining im-
ages in the 8-class dataset are split over 9 devices, such
that each device is deficient of at least 1 class and has
roughly the same amount of images (580 ± 1). This sim-
ulates a scenario where the labels are unbalanced, which
can happen in practice (i.e. a city with no cyclists). The
original labels for the images are not stored on the de-
vice. Only when the AL algorithm queries the ‘oracle’ for
an unlabeled image, the original label is given to the de-
vice. In total 220 images are queried on each device for all
algorithms.

4.2 Experimental Setup
Algorithm 2 and 3 are implemented in the Python lan-
guage. The training and inference code for YOLO has
been based on prior work by Ultralytics in their publicly
available YOLOv5 PyTorch implementation [38]. The train-
ing and AL iterations on the devices are executed fully
independently and each device has its own data pools.
However, the datasets and training of these devices are
located on the same server/computer for practical rea-
sons. All of the code, the training and validation dataset,
the datasets on each device and the class-distribution are
available at https://github.com/jeltevanbommel/ALFL.
The code has been executed on a PC with an AMD Ryzen
5900x and an Nvidia RTX3080. Due to the amount of
training required, cloud instances have been used to simul-
taneously train different implementations. These cloud
instances used Nvidia Quadro P5000, Quadro P6000 and
RTX6000 cards.

Each of the experiments uses a pretrained model, that has
been trained from scratch on 220 images for 200 epochs.
By pretraining the model, the convergence time can be
considerably lowered. As every individual experiment takes
a significant amount of time to complete, pretraining the
model made the experiments viable in the short timespan
for this study. The specific model trained in the exper-
iments is YOLOv5s. This model is the fastest model in
the YOLOv5 series, however, this comes at the cost of ac-
curacy. Training with bigger YOLOv5 models will likely
contribute to a significant raise in model performance. The
image size for the YOLOv5s model is 640x640. Training
with a different model and larger image size will likely
contribute to the model performance as well. The hyper-
parameters are not tuned beyond their default settings and

the SGD optimizer is used with batch size 16.

4.3 Evaluation Metrics
On the topic of model performance, two common metrics
are used to determine the performance of the model: In-
tersection over Union (IoU) and mean Average Precision
(mAP).

IoU is a number between 0 and 1 that specifies the amount
of overlap between a predicted bounding box (Boxpred)
and the ground truth bounding box (Boxgt). An IoU of 0
indicates that there is no overlap between the two boxes,
whereas an IoU of 1 means that the boxes are completely
overlapping (i.e. the union of the boxes is the same as their
overlap). The IoU can be used as a threshold to classify
predictions as a true positive or false positive. The IoU is
given by:

IoU =
area(Boxpred ∩Boxgt)
area(Boxpred ∪Boxgt)

(8)

The average precision (AP) for a given class can be calcu-
lated with the IoU (as it classifies true and false positives).
The AP metric is given with a specific notation: AP@0.5
means the AP with IoU 0.5 as a threshold. Whereas
AP@[.5:.95] corresponds to the average AP for an IoU be-
tween 0.5 and 0.95 with a step size of 0.05. mAP (mean
Average Precision) is the mean taken over the AP per
class. mAP is used as a standard metric in object detec-
tion challenges such as PASCAL VOC 2012. It is defined
as:

mAP =
1

N

N∑
i=1

APi (9)

where the AP is calculated for each class i out of N classes.

4.4 Results
In this section we report the results that have been achieved
by the different variations of Algorithm 2 and 3. To demon-
strate the effectiveness of active sampling, a baseline is
trained for each variation that uses random sampling in-
stead of active learning sampling. Similarly, a baseline is
trained for each of the runs using all of the device’s labelled
files in a centralized learning environment for 200 epochs.
Different aggregation strategies are used to provide a com-
parison of the performance of the strategies. An overview
of the runs, their abbreviations, as well as their specific
parameters is given in Table 1. In this table Algorithm 2*
indicates that the communication rounds have been post-
poned until the AL iterations have finished (i.e. by setting
P=22 in Algorithm 2). In Algorithm 2 the communication
rounds take place in between AL iterations as well. Ev-
ery AL iteration is still counted as a round to allow for
a straightforward comparison. The runs in Table 1 have
been trained for 110 total rounds, of which 22 were AL
iterations. Each AL iteration queried 10 images from the
oracle. The devices are trained for 20 epochs per round
on the locally labelled dataset.

Table 1. The variations in the runs with algorithm 2 and
its variant 2*.

Name
2-2*-
SUM

2-2*-
RND

2-2-
SUM

2-2-
MAX

2-2-
AVG

2-2-
RND

8-2-
MAX

8-2-
RND

Dataset
Classes

2 2 2 2 2 2 8 8

Algorithm 2* 2* 2 2 2 2 2 2
Sampling
Strategy

LC Random LC LC LC Random LC Random

Aggregation
Strategy

SUM SUM MAX AVG MAX

Influence of aggregation method. After 110 rounds have
finished for the runs in table 1, the model’s mAP@.5 is

6

https://github.com/jeltevanbommel/ALFL

calculated using the validation set. The results of this
can be seen in the bar graph of Figure 3. As can be
seen in Figure 3, the model’s performance is highly re-
lated to the aggregation strategy, for both the federated
and centralized approaches. The max aggregation strat-
egy shows it performs significantly better than random
selection would have, indicating that it is a viable tech-
nique in practice. Some aggregation strategies, like the
sum aggregation, perform worse than random selection.
Sum aggregation prefers images that contain many low-
confidence boxes. These images do not always make for
good learning examples, as they often contain partially
overlapping objects, or the bounding boxes are overlap-
ping. An example of an image sampled during 2-2*-SUM
is shown in Figure 4.

Influence of postponed communication rounds. Figure 3
also shows us that postponing the communication rounds
results in an higher mAP@.5. This was not expected,
but can be intuitively explained. When communication
rounds take place between AL iterations, each of the de-
vices in the same AL iteration have the same object detec-
tion model. Client 1 selects images of which the model is
very uncertain. The images that client 1 has collected may
already contribute enough to alleviate the uncertainty in
the global model. However, all other clients, have the same
object detection model and will sample the same kind of
uncertainty images. This makes the labelled set on the de-
vices less diversified, which can hinder the generalization
of the model. The chained approach outlined in Algo-
rithm 3 does not have these issues: the model from client
1 is trained on the newly labeled images and is re-used by
client 2.

Convergence of Algorithm 2. The mAP@.5 of the runs in
Table 1 are mapped against their rounds, to produce Fig-
ure 5. For algorithm 2* there are no aggregated models
in the first 21 rounds. Therefore the mAP in these rounds
has been calculated as the average mAP of each of the
devices at the end of the AL iteration. In Figure 5 we can
see that the performance of the 2-class models increases
significantly from the pretrained model within 110 itera-
tions. The aggregation method appears to influence the
convergence speed of the model, where the avg aggregation
converges quicker than the max aggregation. The max ag-
gregation does not appear to have converged within 110
rounds, and may improve even further with more commu-
nication rounds.

Influence of unbalanced dataset. The performance of the
8-class runs in Figure 5 is drastically worse than the 2-
class runs in Figure 5. The 8-class models can be seen
slowly increasing in performance as the amount of rounds
grows higher. In Figure 3 it can be seen that the federated
runs perform slightly worse than the centralised runs for
the 2-class runs, while the 8-class federated runs perform
significantly worse than the centralized runs. This indi-
cates that the implemented models have difficulty with
heterogeneous data. The model converges slower since it
has to average out the deficiencies of each device. If only
1 device has a specific class, it can take a large amount
of rounds before the device has had enough influence on
the global model to alter the weights for the class. This
is a well-known problem in Federated Learning and has
been documented in other works [39, 40]. Different feder-
ated aggregation algorithms, such as HDAFL in [40] are
expected to solve this problem.

4.4.1 Chained Results
For both of the datasets: the 2-class and 8-class dataset,
the chained approach of Algorithm 3 is evaluated. An al-
teration of Algorithm 3, where after the first chain the

2-2*-SUM 2-2*-RND 2-2-SUM 2-2-MAX 2-2-AVG 2-2-RND 8-2-MAX 8-2-RND
Run Name

0.0

0.2

0.4

0.6

0.8

1.0

m
AP
@
.5

0.694 0.720
0.684

0.739 0.723 0.723

0.474 0.462

0.824 0.837 0.827
0.860 0.851 0.842

0.808
0.764

Figure 3. The mAP@.5 of the runs in table 1 after 110
rounds. In green the results of training a centralized model
on the same selected dataset for 200 epochs. Orange bars
indicate random sampling.

Figure 4. An image sampled using the sum aggregation.

0 20 40 60 80 100
Communication Round

0.3

0.4

0.5

0.6

0.7

m
AP

@
.5

2-2*-RND
2-2*-SUM
2-2-AVG
2-2-MAX
2-2-RND
2-2-SUM
8-2-MAX
8-2-RND

Figure 5. The mAP@.5 of the aggregated models of Table 1
at each communication round.

model continues to be trained with FedAvg, has also been
evaluated. Both of these implementations are based on an
identical first iteration. In the chained approaches, each
device queries 220 unlabeled images with the sum aggre-
gation strategy using AL. The devices are trained for 200
epochs in the first round, after which the amount of local
epochs is lowered in the consecutive rounds. In the case of
the 8-class dataset, the amount of epochs is lowered fur-
ther, to decrease the odds of the model forgetting classes
(when training on deficient devices). The full details of
each run can be seen in Table 2. Note that the chained
runs were executed at the same time as the runs of Table
1. As such it was not known at the time that the sum ag-
gregation method performs considerably worse than other
aggregation methods. It is expected that chained mod-
els trained with the max aggregation strategy will show
increased performance.

Table 2. The variations in the runs with algorithm 3.
Name 2-Chained 2-Chained-FedAvg 8-Chained
Dataset Classes 2 2 8
Algorithm 3 3 + FedAvg 3
Local Epochs 20 20 3

Rounds
Initial + 5
Chained

Initial + 20 Fed.
Comm. Rounds

Initial + 5
Chained

Sampling Strategy LC LC LC
Agg. Strategy SUM SUM SUM

7

2-Chained 2-Chained-FedAvg 8-Chained
Run Name

0.4

0.5

0.6

0.7

0.8

0.9

m
AP

@
.5

0.788 0.781

0.614

0.850 0.850
0.812

Figure 6. The mAP@.5 of the runs in Table 2 when finished.
In green the results of training a centralized model on the
same selected dataset for 200 epochs.

0 2 4 6 8 10
Round

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

m
AP

@
.5

Initial round completed, backbone is frozen and models aggregated

2-Chained
2-Chained-FedAvg
8-Chained

Figure 7. The mAP@.5 of the runs in Table 2 during the
training rounds.

0 5000 10000 15000 20000 25000
Total megabytes transferred by all clients

0.3

0.4

0.5

0.6

0.7

0.8

m
AP

@
0.
5

2-2*-RND
2-2*-SUM
2-2-AVG
2-2-MAX
2-2-RND
2-2-SUM
2-Chained
2-Chained-FedAvg
8-2-MAX
8-2-RND
8-Chained

Figure 8. The mAP@.5 of the runs in Table 1 and Table 2
plotted against the megabytes transferred.

Comparison with Algorithm 2. The mAP@.5 is graphed
in Figure 6, similarly to Figure 3. It can be seen that the
2-Chained approach slightly outperforms the 2-Chained-
FedAvg approach. All the approaches in Figure 6 signif-
icantly outperform the approaches in Figure 3, showing
that Algorithm 3 converges with a higher mAP@.5 than
traditional federated learning as in Algorithm 2.

Influence of initial round. The mAP@.5 is plotted against
the amount of rounds in Figure 7. This shows that Al-
gorithm 3 converges in significantly less rounds than Al-
gorithm 2. It can also be seen that the biggest gain in
mAP can be attributed to the initial round, which has
the focus of training the feature extraction layers. With
the feature extraction layers frozen, finetuning of the other
layers allows the model to increase mAP further. It ap-
pears all chained models have not yet converged, and may
reach higher mAP scores when trained for more rounds.
Finetuning of the hyperparameters, i.e. learning rate and
weight decay, may allow the model to converge even faster.

Communication cost. One of the major considerations in
the federated learning approaches should be the communi-
cation costs. Algorithms like federated averaging require a
considerable amount of rounds before a model converges.
The chained approach shows it is possible to create a
quicker converging object detection model on federated
data. The chained approach uses less rounds, as well as
that the majority of rounds transfer a model with a frozen
backbone. The frozen backbone is identical after the ini-
tial round, and as such there is no need to communicate
it, decreasing the communication cost even further. Trans-
ferring a regular model costs roughly 14.017MB of band-
width, whereas a model without backbone costs roughly
5.7MB to transfer. By plotting the total amount of megabytes
uploaded and downloaded by all of the client devices, against

the mAP, the efficiency of the chained approach can be put
into perspective. Figure 8 reports the 2-class chained ap-
proach as reaching the highest mAP@.5, with the least
amount of megabytes transferred.

5. CONCLUSION
In this study we have explored the technique of active
learning to overcome the unlabeled data problem for train-
ing federated models in object detection. Several schemes
which combine active learning, federated learning and the
YOLO-object detection framework, have been proposed,
implemented and experimentally evaluated on the KITTI
real-world dataset. The results show the federated algo-
rithms are able to approach precision levels of centralized
learning on homogeneous data. Federated algorithms like
FedAvg converge slowly, contributing to high communi-
cation costs. The novel chained approach outlined in this
study provides an alternative that converges quicker with a
higher mAP@.5. In addition to this, evidence is presented
that uncertainty sampling in AL can provide a consider-
able boost to the model’s performance over random sam-
pling. The amount of images that have to be queried by
active learning are limited to 220 per device, instead of
the tens-of-thousands of images in centralized learning.

The study shows that federated learning for object detec-
tion can be made possible through active learning, and
performs close to the level of centralized learning, while
preserving privacy and reducing costs for (central) hu-
man labelers and communication costs. With these value-
aspects in mind, it is not unlikely that in the future (where
object detection frameworks have improved even further),
the methods outlined in this paper will be used in practice
at large scales, such as for autonomous driving.

6. FUTURE WORK
The current models do not work well with non-homogeneous
data. To circumvent this, the scheme would require a
client selection algorithm that takes into account the ho-
mogeneity of the data on each device. Techniques, such
as HDAFL in [40], may solve the underlying problem. In
a future work, the performance on non-homogeneous data
should be evaluated further and improved upon, such that
the scheme would not have to rely on client selection al-
gorithms.

While the AL iterations could potentially take weeks, it
is still unlikely the user of a device will voluntarily label
220 images. Therefore the method in this paper will likely
require some sort of incentive before it can be applied in
practice. In a future work, the amount of time and labelled
images per AL iteration can be further decreased by using
machine learning to label multiple images in its unlabeled
datapool (e.g. 1 query labels 3 images). A small selection
of the images are queried for correctness at the user. This
makes it easier for the user, as the task becomes binary:
‘correct’ or ‘incorrect’, and the labelled dataset size can be
significantly increased (although it may contain biases.)

Finally, one of the issues with the sampling strategies out-
lined in this report, is that they rely on a valuation mea-
sure for one individual image. The AL iterations are likely
to rank similar images similarly high (e.g. on the same
street at 5 meters distance). This was of no issue in the
current report, as the KITTI dataset does not contain sim-
ilar images. However, specifically in autonomous driving
this can present problems, as the images will be sampled
from videos recorded around the car. Providing a similar
images multiple times to the model through AL is unlikely
to contribute to model performance, but does waste train-
ing and labeling resources. As such, sampling strategies
which sample a diversity of images from the unlabeled data
pool, should be explored.

8

7. REFERENCES
[1] S. Heinrich, “Flash memory in the emerging age of

autonomy,” pp. 1–10, 2017. [Online]. Available:
https://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2017/20170808 FT12
Heinrich.pdf

[2] A. Widyotriatmo and K.-S. Hong, “Decision making
framework for autonomous vehicle navigation,” in
2008 SICE Annual Conference, 2008, pp. 1002–1007.
doi: 10.1109/SICE.2008.4654802

[3] M. R. Endsley, “Autonomous Driving Systems: A
Preliminary Naturalistic Study of the Tesla Model
S,” Journal of Cognitive Engineering and Decision
Making, vol. 11, no. 3, pp. 225–238, 2017. [Online].
Available:
https://doi.org/10.1177/1555343417695197

[4] IHS Markit, “Artificial intelligence driving
autonomous vehicle development,” 2020. [Online].
Available: https://ihsmarkit.com/research-
analysis/artificial-intelligence-driving-autonomous-
vehicle-development.html

[5] Z. Shahan, “Tesla Autopilot Innovation Comes From
Team Of ˜300 Jedi Engineers — Interview With
Elon Musk,” 2020. [Online]. Available:
https://cleantechnica.com/2020/08/15/tesla-
autopilot-innovation-comes-from-team-of-300-jedi-
engineers-interview-with-elon-musk/

[6] H. B. McMahan, E. Moore, D. Ramage,
S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep
Networks from Decentralized Data,” Proceedings of
the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 2 2016.
[Online]. Available: http://arxiv.org/abs/1602.05629

[7] J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata,
“Federated Learning in Smart City Sensing:
Challenges and Opportunities,” Sensors, vol. 20,
no. 21, p. 6230, 10 2020. [Online]. Available:
https://doi.org/10.3390/s20216230

[8] A. M. Elbir, B. Soner, and S. Coleri, “Federated
Learning in Vehicular Networks,” arXiv, 6 2020.
[Online]. Available: http://arxiv.org/abs/2006.01412

[9] K. Tan, D. Bremner, J. L. Kernec, and M. Imran,
“Federated Machine Learning in Vehicular Networks:
A summary of Recent Applications,” in 2020
International Conference on UK-China Emerging
Technologies, UCET 2020. Institute of Electrical
and Electronics Engineers Inc., 8 2020. doi:
10.1109/UCET51115.2020.9205482. ISBN
9781728194882

[10] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated
Learning in Vehicular Edge Computing: A Selective
Model Aggregation Approach,” IEEE Access, vol. 8,
pp. 23 920–23 935, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.2968399

[11] Y. Liu, J. J. Yu, J. Kang, D. Niyato, and S. Zhang,
“Privacy-Preserving Traffic Flow Prediction: A
Federated Learning Approach,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7751–7763, 8 2020.
[Online]. Available:
https://doi.org/10.1109/JIOT.2020.2991401

[12] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D.
Back, “Face recognition: A convolutional
neural-network approach,” IEEE Transactions on
Neural Networks, vol. 8, no. 1, pp. 98–113, 1997.
[Online]. Available:
https://doi.org/10.1109/72.554195

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the

IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol.
2016-December. IEEE Computer Society, 12 2016,
pp. 770–778. doi: 10.1109/CVPR.2016.90. ISBN
9781467388504. ISSN 10636919

[14] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015 - Conference
Track Proceedings. International Conference on
Learning Representations, ICLR, 9 2015. [Online].
Available: https://arxiv.org/abs/1409.1556

[15] J. Redmon and A. Farhadi, “YOLOv3: An
Incremental Improvement,” 4 2018. [Online].
Available: http://arxiv.org/abs/1804.02767

[16] J. Redmon and A. Farhadi, “YOLO: Real-Time
Object Detection,” 2018. [Online]. Available:
https://pjreddie.com/darknet/yolo/

[17] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji,
and J. Li, “Federated Learning for Vehicular
Internet of Things: Recent Advances and Open
Issues,” IEEE Open Journal of the Computer
Society, vol. 1, pp. 45–61, 2020. [Online]. Available:
https://doi.org/10.1109/OJCS.2020.2992630

[18] B. McMahan and D. Ramage, “Federated Learning:
Collaborative Machine Learning without Centralized
Training Data,” 2017. [Online]. Available:
https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html

[19] E. Diao, J. Ding, and V. Tarokh, “HeteroFL:
Computation and Communication Efficient
Federated Learning for Heterogeneous Clients,”
CoRR, vol. abs/2010.01264, 2020. [Online].
Available: https://arxiv.org/abs/2010.01264

[20] A. Albasyoni, M. Safaryan, L. Condat, and
P. Richtárik, “Optimal gradient compression for
distributed and federated learning,” 2020. [Online].
Available: https://arxiv.org/abs/2010.03246

[21] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang,
A. Dehghantanha, and G. Srivastava, “A survey on
security and privacy of federated learning,” Future
Generation Computer Systems, vol. 115, pp.
619–640, 2 2021. [Online]. Available:
https://doi.org/10.1016/j.future.2020.10.007

[22] H. Wang, K. Sreenivasan, S. Rajput,
H. Vishwakarma, S. Agarwal, J.-y. Sohn, K. Lee,
and D. Papailiopoulos, “Attack of the Tails: Yes,
You Really Can Backdoor Federated Learning,”
arXiv, 7 2020. [Online]. Available:
http://arxiv.org/abs/2007.05084

[23] J. Jeon, S. Park, M. Choi, J. Kim, Y.-B. Kwon, and
S. Cho, “Optimal User Selection for
High-Performance and Stabilized Energy-Efficient
Federated Learning Platforms,” Electronics, vol. 9,
no. 9, p. 1359, 8 2020. [Online]. Available:
https://doi.org/10.3390/electronics9091359

[24] T. Nishio and R. Yonetani, “Client Selection for
Federated Learning with Heterogeneous Resources
in Mobile Edge,” in IEEE International Conference
on Communications, vol. 2019-May. Institute of
Electrical and Electronics Engineers Inc., 5 2019.
doi: 10.1109/ICC.2019.8761315. ISBN
9781538680889. ISSN 15503607

[25] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba,
A. Ingerman, V. Ivanov, C. Kiddon, J. Konečný,
S. Mazzocchi, H. B. McMahan, T. Van Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards
Federated Learning at Scale: System Design,” arXiv,
2 2019. [Online]. Available:

9

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170808_FT12_Heinrich.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170808_FT12_Heinrich.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170808_FT12_Heinrich.pdf
https://doi.org/10.1177/1555343417695197
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://cleantechnica.com/2020/08/15/tesla-autopilot-innovation-comes-from-team-of-300-jedi-engineers-interview-with-elon-musk/
https://cleantechnica.com/2020/08/15/tesla-autopilot-innovation-comes-from-team-of-300-jedi-engineers-interview-with-elon-musk/
https://cleantechnica.com/2020/08/15/tesla-autopilot-innovation-comes-from-team-of-300-jedi-engineers-interview-with-elon-musk/
http://arxiv.org/abs/1602.05629
https://doi.org/10.3390/s20216230
http://arxiv.org/abs/2006.01412
https://doi.org/10.1109/ACCESS.2020.2968399
https://doi.org/10.1109/JIOT.2020.2991401
https://doi.org/10.1109/72.554195
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1804.02767
https://pjreddie.com/darknet/yolo/
https://doi.org/10.1109/OJCS.2020.2992630
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2010.03246
https://doi.org/10.1016/j.future.2020.10.007
http://arxiv.org/abs/2007.05084
https://doi.org/10.3390/electronics9091359

http://arxiv.org/abs/1902.01046
[26] C.-A. Brust, C. Käding, and J. Denzler, “Active

Learning for Deep Object Detection,” VISIGRAPP
2019 - Proceedings of the 14th International Joint
Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, vol. 5,
pp. 181–190, 9 2018. [Online]. Available:
http://arxiv.org/abs/1809.09875

[27] D. Angluin, “Queries and Concept Learning,”
Machine Learning, vol. 2, no. 4, pp. 319–342, 1988.
[Online]. Available:
https://doi.org/10.1023/A:1022821128753

[28] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby,
“Selective Sampling Using the Query by Committee
Algorithm,” Machine Learning, vol. 28, no. 2-3, pp.
133–168, 1997. [Online]. Available:
https://doi.org/10.1023/A:1007330508534

[29] A. McCallum and K. Nigam, “Employing EM and
Pool-Based Active Learning for Text Classification |
Proceedings of the Fifteenth International
Conference on Machine Learning,” pp. 350–358, 6
1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.50.10&rep=rep1&type=pdf

[30] J. Goetz, K. Malik, D. Bui, S. Moon, H. Liu, and
A. Kumar, “Active Federated Learning,” arXiv, 9
2019. [Online]. Available:
http://arxiv.org/abs/1909.12641

[31] L. Ahmed, K. Ahmad, N. Said, B. Qolomany,
J. Qadir, and A. Al-Fuqaha, “Active Learning Based
Federated Learning for Waste and Natural Disaster
Image Classification,” IEEE Access, vol. 8, pp.
208 518–208 531, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.3038676

[32] J. Luo, X. Wu, Y. Luo, A. Huang, Y. Huang,
Y. Liu, and Q. Yang, “Real-World Image Datasets
for Federated Learning,” 10 2019. [Online].
Available: http://arxiv.org/abs/1910.11089

[33] D. D. Lewis and W. A. Gale, “A Sequential
Algorithm for Training Text Classifiers,” Proceedings
of the 17th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR 1994, pp. 3–12, 7
1994. [Online]. Available:
http://arxiv.org/abs/cmp-lg/9407020

[34] A. Culotta and A. McCallum, “Reducing labeling
effort for structured prediction tasks,” in Proceedings
of the National Conference on Artificial Intelligence,
vol. 2, 2005, pp. 746–751. [Online]. Available:
https://www.aaai.org/Papers/AAAI/2005/AAAI05-
117.pdf

[35] T. Scheffer, C. Decomain, and S. Wrobel, “Active
hidden markov models for information extraction,”
vol. 2189. Springer Verlag, 2001, pp. 309–318. doi:
10.1007/3-540-44816-0 31. ISBN 3540425810. ISSN
16113349. [Online]. Available:
https://doi.org/10.1007/3-540-44816-0 31

[36] “Federated Learning for Image Classification
| TensorFlow Federated,” 2021. [Online]. Available:
https://www.tensorflow.org/federated/tutorials/
federated learning for image classification

[37] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready
for Autonomous Driving? The KITTI Vision
Benchmark Suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.
[Online]. Available:
http://www.cvlibs.net/datasets/kitti/

[38] G. Jocher et al, “ultralytics/yolov5: v5.0 -
YOLOv5-P6 1280 models, AWS, Supervise.ly and

YouTube integrations,” 2021. [Online]. Available:
https://zenodo.org/record/4679653

[39] N. Shoham, T. Avidor, A. Keren, N. Israel,
D. Benditkis, L. Mor-Yosef, and I. Zeitak,
“Overcoming Forgetting in Federated Learning on
Non-IID Data,” 10 2019. [Online]. Available:
http://arxiv.org/abs/1910.07796

[40] L. Yang, C. Beliard, and D. Rossi, “Heterogeneous
Data-Aware Federated Learning,” 11 2020. [Online].
Available: http://arxiv.org/abs/2011.06393

10

http://arxiv.org/abs/1902.01046
http://arxiv.org/abs/1809.09875
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1007330508534
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.10&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.10&rep=rep1&type=pdf
http://arxiv.org/abs/1909.12641
https://doi.org/10.1109/ACCESS.2020.3038676
http://arxiv.org/abs/1910.11089
http://arxiv.org/abs/cmp-lg/9407020
https://www.aaai.org/Papers/AAAI/2005/AAAI05-117.pdf
https://www.aaai.org/Papers/AAAI/2005/AAAI05-117.pdf
https://doi.org/10.1007/3-540-44816-0_31
https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
http://www.cvlibs.net/datasets/kitti/
https://zenodo.org/record/4679653
http://arxiv.org/abs/1910.07796
http://arxiv.org/abs/2011.06393

	Introduction
	Preliminary Concepts
	YOLO
	Federated Learning
	Active Learning
	Related Work

	Methodology
	Active Learning Process
	Confidence Sampling
	Aggregation
	YOLO's Confidence

	Federated Learning
	Federated Learning with Chains

	Experiments
	Dataset
	Experimental Setup
	Evaluation Metrics
	Results
	Chained Results

	Conclusion
	Future Work
	References

