
Active Learning On Embedded Devices
Frans de Boer

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
f.deboer-1@student.utwente.nl

ABSTRACT
Machine Learning algorithms require a lot of resources
to predict, and even more resources to be trained. This
makes it very difficult to train machine learning algorithms
on embedded devices, which typically have a small battery
and low power processors. This low power processor al-
lows the device to last a long time on a small battery,
but it also means tasks that require a lot of resources are
difficult to implement. This research aims to use active
learning to reduce the number of training iterations re-
quired to achieve a high accuracy on a machine learning
problem, and thus make it more feasible to train machine
learning algorithms on low powered devices. In the end we
show that while our active learning algorithms had some
problems, energy usage was still reduced and it could be
a promising way of reducing the energy usage of machine
learning algorithms.

Keywords
Machine Learning, Active Machine Learning, Embedded
Machine Learning

1. INTRODUCTION
Machine learning is quite an actively researched subject
in computer science and has been applied in many fields,
ranging from crop production [17] to cancer classification
[2]. These learning algorithms can pick up on patterns
from a dataset that it is given, and can then be used to
recognize these patterns in new never before seen data.

Supervised learning is a type of machine learning where
the dataset comes in input-output pairs. Each sample in
the dataset has a list of features and a corresponding la-
bel. The learning algorithms can then learn to associate
each label with a pattern in the input list, and predict la-
bels for new data. Collecting the input data can be done
by machines, but the labelling process is usually done by
humans and can take a lot of effort, thus researchers have
looked at active learning as a way to reduce the amount
of labelling required.

Active learning is a training method for machine learning
algorithms where the learner can request, in active learn-
ing this is called querying, samples from the dataset to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

be labelled by a human, also called an oracle. We start
with a small labelled subset of the dataset called the seed
and let the learner train on this. After this, the learner
chooses one or more samples from the dataset that it finds
confusing, in other words, it queries labels for the samples
that it thinks will give it the most information.

Active learning has been used in applications like image
classification [13, 18], classifying cancer pathology reports
(natural language processing) [4] and animal activity recog-
nition [16]. Using active learning the number of labelled
training examples required to achieve a high accuracy can
be reduced, thus reducing the workload for human la-
bellers.

In embedded machine learning a machine learning algo-
rithm is implemented on an embedded device. Example
applications are activity recognition [16, 6], and Internet-
of-Things applications [11].

2. RELATED WORK
Studies have been done on the current state of machine
learning on embedded devices, and ways to make these
machine learning algorithms run faster or more efficient
[3, 1]. Neither of these studies however assume the training
phase is done on the embedded device and don’t mention
active learning as a way to make the algorithm learn more
efficiently.

In [6] methods of extending the battery lifetime of a wear-
able sensor are explored. In this research almost all extra
battery lifetime was obtained by changing the sampling
rate and the data resolution of the sensor. A small ex-
tra increase was obtained by putting the machine learning
algorithm (a Support-Vector Machine) on the embedded
device instead of sending the data to a server to be pro-
cessed.

In [16] active learning is used for human activity recogni-
tion on a smartwatch. Reducing energy usage using active
learning is mentioned in the paper but is not further re-
searched.

Most found active learning research either explores active
learning methods or the ways active learning can be used
to decrease the amount of labelled data needed to achieve a
high accuracy machine learning schema. To our knowledge
little to no research has been conducted about using active
learning specifically as a way to reduce power usage of
embedded devices.

Many different methods of active learning exist, and [14,
15] both investigate the current state of active learning.
The research [15] proposes three different types of active
learning: membership query synthesis, stream-based selec-
tive sampling, and pool-based active learning. With mem-
bership query synthesis the learner can create its own in-

1



stances, and query the oracle to label these. Stream-based
selective sampling and pool-based active learning are quite
similar, but with some notable differences. With stream-
based selective learning, the learner evaluates the unla-
belled instances one by one using an informativeness mea-
sure, and if an instance is informative enough (for exam-
ple the informativeness measure is above a certain thresh-
old), it queries the oracle to label it. With pool-based
active learning, the instances are once again evaluated us-
ing an informativeness measure, but now all instances are
evaluated, and the oracle queries the most informative in-
stance(s). In [14] two categories of informativeness mea-
sures are proposed, agnostic and non-agnostic. Agnostic
strategies ignore any predictions made by the learner on
the dataset and instead decide the informativeness of an
instance only based on the structure of the sets of labelled
and unlabelled data. Non-agnostic strategies use the pre-
dictions of the learner to decide the informativeness of an
instance.

Many different active learning algorithms exist to query
the most informative instances from a dataset. Several of
these algorithms are discussed in [14], and in the following
paragraphs we will highlight a few of them.

2.1 Random Sampling
One of the simplest strategies of agnostic active learning
is random sampling. With random sampling, the learner
randomly picks an instance from the unlabelled set and
queries the oracle to label it. This sampling method is
often used to create the initial seed for the active learner
to train on.

2.2 Utility Sampling
Utility sampling is a non-agnostic active learning method
where the learner classifies unlabelled instances and queries
the instance it is least certain about. Several utility func-
tions exist to quantify this notion of certainty, and a high
uncertainty could imply a lot of information can be learnt
from the instance. We describe three of these utility func-
tions below.

2.2.1 Uncertainty Sampling
In uncertainty sampling the learner will query the instance
where it is the least certain about the label. The learner
will look at the probability it predicted of the label be-
ing correct for each instance, and it will pick the instance
where this probability is the lowest.

This method works well if there are only two possible
classes (so it would work well for binary classification),
but a lot of information is lost in cases where there are
more than two classes. For this other utility measures
could work better.

2.2.2 Margin Sampling
With margin sampling the learner will once again look at
the probabilities it predicted for the labels of an instance,
but this time instead of looking only at the highest prob-
ability (the probability of the label it predicted), it looks
at the highest two. The learner will then query the in-
stance where the difference between these two probabilities
is the lowest. This difference being low, in other words,
the two labels had a very similar probability according to
the learner, means the learner was not sure which label to
pick.

2.2.3 Entropy Sampling
Entropy sampling uses Shannon’s entropy function to cal-
culate the entropy of each prediction and then chooses the

prediction with the most entropy. In a perfect prediction
we expect this entropy to be 0, in this case the predic-
tion for the correct label will be 1, while the prediction for
all other labels will be 0. When the entropy gets further
from 0, and closer to 1, there is more uncertainty in the
prediction of the algorithm.

3. PROBLEM STATEMENT
A machine learning algorithm requires a lot of resources
to be trained. This makes it very difficult to put learning
algorithms on embedded devices, which typically have a
small battery and a slow processor. By applying active
learning to a learning algorithm we aim to decrease the
amount of energy required to achieve the same accuracy as
when a passive learning strategy is used, and thus make it
more feasible to train the learning algorithms on embedded
devices.

One note to make is that the goal of this research is not to
create a classifier with a high accuracy or to increase the
accuracy of the classifier using active learning. Instead,
the goal is to use active learning to achieve similar accu-
racies as when passive learning strategies are used, while
using less energy.

3.1 Research Question
To research a solution to our problem we have formulated
the following research question:

• Can active learning be used to reduce the energy
usage of training embedded machine learning algo-
rithms?

Which we have split up into the following subquestions:

1. How much energy does training a passive machine
learning algorithm use?

2. Can an active learner be built that gets a similar
accuracy as the passive learner?

3. How much energy does training the active learner
use relative to the passive learner?

4. METHODOLOGY
In order to find answers to our research questions we first
needed to answer questions about what algorithms we are
going to use and what hardware we will run these algo-
rithms on, and how we will do the energy measurements.
The following sections will explain this.

4.1 Hardware
To emulate the workings of an embedded device we needed
something that shared some of the constraints embedded
tasks have to deal with, such as a low power processor and
very little RAM, while also giving us the ability to easily
run a variety of tests on the device. To meet both of these
requirements we decided to use the Raspberry Pi family of
systems, more specifically the Raspberry Pi 3B+ was used
for initial testing and setup, and the Raspberry Pi 0 W was
used for the final data collection. The Raspberry Pi 3B+
was chosen to start with because of its higher power, and
better software supported (most notably TensorFlow was
a lot easier to install in the 3B+). After it was confirmed
everything ran on the 3B+ we switched to the Pi Zero W,
which due to being more resource-constrained more closely
resembles embedded applications. To get TensorFlow on
the Raspberry Pi 3B+ we used [9], and for the Raspberry
Pi 0 W we used [12]. From here on all mention of “the Pi”
will refer to the Raspberry Pi Zero W.

2



Figure 1. RPI 3B+ (top) and RPI 0 W (bottom)

4.2 Data & Data Processing
One of the applications of machine learning on embed-
ded devices is (animal) activity recognition [16, 10]. For
this reason, we used the labelled dataset from [10] to run
our experiments with. The dataset consists of sensor data
from sensors around the necks of 4 sheep and 2 goats.
Data was collected from a 3D accelerometer, a 3D gyro-
scope, a temperature sensor, and a pressure sensor while
the animals were doing activities such as eating, walking,
and grazing.

Data processing was done following the guidelines of the
original research. In the paper only the accelerometer data
was used for training the classifiers, so we will do the same.
First, the orientation-independent magnitude of the 3D
vector of the accelerometer is calculated for each point of
data using the following formula:

M(t) =
√
sx(t)2 + sy(t)2 + sz(t)2 (1)

The research mentions using a window function on the
data, and then calculates the min, standard deviation, and
25th percentile for each window to use as features. The
research however does not mention the window size, over-
lap, or windowing function that was used. To get a good
estimate of what windowing parameters to use we looked
at [5]. This research analyses the best window size for ac-
tivity recognition on sheep and concludes that good win-
dow parameters are a 7-second window with 50% overlap.
This means that at a sensor polling frequency of 200Hz
the window size used to process the dataset is 1400 sam-
ples. Neither research mentions the windowing function
that was used, so to reduce the number of parameters a
rectangular window (also called a boxcar) function was
used.

After the input parameters for each sample have been cal-
culated we need to determine the label per parameter.
Because we use a window multiple different labels can be
in each window. Here we followed the instructions from
the original research and chose the label per sample to be
the label that occurs most often in the window.

Finally, 10% of this dataset is used for testing, which is
randomly selected from the dataset at the start of each
test.

4.3 Machine Learning Algorithm
Together with the data [10] also describes its learning al-
gorithms. In total 7 different classifiers were used, from
these we will use the Neural Network and Deep Neural
Network for our tests.

Figure 2. FNB28 USB Power Meter Interface

Figure 3. INA219 Current Sensor Board

The neural network described is a multilayer perceptron,
a type of feedforward neural network. The network has 1
hidden layer, where the number of neurons is defined by:

ψ =
γ + ρ

2
+ 1 (2)

Where ψ is the number of neurons, γ is the number of fea-
tures, and ρ is the number of classes. In our case we have
3 features and 9 classes, so we get 7 neurons in the hidden
layer. We used the Adam optimizer included in Tensor-
Flow and found we got the best results with a learning rate
of 0.05. After some testing we saw that the neural net-
work achieved its maximum testing accuracy after about
20 epochs (it was able to get about 2% higher, but this
required about double the epochs), so any passive learning
tests were ran with 20 epochs. Any other parameters were
left to their Tensorflow defaults.

We also implemented a version of the deep neural network
(DNN) described in the research. The DNN we imple-
mented is also a multilayer perceptron, with 10 hidden
layers each with 50 neurons. However after some initial
tests we could not get the accuracy of this DNN above
45%, thus for any testing we only used the 1 layer neural
network.

4.4 Energy Measuring
Finally, if we want to measure the difference in energy
usage, we need a way to measure the energy usage of the
Pi. Solutions already exist to do this, such as lab power
supplies or USB power monitors with a screen. For this
research the plan was initially to use a USB power monitor,
so an FNB28 USB power meter was bought (see figure 2).
While this device was able to measure the power usage
and store this data locally, there was no way (as far as
we could find) to get this data off of the device. To solve
this problem a custom power meter was built using an

3



Figure 4. Energy Measurement Setup

Arduino and an INA219 current sensor board (see figure
3) following the instructions from [7, 8]. The full energy
measurement setup can be seen in figure 4. The Arduino
measures both the voltage and current draw of the Pi every
200 milliseconds using the INA219 sensor, and sends this
data over USB to a laptop. From here the data can be
stored and analyzed. From the voltage and current we
can calculate the power usage using the following formula:

P = V ∗ I (3)

Up next we can use the difference in time between samples
to calculate the energy usage. One problem here was that
the Arduino did not consistently send the data every 200
milliseconds and would sometimes send a batch of samples
at the same time. Due to this some of the times on our
samples weren’t correct, so to fix this we used the average
time between samples instead of the measured time.

Now that we have a power measurement per sample, and
can calculate the difference in time between samples we
can calculate the energy usage over our average period
of time. To do this we take the time difference between
two samples, and multiply this by the power usage of the
second sample:

Ei = Pi ∗ (ti − ti−1) (4)

Where i is the index of a sample. Summing this for every
sample gives us a total energy usage over our measurement
period.

The FNB28 was used to visually confirm the results ob-
tained from the Arduino, but was removed for any later
tests so its power draw would not influence the results.

To ensure we only measure the energy used for training,
and not the energy used for setting up the training code
(for example just importing TensorFlow on the Pi can take
around 30 seconds) we start measuring the energy usage
only when the training starts. One problem we encoun-
tered here is that TensorFlow does some setup before it
starts training which we were not able to account for.

4.5 Active Learning
For our tests we implemented active learning, margin sam-
pling, uncertainty sampling, and (Shannon) entropy sam-
pling. There are a lot of parameters to consider while

Table 1. Baseline Training Average Results
% of Training Set Energy (J) Test Accuracy

100% 230 81.6%
10% 38 77.7%
1% 19 66.2%

Table 2. Active Learning Results
Active Learning Method Energy (J)

Random 58
Margin 189

Uncertainty 179
Entropy 521

running these algorithms, such as the seed size, the num-
ber of iterations to run, and the number of samples to
query per iteration. After some testing we opted to use
the following configuration: Random sampling was used to
create a seed with 100 instances, on which the network was
trained for 5 epochs. After this 20 iterations of querying
are done, where each iteration 10 samples are queried using
the active learning algorithm and the network is trained
for 3 more epochs. This made the final size of our re-
duced dataset 300 instances or about 1.69% of the total
dataset. We got better results when training the active
learners with a slightly higher learning rate, so the learn-
ing rate was set to 0.1 for all active learning tests (for the
passive learning tests it was kept at 0.05). This configu-
ration reached a similar accuracy to our passive learning
solution, and early testing indicated the energy usage was
at or below the energy usage of our passive learner.

5. RESULTS
To get started with the results we first wanted a baseline
of the energy usage of the Pi Zero W. The energy usage of
the Pi Zero W was measured for 5 minutes, once while it
was doing nothing, and once while it had two ssh connec-
tions. This last measurement was done because for most
of the testing the Pi had multiple ssh connections, so we
wanted to measure if this had a noticeable effect on en-
ergy usage. The results of this measurement can be seen
in figure 5. The results of these tests were mainly used so
we could visually see in the incoming data if the Pi was
drawing current above the passive baseline, which gave us
an indication about the current activity level of the Pi.

Up next we wanted a good baseline for the energy usage
of the Pi while training. To do this we trained the neural
network for 20 epochs with the full dataset. After this we
randomly selected 10% of the entire dataset and trained
the algorithm once again with this, and then once more
with 1% of the entire dataset. All of these measurements
were ran 3 times using the same seed and the final average
was used for the results. Because we used a seed for these
tests the final accuracies were the same in all 3 tests, so
to get a better idea of what accuracies each dataset would
get we ran the same tests 3 more times this time without
a random seed. The average results of these tests can be
seen in table 1. One interesting observation is that the
energy usage does not decrease linearly with the dataset
size, so training with a dataset that is a tenth the size
does not consume a tenth of the energy. This is probably
caused by the setup code Tensorflow executes (mentioned
in 4.4), which adds some extra execution time (and thus
energy usage) to any training session.

We wanted to measure the energy usage of our active

4



Figure 5. Passive Current Draw of Raspberry Pi 0 W

Figure 6. Active Learning Training Results

5



Figure 7. Early Active Learning Results

learning algorithms, and their accuracy on each iteration.
Due to the fact that the training dataset is constantly
changing, getting the accuracy on this training dataset is
not very helpful. To get a better estimate of the perfor-
mance of our network we opted to get the accuracy on
the test dataset each iteration while it was training. A
problem with this was that getting the test accuracy each
iteration consumed more energy which would make our
energy measurements come out higher, so we ran multiple
versions of the test. For the first test we ran 3 iterations
of each algorithm, each with the same seed, and only mea-
sured the energy usage (so no accuracy was stored here).
After this we ran 1 more iteration with the same seeds,
this time storing the accuracy, and then 2 more iterations
both with new seeds to get more data on the accuracy
of each algorithm. The energy measurements can be seen
in table 2 and the accuracies per iteration can be seen in
figure 6.

Comparing the results from table 1 and table 2 we can see
that random, margin, and uncertainty sampling use less
energy than the training on the full dataset (respectively
74.8%, 17.8%, and 22.2% less). Entropy sampling on the
other hand uses more than twice the energy of training
on the full dataset (126.5% more energy), due to the com-
plexity of the entropy algorithm.

When we look at the accuracy results in figure 6 we en-
counter a problem. None of the more complicated ac-
tive learning algorithms (margin, uncertainty, and entropy
sampling) perform significantly better than random sam-
pling. Each of the algorithms seems to perform as if it were
randomly picking instances from the dataset instead of us-
ing the informativeness measures. We would expect the
results to look somewhat like the results in figure 7, where
margin sampling grows faster than random sampling, un-
til they both reach the same peak. This lines up with
the results obtained in [14]. The results in figure 7 were
obtained early on in this research, so they don’t match
the results from our other active learning tests (these ear-
lier tests were ran with fewer iterations and fewer queries,
which is why they only obtained an accuracy of about
70%). This means we can’t use them as a comparison to
our passive learning solutions, but they do show what re-
sults we expected to get for figure 6. We were unable to
recreate similar results in later stages of the research.

An interesting thing to look at with active learning is how
the final dataset is composed. The results of this can be
seen in figure 8. The first thing we can observe from this is
that the original full dataset is quite unbalanced, there are

a lot more instances of some labels than there are of others.
We can see that random sampling ends up with about the
same distribution as the full dataset, while margin, uncer-
tainty, and entropy sampling deviate quite a bit from the
original distribution. We have also added the distribution
of the test dataset of one of our tests (with the seed set
to 10005) so we can validate if the distribution is similar
to that of the full dataset. The full dataset being quite
unbalanced, and the fact that our active learning solu-
tions (except for random sampling) do not create datasets
with a distribution similar to the one of the full dataset
could be reasons why our active learning algorithms did
not perform better than random.

6. CONCLUSION
The results from table 1 show us how much energy is used
for regular passive learning. From here we can see that
this energy usage very much depends on the size of the
dataset, a machine learning algorithm requires less energy
to be trained with a smaller dataset.

In figure 6 we can see that active learning algorithms can
reach about the same accuracy as passive learning, al-
though there is somewhat more variance. One problem
here is that, as discussed before, our more complicated ac-
tive learning algorithms did not work better than random
sampling.

When we compare just the energy usage of the passive
learning and active learning solutions, active learning looks
to be a way of reducing the energy usage of machine learn-
ing. Random, margin, and uncertainty sampling all had a
reduction in energy usage. The problem however is that
none of the more complicated active learning algorithms
(margin, uncertainty, and entropy sampling) had a no-
ticeable better accuracy than random sampling, and just
using a randomly selected smaller dataset used less en-
ergy than even random sampling. Of course with this
smaller dataset the accuracy was lower, but this could be
increased by increasing the dataset size. So while active
learning did bring a decrease in energy usage, from the
results we cannot conclude that it is a good way of re-
ducing energy usage. What we do think is that with an
active learning algorithm that performs better than our
random sampling (such as the results we got in figure 7),
and does not use more energy than our margin sampling,
the energy usage of machine learning algorithms could be
reduced with minimal loss of accuracy.

7. FUTURE WORK
This research tries to lay the building blocks for future
active learning research. Active learning is quite a com-
plicated topic, and a lot remains to be researched. One
of these things is to research the improvements and im-
plementations of more complicated active learning algo-
rithms. This research was not able to get a significant ac-
curacy improvement using active learning algorithms such
as margin and uncertainty sampling. If future research
can implement this properly it could be used to reach a
higher accuracy, and perhaps reach it faster to save even
more energy. Other facets of active learning and embed-
ded machine learning that this research did not look at
could be researched in the future.

7.1 Hardware Acceleration
Hardware acceleration could not only allow the machine
learning algorithms to run faster, but also more efficiently,
and using this the energy usage of the algorithms could
be reduced even further. This could be especially helpful

6



Figure 8. Compositions of Final Training Datasets

for non-agnostic active learning algorithms, which use the
learner to predict on the unlabelled dataset. If this pre-
dicting can be made more efficient the non-agnostic active
learning algorithms will use less energy. This extra en-
ergy saved could be either used to make the embedded
device last longer on a battery or to increase the training
iterations done to achieve a higher accuracy.

7.2 Stream-Based Selective Sampling
The active learning algorithms tested in this research were
all pool-based, so they had to predict the entire unla-
belled dataset to create a query. More energy savings
could be obtained by using stream-based selective sam-
pling, where the unlabelled dataset is predicted until an
instance is found that meets a threshold of informative-
ness. The chance exists that this instance is not the most
informative instance in the entire dataset so less will be
learnt from it, but the trade-off is that there will be less
predicting and thus less energy is used.

7.3 Sensor Data
Because the main focus of this research is the effects of ac-
tive learning on energy usage we opted to use an existing
labelled dataset, but a big application of embedded ma-
chine learning is activity recognition, where data is contin-
uously collected by a sensor. By combining this incoming
sensor data with active learning the algorithm could learn
only from select incoming data, and continuously learn
while being in use.

7.4 Other optimisations
Embedded applications are not only constrained by their
batteries, but also by other resources such as RAM or CPU
power. This research only tries to optimise the energy
usage, but active learning could also be used to for example
reduce the number of training samples that have to be
stored, thus reducing RAM and storage usage.

References
[1] L. Andrade, A. Prost-Boucle, and F. Pétrot.

Overview of the state of the art in embedded machine
learning. In Proceedings of the 2018 Design, Automa-
tion and Test in Europe Conference and Exhibition,
DATE 2018, volume 2018-January, pages 1033–1038,
2018.

[2] A. Bharathi and K. Anandakumar. Investigation
on cancer classification using machine learning ap-

proaches. Journal of Biomaterials and Tissue Engi-
neering, 4(6):492–500, 2014.

[3] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen,
and Q. Zhang. Deep learning on mobile and embed-
ded devices: State-of-the-art, challenges, and future
directions. ACM Comput. Surv., 53(4), Aug. 2020.

[4] K. De Angeli, S. Gao, M. Alawad, H. . Yoon, N. Scha-
efferkoetter, X. . Wu, E. B. Durbin, J. Doherty,
A. Stroup, L. Coyle, L. Penberthy, and G. Tourassi.
Deep active learning for classifying cancer pathology
reports. BMC Bioinformatics, 22(1), 2021.

[5] W. Emily, C. Christy, M. Jurgen, V.-D. J. A.,
Y. Juan, D. Tania, E. K. A., W. Anthony, and K. Jas-
meet. Evaluation of sampling frequency, window size
and sensor position for classification of sheep be-
haviour. 2018.

[6] X. Fafoutis, L. Marchegiani, A. Elsts, J. Pope,
R. Piechocki, and I. Craddock. Extending the bat-
tery lifetime of wearable sensors with embedded ma-
chine learning. In IEEE World Forum on Internet
of Things, WF-IoT 2018 - Proceedings, volume 2018-
January, pages 269–274, 2018.

[7] GreatScott! Make your own power me-
ter/logger. https://www.youtube.com/watch?v=

lrugreN2K4w/, 2016.

[8] GreatScottLab. Make your own power me-
ter/logger. https://www.instructables.com/

Make-Your-Own-Power-MeterLogger/, 2016.

[9] L. Johnson. Tensorflow 2 on raspberry pi. https:

//bit.ly/3x44FVS, 2020.

[10] J. Kamminga, H. Bisby, D. Le, N. Meratnia, and
P. Havinga. Generic online animal activity recogni-
tion on collar tags. In UbiComp’17, pages 597–606.
ACM Press, 2017. 2017 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
UbiComp 2017, UbiComp ; Conference date: 11-09-
2017 Through 15-09-2017.

[11] J. Lee, M. Stanley, A. Spanias, and C. Tepedelen-
lioglu. Integrating machine learning in embedded
sensor systems for internet-of-things applications. In
2016 IEEE International Symposium on Signal Pro-
cessing and Information Technology, ISSPIT 2016,
pages 290–294, 2017.

7



[12] L. L. [lhelontra]. tensorflow-on-arm. https:

//github.com/lhelontra/tensorflow-on-arm/

release/, 2020.

[13] X. Li and Y. Guo. Adaptive active learning for image
classification. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 859–866, 2013.

[14] D. Pereira-Santos, R. B. C. Prudêncio, and A. C. P.
L. F. de Carvalho. Empirical investigation of active
learning strategies. Neurocomputing, 326-327:15–27,
2019.

[15] B. Settles. Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[16] F. Shahmohammadi, A. Hosseini, C. E. King, and
M. Sarrafzadeh. Smartwatch based activity recogni-
tion using active learning. In Proceedings - 2017 IEEE
2nd International Conference on Connected Health:
Applications, Systems and Engineering Technologies,
CHASE 2017, pages 321–329, 2017.

[17] B. Sharma, J. K. P. S. Yadav, and S. Yadav. Pre-
dict crop production in india using machine learning
technique: A survey. In ICRITO 2020 - IEEE 8th In-
ternational Conference on Reliability, Infocom Tech-
nologies and Optimization (Trends and Future Direc-
tions), pages 993–997, 2020.

[18] T. Yao, W. Wang, and Y. Gu. A deep multiview
active learning for large-scale image classification.
Mathematical Problems in Engineering, 2020.

8


