
How To Zen Your Python
Aamir Farooq

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
a.a.farooq@student.utwente.nl

ABSTRACT
Although the popularity of Python is frequently attributed
to its concept of pythonicity, Alexandru et al. claim that
until recently few have attempted to formally define it.
They contend that they are the first, and to do so, they
interviewed various experienced developers, conducted a
literature review to discover pythonic idioms, and deduced
usage statistics for the idioms in popular Python projects
through automated detection. Despite Python being one of
the most popular programming languages right now, there
is a lack of empirical evidence to explain the phenomenon
of pythonicity, and while Alexandru et al. appropriately
defined this notion, their work is incomplete. This research
paper brings the work that Alexandru et al. set out to
do closer to completion by providing an extended list of
pythonic idioms, as well as statistics on how pythonic idiom
usage has evolved over time.

Keywords
Pythonic, Python, idioms, conventions, community, pro-
gramming

1. INTRODUCTION
1.1 Background
A programming language is not just its syntax and its vo-
cabulary, but also a set of known effective ways to solve ac-
tual problems with it. There exists a well-studied category
of the conventions and idioms in programming languages
such as Java [2, 10, 29], which can take the form of imple-
mentation patterns, formatting rules, calling conventions,
naming conventions, etc. Such conventions are referred
to as idioms in the software language field, and Alexan-
dru et al. formally define this term as a language feature
or “reusable abstraction” that can improve the quality of
code [1].

Much like with other languages, the same concept exists in
the Python community, and Python developers call code
pythonic when such idioms are used. The pythonicity of a
piece of code stipulates how concise, easily readable, and
in general terms, “good” the code is.

While the concept of conventions and idiom usage exists in
other languages, it is especially pronounced in the Python

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

community. There is a general “feeling” among the com-
munity that it goes beyond a set of practices, rather it is a
philosophy that the community strives to uphold. Python
developers are in the constant pursuit of upholding the
so-called Zen of Python rules, such as “There should be one

— and preferably only one — obvious way to do it.”, and
“Beautiful is better than ugly. [...] Simple is better than
complex.” [17].

Given a piece of code, any experienced Python programmer
can easily tell whether it is pythonic or not. Sakulniwat et
al. were able to demonstrate, in a case study of the with

open idiom, that over time developers tend to adopt idioms
to improve their codebase [21], and experienced developers
stated in the interviews conducted by Alexandru et al. that
year after year, their code became more pythonic [1]. How-
ever, to complete programming novices or newcomers to
Python, as Alexandru et al. also contend, it is not com-
pletely obvious how to incorporate the so-called pythonic
idioms in their code [1]. In their study, many interviewees
also indicated that junior Python programmers can even
be distinguished from more experienced ones simply by
observing the usage of pythonic idioms, and further, the
interviewees agreed that they learned pythonic code from
experience — from reading books, source code from other
projects and StackOverflow responses [1].

As such, Alexandru et al. identified a lack of research in
the phenomenon of pythonicity as they felt that there was
no clear definition as to what “pythonic” means and what
should developers do to make their code pythonic. They
conducted a literature review to identify the pythonic id-
ioms from numerous sources such as The Zen of Python [17],
Writing Idiomatic Python [9], The Hitchhiker’s Guide to
Python [20], Effective Python [24], The Little Book of
Python Anti-Patterns [18], as well as direct interviews with
developers with varying levels of expertise. Moreover, they
wrote an idiom detection library to corroborate with em-
pirical evidence that idioms were actually in use in 1,000 of
the most popular open-source Python projects on GitHub.

1.2 Related work
Despite Python being among the most popular program-
ming language on GitHub right now according to the PYPL
index [6], the authors of the original paper claim to be the
first to attempt forming a tangible definition and catalog of
what constitutes pythonic code. At the time of writing, we
were only able to identify one other paper by Sakulniwat
et al. [21] which attempts to improve upon their results.

The paper from Alexandru et al. was published in 2018,
along with a catalog of idioms1 and a repository with the
idiom detection code, which makes use of the LISA library2.

1Online: https://pythonic-examples.github.io/
2LISA library: https://bit.ly/3xSFg1m

1

https://pythonic-examples.github.io/
https://bit.ly/3xSFg1m

Figure 1: An example of a new pythonic idiom Alexandru et al. did not cover, known as f-strings, a much less cumbersome
and more readable approach to traditional string formatting methods [26].

However, the list of idioms is not complete. The experiment
was conducted before 2018, which coincides with the release
of Python 3.7. Since then, Python 2 has also been officially
deprecated [13], and several major Python versions have
been released (at the time of writing, the most recent
version is 3.9.4), each of which adds a number of features
to the language [14]. There is obviously some adoption
time for newer versions, and for these reasons, there may
have been significant shifts in the popularity of idiom usage;
one such idiom is seen in Figure 1. It is also known that
even at the time of writing, the list of idioms in the paper
of Alexandru et al. was, as they say, “inexhaustive” [1], so
it can be extended to cover a larger set of idioms.

Researching this topic is crucial so that software languages
can continue to improve and move forward. One initiative
is the Software Language Engineering Body of Knowledge3

(SLEBoK), which makes an effort to compare and consoli-
date the implementation of features and paradigms across
programming and software languages. In doing so, the de-
velopers of software languages may identify discrepancies
between their language and others, and then improve their
own feature set.

An additional application is technical debt remediation in
Python. Feltosa et al. describe the notion of technical debt
as the result of cutting corners in the short term on the
“long term sustainability” of the software project [27]. As
pythonic code is considered generally more maintainable,
efficient, and overall state-of-the-art, it suffices to say that
being able to detect the usage of such idioms would go a
long way in quantifying code quality. A potential future
application of the results of this paper could be automated
detection of anti-idioms4, or malpractices, in the pursuit
of preventing technical debt from accumulating in the first
place. A similar practice is widespread and accepted as
useful in other languages, such as Java [11, 28].

3SLEBoK: http://slebok.github.io/
4Online: http://omz-software.com/editorial/docs/
howto/doanddont.html

As Shull et al. explain, replicating results of empirical
studies in software engineering is key in proving their ve-
racity, citing the difficulty of extrapolating results due
to “uncontrollable sources of variation from one environ-
ment to another” [23]. The same holds here; the efforts of
Alexandru et al. need to be verified through an external
replication.

As such, the contributions of this paper will initially be
an extended catalog of pythonic idioms rooted in a liter-
ature review, followed by a replication of Alexandru et
al.’s experiment. We then go beyond the replication by
extending Alexandru et al.’s detection library to detect a
subset of our newly discovered idioms. Further, we analyze
usage statistics of a selection of the idioms to generate
new insights about the popularity of pythonic idioms in
open source Python projects, as well as how the usage has
evolved over time.

2. RESEARCH QUESTIONS
To guide our research, we devised the following research
questions which by the end of this paper, we intend to
answer or comment on. Based on the sentiment from the
developers Alexandru et al. interviewed that they do not go
back and make their old code pythonic [1], we hypothesize
that since the publishing of the results from Alexandru et
al., the popularity of each idiom they identified has not
changed.

1. What idioms should be included in an updated, ex-
tended catalog of pythonic idioms?
By updating the catalog of idioms that Alexandru et
al. already found based on a literature review from
Python books, we can form a more complete picture
of what idioms make code pythonic.

2. How widely adopted are the new idioms that we dis-
covered?
We will also need to find empirical evidence to sup-
port the claim that these newly documented idioms
are accepted as pythonic in the Python community,

2

http://slebok.github.io/
http://omz-software.com/editorial/docs/howto/doanddont.html
http://omz-software.com/editorial/docs/howto/doanddont.html

as described in the next question. This means extend-
ing the idiom detection code of the original authors
to include the newly found idioms and analyzing the
statistics we find.

3. How has the usage of pythonic idioms evolved in
software projects over time?
As stated previously, some years have passed since the
experiment of Alexandru et al. From the idioms they
found, it could be that certain idioms have gone out
of style and other, possibly new, idioms have become
more popular. By answering this question, we can
provide empirical evidence to not only support the
results of RQ2 but also to comment on our hypothesis.

3. LITERATURE REVIEW
With the literature review, we intend to provide an answer
for RQ1. The goal is to not only confirm the idioms that
Alexandru et al. were able to identify but to further discover
new pythonic idioms as well as idioms that were not covered
in their research.

To discover our idioms, we made use of grounded theory in
a bottom-up approach: searching the internet for the most
popular Python books, then scanning literature based on
a set of keywords and cross-referencing the results across
books. As such, we are confident that our methodology
leads to uncovering all of the most commonly used pythonic
idioms since the findings are rooted in a large variety of
the literature available.

The literature sources were uncovered by searching the
internet using key terms such as:

• python tricks book

• python cookbook

• books “pythonic”

• books “idioms”“python”

The results we found were programming blog posts, Red-
dit threads, and StackOverflow questions where users
provided their favorite Python books. We took note of the
books that were talked about the most across these sites
(as well as which responses were upvoted the most) and
created a list of books, articles, and conferences discussing
pythonic idioms.

From all the books we were able to identify, we first elimi-
nated the “complete beginner” books because after review-
ing them, we discovered that they focus on the fundamen-
tals of programming in general and introducing syntax.
This is not appropriate for our research, as opposed to
books covering good programming practices. We also elim-
inated some “advanced” books which tend to cover Python
for very specific applications and patterns, for example,
data science. These are also not appropriate for our re-
search because we want to find generalized results about
the Python language as a whole rather than idioms that
are only used in domain-specific applications.

The optimal balance we found was with “intermediate-level”
books which assume that readers have prior programming
knowledge of some form and generally understand the
Python syntax, but want to improve their Python skills.
Each book here made some form of reference to pythonicity,
programming patterns, and idioms in the description or
blurb.

From the selection process, we started with the books
Python Tricks: A Buffet of Awesome Python Features [4],

Practical Python Design Patterns: Pythonic Solutions to
Common Problems [3], Learn Python The Hard Way [22],
Python Cookbook, Third Edition [7], and Effective Python:
90 Specific Ways to Write Better Python [25]. We also
reviewed several online sources, such as blog posts, which
we used to confirm our previously found idioms rather than
to identify new ones.

We eliminated Learn Python The Hard Way from this list;
after further review, it did not provide any useful references
to pythonic idioms. Similarly, we also eliminated Practical
Python Design Patterns because it was focused on spe-
cific use cases and design patterns rather than generalized
scenarios.

Additionally, we re-reviewed a selection of 2 of the books
Alexandru et al. chose (Writing Idiomatic Python [9] and
The Little Book of Python Anti-Patterns [18]) to make
comparisons between our newly identified idioms and the
results of the original paper.

We scanned each source for keywords and phrases such as:
“pythonic”, “clean[er]”, “readable”, “idiom”, “style”, “pat-
tern”, “easy/easier”, “fast”, “quick”, “commonly used” and
“maintainable”. Topics that mentioned these terms were
noted down in the form of a spreadsheet, matching the
topic on one axis with the sources on the other.

3.1 Identified idioms
Having created the spreadsheet, we noticed that nearly all
the new idioms we managed to identify were also present
in the two older sources we chose from the original paper.
Conversely, almost every one of the idioms discovered in
the original paper were mentioned in the newly identified
literature as well. This validates the approach of the origi-
nal authors, and also shows that the sources we chose were
generally reliable and accurate.

We managed to find a significant amount of new idioms
(29) using this approach. 4 of these idioms were filtered out
due to a lack of explanation as to the use case or usefulness,
being refuted as not pythonic by another conflicting source,
or not being mentioned in a significant amount of sources
(for example, only 1 source).

Some of the newly identified idioms, such as the “f-strings”
feature which was released at the end of 2016 [15], were
not mentioned in the older sources due to being Python
features that were not widely known or used at the time
of publishing; however, they have since gained attention
and received mentions in our new sources. Meanwhile, the
“walrus operator” was released with Python 3.8 [16] at the
end of 2018 [12]; however, almost all of our sources were
published before 2018, except for Effective Python’s Second
Edition, the only book that mentioned it. Perhaps in the
future, it will gain some popularity and be discussed in
newer books, but for now, we exclude it from our list.

Conversely, the “using else after a for-loop” idiom was
discussed in the older literature sources but not in the new
ones, so we also decided to filter this out.

Having filtered out 4 idioms, we are left with 25 newly
identified idioms, and together with the 21 idioms that
Alexandru et al. had already covered, this comes to a total
of 46 idioms covered. An overview of these numbers is
given in Table 1.

3.2 Formation of the online catalog
After identifying the pythonic idioms, we compiled our
results in the form of an online catalog5.

5Our pythonic idiom catalog: https://bit.ly/3cBHLwQ

3

https://bit.ly/3cBHLwQ

Original list of idioms 21

Newly identified idioms 29
Filtered from new list 4

Final number of new idioms 25

Total set of idioms 46

Detectable idioms from original list 21
Detectable idioms from new list 6

Total number of detectable idioms 27

Table 1: Overview of idiom counts.

Initially, the idioms were categorized into distinct groups
so that separate pages could be made for each topic. We
provided definitions and explanations for each idiom, fol-
lowed by simple examples of how to incorporate them in
example use cases. We also provide references to a list of
resources on each idiom category: links to relevant Python
documentation, books that mention the topic, and where
possible, links to the relevant detection code.

All of the identified idioms were discussed either in the
Python documentation6 or as a PEP (Python enhance-
ment proposal)7. By taking these into account, as well
as definitions from our chosen literature sources, we also
wrote a condensed definition and purpose for each idiom.
In addition, there are examples of what the “not pythonic”
implementation is, which should be avoided, and provided
the converse “pythonic” implementation using the idiom,
taking inspiration from the Python docs and literature
sources for the examples.

4. EXTERNAL REPLICATION
As previously stated, one of the goals of this paper was to
verify the idiom usage count results of Alexandru et al. by
employing an external replication of their experiment.

Experiment 1 — replicating original results

Initially, we reached out to the authors and requested
their idiom detection code which they used to produce
their results. We studied their code to understand how
it worked and observed whether there were any outdated
dependencies, if the project was still able to compile, and
if running the project produced any fatal run-time errors
that would produce incorrect results.

Next, we replicated the experiment where Alexandru et
al. ran their detector on 1,000 popular Python GitHub
repositories, and observed whether or not the results were
in line with what they had recorded in their paper. The
replication package contained a list of the repositories that
they used in the original experiment, together with the
results from when the experiment was run. We re-ran the
detector using the same list of repositories, with some slight
differences that are discussed below.

Because the replication experiment is conducted on the
latest code of each repository in the original list, some
years after the original experiment, the results from this
experiment will additionally help us to answer RQ3 as we
can compare the results Alexandru et al. from some time
ago to new results from today.

Discussion
After analyzing their idiom detector, we conclude that the
approach Alexandru et al. used was appropriate.

6Python docs: https://docs.python.org/3/
7List of Python PEPs: https://www.python.org/dev/
peps/

The idiom detector, written in Scala, works by pulling a
Git repository using a given link, then calling a Python
script that parses every Python file in the repository, mak-
ing use of the built-in AST module. This results in an
abstract syntax tree, which the detector can then analyze
to count the occurrences for each idiom we are interested
in by looking for patterns such as function call identifiers,
keywords, or the usage of certain Python features.

The counts are accumulated per project in the form of
CSV files, and the authors also include a separate Python
script that can aggregate the results across all the CSVs
to produce a LATEX table.

Included in their source code was also a set of tests with
sample files, where each file contained one variation of the
idiom they intended to detect. We verified that these tests
were appropriate and ensured that they still passed.

A limitation we identified with this approach during Ex-
periment 3 was that the detector can only find instanti-
ations of certain data structures or classes, such as “col-
lections.namedtuple”, but not track how many times the
variables are then used. This is rather difficult to detect in
Python due to the lack of strong typing, and as such, there
are additional uses that are not included in the results.

In the original experiment, the authors ran their detector
on 997 repositories. They include the list of repositories
in the form of a .txt file in the replication package in
addition to the resulting CSV data files. However, we
noticed that only 396 of the repositories in the data files
overlap with the 997 sources given in the .txt file, which
is a flaw with the replication package. We believe that
sometime after the experiment, someone inadvertently re-
ran the repository collection script, overwriting the original
list. Nonetheless, we attempted to reconstruct the original
list based on metadata from the CSV files but could not
do so for 9 repositories due to incomplete metadata.

An additional issue was that 11 of the repositories used
in the original experiment no longer exist. As a result,
our re-run experiment had 977 repositories instead of the
original 997. To counteract this, we excluded the data
pertaining to the 20 missing projects from the “original”
results so that we can make a meaningful comparison for
the projects that were still available.

Results
The results of this experiment can be seen in Table 2.

When drawing conclusions based on our results, it is impor-
tant to keep in mind that the use count of idioms increasing
also results from the projects themselves naturally growing
as their developers work on their projects. The most indica-
tive metrics to consider are when the number of projects
using a particular idiom strictly increases with a margin
of error of 3% (7 idioms), which indicates adoption by
more Python developers, or when the use count for an
idiom strictly decreases (3 idioms), signaling that Python
developers have begun to move away from them.

However, we also note that overall, the number of lines
across all projects increased between the original experi-
ment and the re-run by 5.67% which we can also consider
as a reasonable margin of error; on average, differences
larger than this indicate increased adoption as well (15
idioms).

From Table 2, we conclude that there were 5 idioms where
the usage remained more or less constant, supporting the
hypothesis we made. However, 15 idioms increased in pop-

4

https://docs.python.org/3/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

Idioms Original results (repaired) 2021 results (repaired) Percentage difference Conclusions
Projects Use Count Projects Use Count Projects Use Count

List comprehension 851 74763 848 87104 0.35% 16.51% Group 1
Dict comprehension 143 791 194 1145 35.66% 44.75% Group 2

Generator expression 697 32867 713 41493 2.3% 26.25% Group 1
Decorator 753 113841 765 166569 1.59% 46.32% Group 1

Simple magic methods 748 77999 746 81870 0.27% 4.96% Group 0
Intermediate magic methods 412 13227 417 13007 1.21% 1.66% Group 0

Advanced magic methods 189 2612 184 2548 2.65% 2.45% Group 0
finally 496 18881 509 18887 2.62% 0.03% Group 0
with 835 141435 833 219089 0.24% 54.9% Group 1

enumerate 671 19178 676 21605 0.75% 12.66% Group 1
yield 661 56396 676 56537 2.27% 0.25% Group 0

lambda 653 109369 667 45632 2.14% 58.28% Group -1
collections.defaultdict 310 2908 320 3996 3.23% 37.41% Group 2
collections.namedtuple 258 2197 275 2589 6.59% 17.84% Group 2

collections.deque 176 1685 186 1862 5.68% 10.5% Group 2
collections.Counter 130 1036 158 1360 21.54% 31.27% Group 2

@classmethod 512 22129 523 29615 2.15% 33.83% Group 1
@staticmethod 482 11486 503 15986 4.36% 39.18% Group 2

zip 544 14812 550 17013 1.1% 14.86% Group 1
itertools 126 835 129 918 2.38% 9.94% Group 1

functools.total ordering, 29 81 35 98 20.69% 20.99% Group 2

Table 2: A comparison between the results of Alexandru et al. and the reconducted experiment results (Experiment 1)

More insight needed | projects ± same, usage ± same | Projects ± same, usage up | projects, usage up

ularity by looking at the increase in use count (indicated
with yellow and green), thus disproving the hypothesis.
Further, 7 of these idioms saw increased adoption by devel-
opers, as they were used in a significant amount of projects
they previously were not (indicated in green).

Lastly, we do not consider the “lambda” idiom in our con-
clusions as we discovered that an anomalous project8 con-
tained an exceptionally high count (74,593) in the original
data but not in the re-run (4,482), thus heavily skewing the
results. We investigated this further in the New empirical
results section to ensure this was not due to a bug with
the detector and to form a conclusion about it.

5. BEYOND REPLICATION
Previously it was discussed that one of the desired outcomes
when answering RQ2 was to provide some evidence with
regards to the popularity of our newly discovered idioms,
and as such, demonstrate that they are accepted as being
pythonic. We can do this through Experiment 2. We also
wanted to comment on how the usage of pythonic idioms
had evolved to answer RQ3, and Experiment 3 is how we
can derive these results.

Experiment 2 — detection on 1,000 new repositories

Since we had previously established in Replication that
the existing detection techniques were able to accurately
detect the usage of the original set of idioms, we chose 6
of the 25 new idioms we identified during the Literature
review (bringing us to a total of 27 detectable idioms, as
can be seen in Table 1) such that we could detect them by
simply making adjustments to the existing code. Thus, we
can be sure that the usage counts are accurate.

An additional reason we chose these 6 idioms is that they
are built-in functions that are typically only used for one
intended purpose, and insight into the context the idioms
were used is not required. One example where it would

8Link to anomalous project: https://github.com/sympy/
sympy

be required is when detecting the use of set() to clear
duplicate elements in a list; there are several possible
reasons to call set() and pinpointing the developers’ intent
to the purpose we are interested in is not possible through
automated detection.

We subclassed some of the analyses from the original project
and extended them to detect the “heapq”, “pprint”, “@prop-
erty”, “ repr and str ”, “format” and “join” idioms.
The new detectors can be found in a GitHub repository9,
and this repository is also referred to in our online catalog.

A fresh set of 1,000 popular Python repositories was col-
lected using the bash script the original authors used, and
the detector was run on this new set of repositories, using
the enhanced analyses we wrote. If the usage counts of
the new idioms align with those we were already able to
discover, we can conclude that the newly identified idioms
are demonstrably in wide use, and as such embraced as
pythonic.

Results
The results from running the detector using the enhanced
analyses can be found in Table 3, and the scripts, list
of repositories, and result data files can be found in our
GitHub repository10.

As can be seen from the table, the inter-idiom differences
in usage for Experiment 2 are aligned with the results from
Experiment 1. We also observe that “ repr and str ”
and “@property” are two idioms that have particularly
high usage counts, being more widely used than 17 and
16 other idioms respectively. Under the assumption that
the idioms Alexandru et al. discovered were pythonic, and
as the usage for the new idioms are demonstrated to have
similar usage statistics, we can therefore conclude that our
newly identified idioms are also pythonic.

9Idiom detection code: https://bit.ly/3qnSL70
10See footnote 9.

5

https://github.com/sympy/sympy
https://github.com/sympy/sympy
https://bit.ly/3qnSL70

(a) collections.namedtuple (b) lambda

Figure 2: Number of uses of two idioms over time, snapshots taken 6 months apart

Experiment 3 — repository snapshots over time

We selected 10 repositories that were included both in the
original list of repositories and our newly collected ones.
The repositories we selected have been and are still under
active development, which we verified by checking if there
was at least one commit 6 months apart for the past 3
years, from May of 2021 going back to May of 2018. This
was verified automatically using a Python script which
queried the GitHub API for this information11. The reposi-
tories were chosen using these constraints because they are
demonstrably well-maintained and receive regular updates
and feature improvements, consistent with developments
in Python itself. As such, they are best suited for a study
on how pythonic idiom usage evolves over time.

In the same script, we collected the hashes for the first
commit that landed in the chosen time periods (one commit
from May and November of each year up until May 2021)
for each of the 10 repositories and stored these in text
files. The detector from Alexandru et al. contains an agent
which takes a file containing a list of Git repository links
and automatically clones them, runs the detection, and
then deletes the files afterward. We extended this agent
to additionally checkout a given commit after cloning, and
then run the detector. By doing this, we can essentially
use snapshots of projects to detect and observe how the
usage of idioms evolved every 6 months from May 2018.

Results
Two of the resulting graphs are seen in Figure 2, and the
rest can be found in a separate report [8]. We categorized
the results into distinct groups in Table 4.

From this table, it is seen that the usage count against
time grew over time for 21 out of the 27 detectable idioms,
including 12 of the 15 idioms we previously said to have
gained popularity in Replication. For the remaining idioms
out of the 27, 3 idioms had usage that remained constant,
and 3 had results where additional insight was needed.

With regards to the idioms from Replication, 7 out of 15
the idioms we said to have increased in popularity saw
some differences in results that are worth pointing out. In
Figure 2(a), the usage of “collections.namedtuple” nearly
doubled, then remained constant for some time. This is
still an increase from where it started, however, it is worth
pointing out that the usage stagnated. The same pattern

11Python commit fetching script: https://bit.ly/
35dYxhC

is seen with “collections.Counter”. The reason behind this
is most likely the limitation we identified with the detector
in Replication.

The same pattern was also seen with “yield”, “pprint” and
“join” and we believe this is due to a “saturation point” that
has been reached in the projects where it was simply not
necessary to use the idioms more than the already had
been, or because these idioms are not as widely applicable
as other idioms.

Conversely, we observed that for each of the idioms we
previously claimed to have remained constant of usage, the
usage actually increased for this selection of projects. Mean-
while, the usage of “heapq”, “functools.total ordering”, and
“itertools” remained more or less constant in this selection
of projects. While these results are noteworthy, they only
pertain to a small sample of projects, and the larger sample
of 977 projects shows more generalized results across the
Python community.

We also observed once again that in Figure 2(b), as with
the results of Experiment 1, the usage of the anomalous
“lambda” idiom decreased from roughly 75,347 uses to 3,940.
This is due to the same anomalous project from the Replica-
tion being present in our selection of repositories here. To
investigate this further, we cloned the repository using the
commit hash from the original experiment’s metadata and
ran a Ctrl+F search in the repository. By doing so, we
verified that the exceptionally high use count of “lambda”
was legitimate and not due to a bug with the detector.
We then cloned the repository from the next timeframe
(November 2018) and ran the search again, and indeed
the usage of “lambda” was significantly lower, caused by a
major refactor.

The conclusion here is that while the numbers in Table 2
were correct, the choice of including this repo in Alexan-
dru et al.’s experiment heavily skewed the popularity of
“lambda” in the original results. However, after the anoma-
lous time period, the usage then rose again steadily to 5,498
as seen in Figure 2(b), we can conclude here that “lambda”
grew in popularity for this selection of repositories.

A similar result was observed with “@staticmethod”, which
increased in usage since May of 2018, but curiously, the us-
age decreased by nearly a quarter between November 2020
and May 2021. After investigating these two snapshots, we
observed a similar result as with “lambda” — once again,
the same anomalous project underwent another refactor
which caused the usage of “@staticmethod” to decrease

6

https://bit.ly/35dYxhC
https://bit.ly/35dYxhC

Idioms Re-run original experiment Experiment with new list
Projects Use Count Projects Use Count

List comprehension 848 87104 829 56115
Dict comprehension 194 1145 144 699

Generator expression 713 41493 592 22719
Decorator 765 166569 644 101208

Simple magic methods 746 81870 650 44586
Intermediate magic methods 417 13007 263 7173

Advanced magic methods 184 2548 102 1196
finally 509 18887 325 8282
with 833 219089 872 109501

enumerate 676 21605 705 18071
yield 676 56537 518 35768

lambda 667 45632 557 23498
collections.defaultdict 320 3996 258 2589
collections.namedtuple 275 2589 200 1472

collections.deque 186 1862 126 697
heapq — — 43 193

collections.Counter 158 1360 129 840
@classmethod 523 29615 380 16711
@staticmethod 503 15986 435 11841

@property — — 464 37795
zip 550 17013 552 12553

itertools 129 918 74 445
functools.total ordering, 35 98 21 58

repr and str — — 470 15031
pprint — — 131 1076
format — — 165 2720

join — — 143 4617

Table 3: Results of Experiment 1 next to Experiment 2.

from 515 to 314, skewing the results again. Nonetheless,
we again conclude that “@staticmethod” grew in popularity
by referring to our generalized results from Table 2.

As for the 6 newly identified idioms we were able to write
detectors for, “heapq” and “pprint” stay constant in terms
of usage, while “@property” went up. The usage of “format”
decreased, and we hypothesize that this is due to the
introduction of “f-strings”, one of the idioms we covered
that was introduced in Python 3.6 [26], and as we previously
illustrated, a cleaner way to approach string interpolation.
Additionally, the usage of “join” increased then stayed
constant, and “ repr and str ” increased steadily.

6. CONCLUSIONS
Through the course of this paper, using the great efforts of
Alexandru et al. as a foundation, we dove deeper into the
ecosystem of Python and its pythonic values. In this final
section of the paper, we provide definitive answers for our
research questions through the results we gathered across
each of our experiments and the literature review.

Research Question 1
Through a literature review rooted in grounded theory, we
were able to uncover 25 new pythonic idioms, increasing
the total number of pythonic idioms discovered to 46. An
overview of the idiom counts is seen in Table 1. Every
idiom is given with detailed definitions, use cases, links to
detectors, and examples inspired by the literature sources,
and these can be found on our online catalog12. Further,
the data files, list of repositories, aggregation scripts, and

12Our pythonic idiom catalog: https://slimshadyiam.
github.io/ZenYourPython

detectors can be found in a GitHub repository13.

Research Question 2
We extended Alexandru et al.’s detectors to include 6
out of the 25 newly identified idioms. From the results
of our experimentation (Experiments 2 and 3), we have
established that each of the 6 idioms are under wide use
in the most popular Python projects, and as such, are
pythonic. The usage statistics are comparable to the idioms
previously identified by Alexandru et al. as pythonic; in
some cases, even more so, by observing the number of
projects using the “ repr and str ” and “@property”
idioms in Table 3.

Research Question 3
As can be seen in Table 1, we were able to experiment on
a set of 27 idioms, of which 21 were from the original set
of idioms, and 6 were part of our newly identified idioms.
We uncovered from the results in Experiment 2 and Ex-
periment 3 that from the original list of pythonic idioms
provided by Alexandru et al., 16 out of 21 idioms saw an
increase in popularity, including the “lambda” idiom which
required additional research through Experiment 3. 5 id-
ioms’ usage remained constant (all 3 of the “magic method”
categories, as well as “finally” and “yield”).

In addition to the original set of idioms, 2 of the 6 new
idioms we wrote detectors for had constant usage (“heapq”
and “pprint”), 3 saw increased usage (“@property”, “join”,
“ repr and str ”) and the usage of “format” decreased
(for which we conjectured potential reasons, but this re-
quires additional research).

13Online: https://bit.ly/3qnSL70

7

https://slimshadyiam.github.io/ZenYourPython
https://slimshadyiam.github.io/ZenYourPython
https://bit.ly/3qnSL70

Idioms Conclusions

List comprehension Group 2
Dict comprehension Group 2

Generator expression Group 2
Decorator Group 2

Simple magic methods Group 2
Intermediate magic methods Group 2

Advanced magic methods Group 2
finally Group 2
with Group 2

enumerate Group 2
yield Group 1

lambda Group -1
collections.defaultdict Group 2
collections.namedtuple Group 1

collections.deque Group 2
heapq Group 0

collections.Counter Group 1
@classmethod Group 2
@staticmethod Group -1

@property Group 2
zip Group 2

itertools Group 0
functools.total ordering, Group 0

repr and str Group 2
pprint Group 1
format Group -1

join Group 1

Table 4: Results of Experiment 3, categorized.
More insight needed | usage ± constant | usage up, then stagnated | usage up

Threats to validity
With regards to the internal validity of our literature review
to discover idioms, as our literature sources were chosen
based on sentiment from posters on online media such as
forums and blogs, it is possible that the most prominent
results are purported by highly opinionated individuals,
not representative of the majority. We also assume that the
idioms that are discussed in literature sources and idioms
that are used in actual code overlap heavily. Further, it
is probable that the idioms authors choose to write about
are biased to their own personal preferences, which means
that certain idioms are given more attention than others,
or that opinions may conflict across sources.

It is for this reason that we cross-reference our results
across a large variety of different sources, including some
from Alexandru et al.’s original study, and through our
filtering process, we hope to rule out any such instances of
bias.

A threat to the external validity of this research could
arise from the choice of only using prominent open source
projects during our idiom detection phase, which threatens
the generalizability of our results to the pythonicity of
closed source projects. There is some debate about the code
quality of open source projects as opposed to proprietary
or closed source projects [19].

Some may contend that since open source projects are in
the public eye, those who do contribute would want to
contribute high quality code as well, because as Raghu-
nathan et al. agree, this signals talent to the open source
community and potential employers [19]. Conversely, it has
been experimentally demonstrated that providing extrin-
sic motivation to workers through rewards (for example,

paying them a salary) conflicts with intrinsic motivation
[5]. This means that monetary incentives harm the quality
of code in the long term, because removing the extrinsic
motivation causes workers to be less interested, and there-
fore produce lesser quality code. Meanwhile, those who
were merely working out of intrinsic interest will continue
to show the same interest [5].

In the end, Raghunathan et al. conclude that the quality
of code in closed source projects is not necessarily higher
than that of open source projects [19]; as such, we believe
that our results are generalizable to closed source projects
as well.

Future work
A wide array of research based on this paper can be con-
ducted, such as writing new detectors for the remaining
new idioms we did not write detectors for, as well as dis-
covering their usage in projects. An interesting application,
as we previously described, would also be to determine and
detect all of the “anti-patterns” in Python, for which we
illustrated potential uses in the Introduction section.

References
[1] C. V. Alexandru, J. J. Merchante, S. Panichella,

S. Proksch, H. C. Gall, and G. Robles. On the Us-
age of Pythonic Idioms. In Proceedings of the 2018
ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Program-
ming and Software, Onward!, page 1–11. Association
for Computing Machinery, 2018.

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton.
Learning natural coding conventions. In Proceedings of
the ACM SIGSOFT Symposium on the Foundations of

8

Software Engineering, volume 16-21-November-2014,
pages 281–293, 2014. Cited By :161.

[3] W. Badenhorst. Practical Python Design Patterns:
Pythonic Solutions to Common Problems. Apress,
2017.

[4] D. Bader. Python Tricks: A Buffet of Awesome Python
Features. Dan Bader, 2017.

[5] R. Bénabou and J. Tirole. Intrinsic and Extrinsic Mo-
tivation. The Review of Economic Studies, 70(3):489–
520, 07 2003.

[6] P. Carbonnelle. Popularity of programming language,
2021. Online: https://pypl.github.io/PYPL.html.

[7] B. K. J. David Beazley. Python Cookbook, 3rd Edition.
O’Reilly Media, Inc., 2013.

[8] A. Farooq. How to zen your python – graphs. Technical
report, University of Twente, June 2021. https://

doi.org/10.6084/m9.figshare.14782170.v1.

[9] J. Knupp. Writing Idiomatic Python 3.3. Createspace
Independent Pub, 2013.

[10] A. Langer. Java programming idioms. In ”Technology
of Object-Oriented Languages and Systems, pages 197–
198, 2001. Cited By :2.

[11] M. J. Munro. Product metrics for automatic identifica-
tion of ”bad smell”design problems in java source-code.
In Proceedings - International Software Metrics Sym-
posium, volume 2005, pages 15–24, 2005.

[12] Python Software Foundation. Pep 569 – python 3.8
release schedule. Online: https://www.python.org/

dev/peps/pep-0569/.

[13] Python Software Foundation. Sunsetting python
2. Online: https://www.python.org/doc/

sunset-python-2/.

[14] Python Software Foundation. What’s new in
python. Online: https://docs.python.org/3/

whatsnew/index.htmll.

[15] Python Software Foundation. What’s new in python
3.6. Online: https://docs.python.org/3/whatsnew/
3.6.html.

[16] Python Software Foundation. What’s new in python
3.8. Online: https://docs.python.org/3/whatsnew/
3.8.html.

[17] Python Software Foundation. The zen of python,
2004. Online: https://github.com/python/peps/

blob/master/pep-0020.txt.

[18] Quantified Code. The little book of python anti-
patterns, 2014. Online: https://github.com/

quantifiedcode/python-anti-patterns.

[19] S. Raghunathan, A. Prasad, B. Mishra, and H. Chang.
Open source versus closed source: Software quality in
monopoly and competitive markets. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 35:903 – 918, 12 2005.

[20] K. Reitz and T. Schlusser. The Hitchhiker’s Guide
to Python: Best Practices for Development. O’Reilly
Media, 2016.

[21] T. Sakulniwat, R. G. Kula, C. Ragkhitwetsagul,
M. Choetkiertikul, T. Sunetnanta, D. Wang, T. Ishio,
and K. Matsumoto. Visualizing the usage of pythonic
idioms over time: A case study of the with open idiom.
In 2019 10th International Workshop on Empirical
Software Engineering in Practice (IWESEP), pages
43–435, 2019.

[22] Z. A. Shaw. Learn Python 3 the Hard Way: A
Very Simple Introduction to the Terrifyingly Beau-
tiful World of Computers and Code. Addison-Wesley
Professional, 1st edition, 2017.

[23] F. Shull, V. Basili, J. Carver, J. Maldonado, G. Travas-
sos, M. Mendonca, and S. Fabbri. Replicating software
engineering experiments: addressing the tacit knowl-
edge problem. In Proceedings International Symposium
on Empirical Software Engineering, pages 7–16, 2002.

[24] B. Slatkin. Effective Python: 59 Specific Ways to
Write Better Python. Addison-Wesley Professional,
1st edition, 2015.

[25] B. Slatkin. Effective Python: 90 Specific Ways to
Write Better Python, 2nd Edition. Addison-Wesley
Professional, 2019.

[26] E. V. Smith. Pep 498 – literal string interpolation,
2015. Online: https://www.python.org/dev/peps/

pep-0498/.

[27] J. Tan, D. Feitosa, P. Avgeriou, and M. Lungu. Evo-
lution of technical debt remediation in python: A case
study on the apache software ecosystem. Journal of
Software: Evolution and Process, 33(4):e2319, 2021.
e2319 smr.2319.

[28] E. Van Emden and L. Moonen. Java quality assurance
by detecting code smells. In Proceedings - Working
Conference on Reverse Engineering, WCRE, volume
2002-January, pages 97–106, 2002. Cited By :225.

[29] E. S. Wiese, M. Yen, A. Chen, L. A. Santos, and
A. Fox. Teaching students to recognize and implement
good coding style. In L@S 2017 - Proceedings of the
4th (2017) ACM Conference on Learning at Scale,
pages 41–50, 2017. Cited By :11.

9

https://pypl.github.io/PYPL.html
https://doi.org/10.6084/m9.figshare.14782170.v1
https://doi.org/10.6084/m9.figshare.14782170.v1
https://www.python.org/dev/peps/pep-0569/
https://www.python.org/dev/peps/pep-0569/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://docs.python.org/3/whatsnew/index.htmll
https://docs.python.org/3/whatsnew/index.htmll
https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/whatsnew/3.8.html
https://docs.python.org/3/whatsnew/3.8.html
https://github.com/python/peps/blob/master/pep-0020.txt
https://github.com/python/peps/blob/master/pep-0020.txt
https://github.com/quantifiedcode/python-anti-patterns
https://github.com/quantifiedcode/python-anti-patterns
https://www.python.org/dev/peps/pep-0498/
https://www.python.org/dev/peps/pep-0498/

	Introduction
	Background
	Related work

	Research Questions
	Literature review
	Identified idioms
	Formation of the online catalog

	External replication
	Beyond replication
	Conclusions

