Research Paper - Using Artificial Intelligence to Mitigate
File Injection Attacks in Emails

Denis Arva
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

d.arva@student.utwente.nl

ABSTRACT

Searchable Encryption is a cryptographic technique that
allows a client to search for keywords across encrypted
files on a server while ensuring privacy and protection of
the user data. Such a technique is ideal for poorly secured
servers because even if these servers are compromised in
a cybersecurity attack, the files are encrypted, and the
content cannot be read. However, it is possible to retrieve
plaintext of an encrypted keyword using a file injection at-
tack because the Searchable Encryption leaks to the server
information about the query results.

As proposed by Zhang et al. at Usenix Security in 2016,
the file injection attack consists of a server sending a set
of files to its client to recover the plaintext of the searched
encrypted keywords. The number of injected files depends
on the attacks and countermeasures adopted. One of the
possible countermeasures for such an attack is to limit the
files returned in a query by setting a threshold of keywords
that an indexed file should have.

In this work, two countermeasures are compared , one un-
sophisticated proposed by Zhang et al. at Usenix Security
in 2016 - threshold countermeasure - and another based
on artificial intelligence proposed by Lui et al. at Inter-
national Workshop on Security and Privacy Analytics in
2020. Each of them comes with advantages and disad-
vantages. However, this research paper proved that, when
mitigating malicious files, the countermeasure based on
artificial intelligence performs better than the threshold;
still, it underperforms when it comes to the effects on be-
nign files.

Keywords

Machine learning, searchable encryption, injected files, thresh-

old, binary search attack, artificial intelligence, natural
language processing, enron, malicious, benign, emails

1. INTRODUCTION

This research is essential for various reasons, one of which
is the growing demand for cloud services. Searchable En-
cryption is used as a technique in these services precisely
because cloud service is generally used to store files. There-
fore, the files must be encrypted for privacy principle be-
fore being stored to prevent them from being read if servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

35”” Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.

Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

are compromised.

It is possible for an attacker to use a binary search attack
for a longer time and map each recovered keyword to an
email, after which to deduce the context of that email.

For instance, if a file is given that has the following con-
tent: "Mr Denis, you will receive the new bank card by
mail at Roerstraat on Wednesday.” Suppose the attacker
injected a large set of keywords containing the addresses
of the city where the person lives and more. In that case,
he will finally have the following set mapped to the file
S = {'Denis’, card’, Roerstraat, Wednesday'}, and he
can already understand the context of the email. There-
fore, the attacker could use the situation to take the card
from the mailbox.

Also, during the covid pandemic, Lallie et al.[10] showed
that the cyberattacks increased for several reasons. Since
people are much more active online, they are also more
exposed to cyber-attacks. In addition, in a pandemic con-
text, the unemployment rate is rising rapidly, out of the
need to have a job, some people get involved in these il-
legal attacks to support their financial situation disrupted
by the effects of the pandemic.

The role of Searchable Encryption is to keep search func-
tionality on an untrusted server while ensuring privacy and
data protection such as encrypted files and search queries.
Over time, efficient Searchable Encryption schemes [4, 6,
13, 15] have been developed that have reached an optimal
search cost, but this is achieved with the cost of leaking
list information with the files containing the searched key-
word and pointers to these files. Such a technique is also
used by email, for example, Pmail[8]. The purpose of this
research is to use artificial intelligence to mitigate file in-
jection attacks that can be performed precisely because of
these leaks of information that Searchable Encryption has.

Zhang et al.[16] researched the file injection attack on dif-
ferent methods, and some use fewer injected files than oth-
ers to recover the plaintext of the encrypted keywords.
One of these methods, being the basis for the rest of the
methods, is called Binary Search Attack.

One way to countermeasure this attack - as explained by
Zhang et al.[16] - is to set a threshold of keywords that a
file may have. If a file exceeds this threshold, it will not
be indexed by the search functionality. It is essential to
mention that the threshold must be carefully chosen not
significantly to affect the user experience. However, the
server can modify the Binary Search Attack to avoid this
countermeasure by reducing the keywords placed in a sin-
gle file from |2ﬁ to %, but this means that the server
must inject more files to identify the plaintext of an en-

crypted keyword.

Alternatively, it is possible to use artificial intelligence to



mitigate file injection in email systems. An example would
be an algorithm that runs on the client-side, analyzes the
content of a file, and accepts or refuses its indexing. This
research is focused on analyzing and creating a counter-
measure using artificial intelligence and its performance
to be compared with the performance of the threshold
method. Also, to the best of our knowledge, no research
has been done comparing these two countermeasures.

Both countermeasures are designed to work on the client-
side so the attacker cannot influence the implementation
of countermeasures in one way or another.

1.1 Contribution

This research paper will focus on using and comparing
two countermeasures to mitigate the files injected by the
Binary Search Attack in a context of an email dataset.
After these countermeasures are analyzed, it will deter-
mine which of the two are recommended for use. The first
countermeasure analyzed is the one presented by Zhang et
al.[16], namely threshold, which set to a number N, it will
filter out emails that have the number of keywords greater
than N.

The second countermeasure analyzed is presented by Lui
et al.[11] and is based on artificial intelligence that will
read the content of emails. If an email has weak semantics
content, it will be filtered out, and if the email’s content is
high in semantics, it will be left to be indexed to the user.

The contribution comes when the performance of these
two countermeasures is measured. The role of a coun-
termeasure is to binary classify an email as malicious or
benign. For this research, the following statistical instru-
ments are used to measure the binary classification per-
formance: true positive, true negative. When a counter-
measure qualifies an email as positive, it means that the
email is malicious. The true-positive measure is given by
the percentage of emails correctly classified malicious by
a countermeasure in a given set of emails containing both
malicious and benign. The true negative measure is given
by the percentage of emails correctly classified benign by
the countermeasure.

1.1.1 Research questions

e RQ: How efficient is the Artificial Intelligence in
mitigating injected files in emails compared to the
threshold countermeasure?

— SubRQ: How well does artificial intelligence
perform compared to threshold when true pos-
itive is considered?

— SubRQ: How well does artificial intelligence
perform compared to threshold when true neg-
ative is considered?

To determine which of these two countermeasures are rec-
ommended to be used, the term efficiency is defined. In
the context of this research project, A countermeasure is
all the more effective as the percentages of true positives
and true negatives are high. For example, an 100% ef-
fective countermeasure would have a percentage of 100%
true positive and 100% true negative. The lower these per-
centages, the inefficient is the countermeasure. However,
which is the best option is directly dependent on some-
one’s needs. Maybe a person wants privacy; then the true
positive must be as high as possible. Conversely, if a per-
son wants to have as many emails available as possible,
then one will choose a true negative as high as possible.

.
FIIe 1 - keyword0 | keyword1 | keyword?2 | keyword3 | keyword4 | keywords | keyword6 | keyword?
.

.
FIIe 2 - keyword0 | keyword1 | keyword2 | keyword3 | keyword4 | keywordS | keyword | keyword?
.

.
Flle 3 " |keyword0 |keywerd1 | keyword? | keyword3 | keyword4 | keywords | keyword6 | keyword?
.

Figure 1. Three injected files and its content. This files
are injected with Binary Search Attack, using a universe of
keywords of 8 keywords.

The main research question is answered through the ex-
periments made on a data set by Enron[5] public emails,
but in order to answer the main question, the sub research
question is answered privately in the experimental phase.
Therefore, the following research questions are relevant for
the research:

1.2 Organization of the Paper

This research paper is organized into several parts in which
the following aspects are clarified: methodology, experi-
ments and results.

In the methodology part, a systematic approach is given
that answers the proposed research questions. It also con-
tains implementation aspects of Binary Search Attack, for
which pseudocode is attached to understand how it is im-
plemented. The methodology also presents the implemen-
tation aspects of the threshold and artificial intelligence
countermeasures. At the same time, this part mentions
one of the most critical aspects of this research, namely
how machine learning was trained to reach a prediction
score of approximately 97% on the data used for training.

In the experiments, different plots are examined, that are
relevant to answer the research questions assumed.

In the results and conclusion section, conclusions are drawn
about the experiments performed, which of the counter-
measure is more suitable to be used in this Enron email
dataset [5].

2. BACKGROUND

Searchable Encryption is a technique by which the user can
store their encrypted files on a server and use the search
functionality simultaneously. The process is as follows:
The user generates a token p by encrypting the keyword
k, and the server responds with a list of file identifiers
containing the token p. The user now knows which of the
files contains the searched keyword and in this way its
privacy is protected.

In this attack, the server generates an universe of key-
words K = {keywordy, keyword,, ... ,keyword,}, with
the length of | K| = n+1; it generates several files log, | K],
and each file contains precisely half of the keywords in the
K universe. All these files are sent to the client, who, in
turn, it will encrypt and store them. The server learns
the plaintext of a keyword searched by the client if the
injected files are in the query result.

Using Figure 1 as an example where the three files are gen-
erated, the server injects the files and learns that the plain-
text of an encrypted keyword is equal to keywordl if, after
a search, only file three returned. Alternatively, if Fliles
and F'iles returned after a search, the plaintext of the
encrypted keyword used in the search is keyword3. More-
over, the Figure shows a set of files F' = { F'ile1, Files, Files}



Algorithm 1 Binary Search Attack - Inject Files
Input: A (universe of keywords)
Qutput: Files (array of malicious files)

I: function INJECTFILES(K)

2: Files +— empty array of files

3: N « length{K)

4: fori=1,...,log, N do

5: Generate a file Fi containing the words in K
G: whose ith bit is 1

T: Append Fito F

8: return Files

Figure 2. Function of the Binary Search Attack that
generates a set of files according to the given keyword uni-
verse. At the end, an array of files is returned that are
ready to be sent to the client.

and if any F'ileps is given, the keyword that has the 1st bit
equal to 1, of the bit sequence generated from the position
number, that keyword is stored. For example, keywordy
is stored in F'ile; because position 4 has the first bit 1.

2.1 Related work

Zhang et al.[16] researched in their paper how the infor-
mation leaks of Searchable Encryption can be exploited
to obtain the plaintext of a keyword. They looked at dif-
ferent file injection methods, some of which even used a
few injected files to get the plaintext. However, this paper
focuses on attacks and not defence methods.

Other countermeasures for the attacks mentioned above
were studied by Bost et al.[2]. In Searchable Encryption,
forward privacy is a property that mitigates injected files
by ensuring that the server cannot link the result of the
current query and past queries. Also, backward privacy
is, in turn, a property that mitigates injected files: search
query should not return deleted matching entries.

Furthermore, Liu et al.[12] came up with a countermeasure
called Vaccine. The idea is that every time a client receives
a file, whether it is legitimate or injected, the client injects
a file created by him, and this file contains a set of random
keywords that are not intersected with the set of keywords
in the received file. As a result, the file injected by the
client obscures the file access pointer of some files injected
by the server.

Finally, Liu et al.[11] propose a new defence method based
on natural language processing. Because they have con-
firmed that injected files have low semantics, they con-
cluded that it is feasible to automatically check the se-
mantics of a file to mitigate file injection by accepting to
index if the file has high semantics or refuse it otherwise.

3. METHODOLOGY

Before going into the aspects of implementing prototypes
for Searchable Encryption, Binary Search Attack, Thresh-
old and Al countermeasure, it is presented systematically
how this research is done:

1. A set of email data available for research is used, af-
ter which a prototype is made in python to simulate
the core functionality of Searchable Encryption and
a prototype to simulate a Binary Search Attack.

2. A threshold countermeasure is performed, and its
efficiency against this attack is analyzed.

Algorithm 2 Binary Search Attack - Recover keyword
Input: R, Files (query results, injected files)
Qutput: keyword (plaintext of the encrypted keyword)

1: function RecovErKEywonrbp(R, Files)

2 Analyse the query results R and return the
3: keyword associated with the files returned.
4 return keyword

Figure 3. Function of the Binary Search Attack that
takes as input query results to a search that the client did
and returns the plaintext of the searched keyword.

3. A prototype based on artificial intelligence is imple-
mented to distinguish between an injected email and
a legitimate one. Such a prototype is using natural
language processing to determine the semantic level
of an email; if the level is low, this email will not
be indexed, but it is indexed if the semantic level is
high. This countermeasure is also be analysed.

4. Finally, both prototypes are analyzed to determine
the differences between them, which has a more sig-
nificant impact on legitimate emails and is more ef-
fective in mitigating file injection.

The Enron email dataset[5] contains the emails of a for-
mer American corporation, with a size of 1.7Gb and it is
organized in 150 folders. Each folder contains the emails
of a former corporate employee, and the folder name is
lastname-initial.

3.1 Searchable Encryption, Binary Search At-
tack and Threshold

As proof of concept, a prototype is made that mimics the
functionality of a Searchable Encryption, but the encryp-
tion of files and keywords is avoided because it is out of
the research goal and does not influence the success or fail
rate of the attack. This is because the proof-of-concept
of this research is to demonstrate how the attack works
and can be mitigated. As explained in the Background
section, the user sends a p token of the keyword he wants
to search, the server returns a list of file identifiers that
contain the word and Binary Search Attack uses only that
list.

This attack as presented by Zhang et al.[16] is divided
into generating malicious files and recovering the keyword
plaintext. First of all, this algorithm generates malicious
files based on the pseudocode shown in Figure 2, which
takes a universe of keyword or, more simply, a set of key-
words that the attacker is interested in finding out. Then
the files are sent to the client who stores them, encrypts
them and sends them to the server to be stored. Second,
after the client has searched for a keyword among its files,
the server takes the query results and runs the recover
function of the keyword plaintext presented in Figure 3
using the query results together with the universe of key-
words.

A prototype is made after this Binary Search Attack and
combined with the prototype specified above that mimics
the functionality of Searchable Encryption; it can show
how an attack can be performed using the Enron email
dataset [5].

These countermeasures are meant to be executed on the
client-side, so the threshold countermeasure is implemented
inside the Searchable Encryption prototype. When the



yes

o ~ are 500 emails
T selected in X7

fill ¥ with all the .
folders from the pick a ;?g;o‘:!n folder
dataset

A 4

remove the selected

folder from Y

pick a random email
from the selected
folder and store it in X

Figure 4. The process of randomly picking an email from
the Enron email dataset

prototype opens and reads an email to search for the key-
word requested by the client, the email is ignored if it has
more keywords than it is set the threshold.

3.2 Countermeasure based on Artificial In-
telligence

In their paper, Liu et al.[11] used machine learning with
binary classification to distinguish between malicious and
benign emails. However, it is not quite specified what
kind of model it uses for training and prediction. At the
same time, they mention that they used 500 benign emails
and another 500 malicious emails for training. The fea-
tures they have proposed and consider relevant to train
machine learning in the proper way to determine the se-
mantics level of an email are divided into syntactic and
structural features.

The syntactic features are:
e the number of nouns
e the number of verbs
e the number of adjectives
e the number of adverbs

e the number of personal pronouns
The structural features are:

e the number of words

e the number of sentences

Furthermore, they used natural language processing toolkit[1]

from Python Package Index(PyPI)[14] to be able to obtain
these features from emails, which was also done in this re-
search paper.

3.2.1 Prepare the data

Before training machine learning, the emails used for train-
ing must be prepared to avoid biasing the algorithm. There-
fore, we implemented an algorithm that randomly selects
emails from different folders until a certain number of ran-
dom emails were selected. For example, in Figure 4 the
algorithm picks random emails until 500 emails have been
chosen. We chose to implement the algorithm in this way
in order to avoid biases in the machine learning training.

Table 1. Frequency of Special Characters

TAG Meaning

NN Nouns

VB Verb

JJ Adjective

RB Adverbs
PRP | Personal pronoun

After which a universe of keywords of 20000 keywords is
generated, through a process in which an email is taken at
random (as shown in Figure 4), its content is read, and all
unique keywords are stored in an array, and the algorithm
stops when 20,000 keywords have already been stored.

Using this universe of keywords generated exclusively from
the keywords used in emails, an algorithm at each itera-
tion generates a new subset of the universe of keywords,
that set contains a randomly chosen number of keywords
between 0 and 2000. This means that the length of a sin-
gle malicious file cannot have more than 1000 characters.
The algorithm counts how many malicious emails were in-
jected into the dataset at each iteration and stops when
more or 500 malicious emails were injected.

On average, after several tests, a malicious email has more
keywords than a benign email. This situation is desirable
because machine learning must learn that the more key-
words in an email, the higher the chances of that email
being malicious.

3.2.2  Training the machine learning

With the emails ready, for each of 1000 randomly chosen
emails, natural language processing is applied to compose
the features proposed above, and the respective email is
labelled with one if it is malicious and with zero if it is
benign. The toolkit available in Python reads an email
and tags each word with its part of speech. Table 1 is
presented on the first column TAG POS - part of speech -
that natural language processing returns, and on the sec-
ond column the whole meaning of that tag. For example,
if a certain word is tagged as being JJ then it means that
it is an adjective. Because the process is relatively slow,
each time the feature set for an email is calculated, this
set is stored in a row in a CSV file, and it can be used
continuously, without being generated again.

With the CSV file completed with each feature and label
of the 1000 emails, it is sent to training. The machine
learning used is based on neural networks model from the
sklearn[3] package, and the following configuration gives
the best results: shuffle the CSV data, set the number of
maximum iteration to 9000, set alpha to 1E — 5, and the
hidden layers to (150, 50). If the accuracy of this trained
model is tested on the data used for training, the score
calculated after several attempts is approximately 97%.

3.3 Comparing the results

In order to answer the research question, these implemen-
tations were needed in order to perform experiments on
them finally. For the threshold, experiments were per-
formed to determine what number should be assigned to
this countermeasure to reduce false positives and what ef-
fects this discovered value has on Binary Search Attack.
Additionally, for machine learning countermeasure, the
accuracy of the prediction in different scenarios was ana-
lyzed. Throughout this process, the Jupyter Notebook[9]
was used to draw the plots as a result of the experiments.
Also, the implementations can be found on the SNT UT
GitLab|[7].



80000

70000

60000

50000

40000

Emails

30000

20000

10000

100-500 500-1000  1000-2500 > 2500
Interval

Figure 5. Distribution of emails on fixed size intervals in
number of keywords

100

20

Percetange of available emails(%)

0 500 1000 1500 2000 2500 3000 3500 4000
Threshold

Figure 6. Plot with threshold effects on email availability.

4. EXPERIMENTS

For the beginning, Enron dataset[5] was analyzed, with-
out malicious emails, to learn what value should be set
to the threshold so that true positive and true negative
are high. Malicious emails are not needed to analyze this
countermeasure, because threshold filters all emails that
are greater than its value, so true positive is not a per-
centage, but rather a binary aspect. True positive is 1 for
emails larger than the threshold and 0 for emails lower
than the threshold.

So Figure 5 shows the bar chart with the distribution of
emails by ranges of number of keyword in email, and in
addition to this bar, the following information was calcu-
lated: in total, there are about 137,000 emails, the largest
email has 41,450 keywords. Along with this information,
we see from Figure 5 that most emails have a keyword
number between 100 and 500, about 58% of the dataset
used.

The analysis of the threshold was concluded with Figure
6, where the plot shows the percentage of true positive
that increases proportionally with the threshold. It can
be seen that if the threshold is set to 1000 keywords, then
almost 100% of the emails are available to the customer. Tt
should be mentioned that no files injected into the dataset
were introduced during this experiment because threshold
filters any email that has the number of keywords higher
than the set threshold.

After machine learning was trained with the methods ex-
plained above, two plots and a bar chart were obtained.
Figure 7 analyzed only injected emails and followed the ac-
curacy of this machine learning. The percentage of correct

100

Correct prediction(%)

0 200 400 600 800 1000
Malicious file length

Figure 7. Machine learning prediction score over the mali-
cious file containing from 10 to 1000 keyword.

prediction depends on the email file length. The higher the
file length, the higher the percentage of correct prediction.
Machine learning has a low prediction score that the in-
jected files have less than 500 keywords. Approximately
92% of the dataset contains emails that have less than 500
keywords, and Al also considers how many keywords are
in an email.

In Figure 8, it is a plot similar to Figure 7 except that it
plots machine learning accuracy for injected files that have
between 0 to 500 keywords. The reason for these sudden
fluctuations from 100% accuracy to 10% is that the smaller
the universe of keywords used for injection, the lower the
number of emails injected. Recall from the introduction
that Binary Search Attack injects log 2 from | K | for any
K. For example, in Figure &, if the injected files have 100
keywords, the universe of keywords used is 200 keywords
and seven emails were injected. With an accuracy of about
10%, it means that an email out of seven malicious emails
is filtered out.

In order to draw the bar chart in Figure 9, 100 benign
emails were randomly extracted, and 100 malicious emails
were injected in the number of keywords range on the x-
axis. It is observed that the percentage of true positive
decreases and the percentage of true negative decreases
as the keywords increases. For emails that contain less
than 100 keywords, machine learning has a true positive
of almost 70% and a true negative of almost 95%. This
figure is important for this research because it reflects the
performance of machine learning in mitigating malicious
emails.

5. RESULTS

With Figure 5 and 6 in mind, the threshold should be set
to 1000 keywords because most 98% of emails have less
than 1000 keywords, and by setting the keyword to this
size, only 1.54% of all benign emails are filtered. In this
situation, the threshold has a true negative percentage of
about 98%. The true positive in this case is not mea-
sured in percentage, but in two numbers, 1 or 0, because
it totally depends on how big or small the injected files
are. If the injected files have fewer keywords than thresh-
old value, then the true positive is 0, otherwise is 1. The
disadvantage of this countermeasure is that it cannot mit-
igate malicious emails that have less than 1000 keywords
in the current context. However, the attacker is placed in
a difficult situation because one can not use a universe of
keywords larger than 1999 keywords.

In the case of artificial intelligence, if we consider Figure 9,



100 ¢ e o 00 00 00 O 000000 00000 o0
90 1 - o o o oo bod
;‘E 80 4 ss
3 ] e o
8
£ 701 * o
- [ ] o
& 61
t [
E
5 50 ® H]
(=)
40.
[ L]
30 1 [
0 100 200 300 400 500

Malicious file length

Figure 8. Machine learning prediction score over the mali-
cious file containing from 10 to 500 keyword.

10

Correct prediction(%)

= Benign
mmm Malicious

<= 100 100-500
Groups of emails based on their length

500-1000 1000-2500 > 2500

Figure 9. A bar chart with the machine learning prediction
score for every group of emails having the number of key-
words in that interval. 100 are benign and 100 are malicious
for every group.

the percentage of true negative for each interval is decreas-
ing, but all are over 95%. Moreover, the percentage of true
positive is 70% in the range of 0-100 keywords but is al-
ready almost 100% in the range of 500-1000, representing
58% of the data set.

6. CONCLUSION

Threshold and artificial intelligence countermeasure have
their advantages and disadvantages. The threshold can
mitigate to a small extent malicious emails but comes with
the advantage that it has minimal effects on the user expe-
rience with the email service by filtering very few benign
emails.

On the other hand, countermeasure based on artificial in-
telligence mitigates malicious emails very well but filters
more benign emails compared to the threshold. Follow-
ing the experiments, it was observed that for malicious
emails with few keywords, machine learning had a true
positive percentage that could reach even 30%. However,
it is essential to mention that if, for example, out of 7
emails injected by Binary Search Attack, one was filtered,
the the attacker fails to recover the true plaintext of the
searched keyword.

All in all, it is clear that the countermeasure based on
artificial intelligence is more efficient than the threshold,
but it is also a decision that the client wants to make.
One is put in the position to choose between privacy or
availability. Privacy is better ensured by artificial intelli-
gence and availability is better ensured by the threshold
countermeasure.

7.
(1]

2]

[10]

[11]

[12]

(13]

[14]

REFERENCES

E. L. Bird, Steven and E. Klein. Natural language
processing with python. O’Reilly Media Inc, 2009.
R. Bost, B. Minaud, and O. Ohrimenko. Forward
and backward private searchable encryption from
constrained cryptographic primitives. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page
1465-1482, New York, NY, USA, 2017. Association
for Computing Machinery.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. API design for
machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning,
pages 108-122, 2013.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean
queries. In R. Canetti and J. A. Garay, editors,
Advances in Cryptology — CRYPTO 2013, pages
353-373, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

W. W. Cohen. Enron Email Dataset.
https://www.cs.cmu.edu/ enron/, 2015. [Online;
accessed 1-June-2021].

R. Curtmola, J. Garay, S. Kamara, and

R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In
Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06,
page 79-88, New York, NY, USA, 2006. Association
for Computing Machinery.

A. Denis. Research - Using Artificial Intelligence to
Mitigate File Injection Attacks in Emails.
https://git.snt.utwente.nl/s2188511/
research-mitigate-file-injection-ai-in-se,
2021. [Online; accessed 20-June-2021].

D. Harris. Pmail. http://wuw.pmail.com/, 2000.
[Online; accessed 1-June-2021].

IPythonProject. Project Jupyter.
https://jupyter.org/, 2014. [Online; accessed
1-June-2021].

H. S. Lallie, L. A. Shepherd, J. R. Nurse, A. Erola,
G. Epiphaniou, C. Maple, and X. Bellekens. Cyber
security in the age of covid-19: A timeline and
analysis of cyber-crime and cyber-attacks during the
pandemic. Computers Security, 105:102248, 2021.
H. Liu and B. Wang. Mitigating file-injection
attacks with natural language processing. In
Proceedings of the Sixth International Workshop on
Security and Privacy Analytics, IWSPA ’20, page
3-13, New York, NY, USA, 2020. Association for
Computing Machinery.

H. Liu, B. Wang, N. Niu, S. Wilson, and X. Wei.
Vaccine:: Obfuscating access pattern against
file-injection attacks. In 2019 IEEE Conference on
Communications and Network Security (CNS),
pages 1-9, 2019.

M. Naveed, M. Prabhakaran, and C. A. Gunter.
Dynamic searchable encryption via blind storage. In
2014 IEEFE Symposium on Security and Privacy,
pages 639-654, 2014.

PythonCommunity. Python Package Index .
https://pypi.org/, 2021. [Online; accessed


https://www.cs.cmu.edu/~enron/
https://git.snt.utwente.nl/s2188511/research-mitigate-file-injection-ai-in-se
https://git.snt.utwente.nl/s2188511/research-mitigate-file-injection-ai-in-se
http://www.pmail.com/
https://jupyter.org/
https://pypi.org/

1-June-2021].

[15] E. Stefanov, C. Papamanthou, and E. Shi. Practical
dynamic searchable encryption with small leakage.
TACR Cryptol. ePrint Arch., 2013:832, 2014.

[16] Y. Zhang, J. Katz, and C. Papamanthou. All your
queries are belong to us: The power of file-injection
attacks on searchable encryption. In 25th USENIX
Security Symposium (USENIX Security 16), pages
707-720, Austin, TX, Aug. 2016. USENIX
Association.



	Introduction
	Contribution
	Research questions

	Organization of the Paper

	Background
	Related work

	Methodology
	Searchable Encryption, Binary Search Attack and Threshold
	Countermeasure based on Artificial Intelligence
	Prepare the data
	Training the machine learning

	Comparing the results

	Experiments
	Results
	Conclusion
	References

