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ABSTRACT
The number of elderly people with Alzheimer’s disease is
projected to double in the next three decades, thus increas-
ing the pressure on the available care system. The quality
of healthcare could greatly be improved by using unob-
trusive sensing to detect anomalies in regular behaviours,
such as an agitated mood in elderly people. If a caregiver
knows in advance that someone is agitated, the person
could be approached in a different way. One of the more
interesting unobtrusive sensing solutions is with the use
of Channel State Information (CSI). This paper uses CSI
data in order to first identify deviant behaviour and then
estimate the rate at which a movement, in this case sitting
and standing up, is performed. This paper will discuss sig-
nal denoising techniques as well as several machine learn-
ing techniques which are used to classify human movement
and calculate the rate at which they occur. This paper
finds that the best way to determine the rate of human
movements is by first using a Savitzky-Golay filter, then
feeding the data into a Support Vector Machine and finally
count the number of peaks in the prediction graph to get
the rate.
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1. INTRODUCTION
The number of people with Alzheimer’s disease is pro-
jected to more than double in the next 30 years, from 5.8
million today to around 13.8 million in 2050 (in the U.S.)
[1]. This increase in the amount of people with Alzheimer’s
disease is mainly caused by the number of older people,
which is also projected to more than double in the next
three decades to a total of 1.5 billion worldwide. This is
caused by increasing levels of life expectancy and a de-
creased level of fertility [7]. This massive increase in older
people (especially with Alzheimer’s disease), together with
the current global pandemic which affects caregivers of
these elderly people [11], leads to a massive increase in
demand for caregivers for these elderly people.
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To aid in the improved healthcare for elderly people, pre-
vious research in the field was conducted on the indication
of an agitated mood by looking for human movements [3].
This study concluded that certain human movements such
as throwing objects, kicking objects and repetitive mo-
tions (such as finger tapping) indicated a higher level of
agitation in the involved person. These different types of
human movement were later, in another study, combined
into an agitation scale for elderly people with dementia [6].
This scale could be used by caregivers to assess someone
before helping them and therefore approach them better
and improve healthcare if they know in advance if a per-
son is agitated. To ease the pressure on caregivers in this
situation, the detection of agitation using small human
gestures could be done using unobtrusive sensing.

Unobtrusive sensing is state of the art, especially in health-
care. Some implementations in healthcare range from
using cameras, which are a potential breach of privacy
for people involved, to using Channel State Information
(CSI), which can detect humans using Wi-Fi signals [2].
CSI technology is relatively new and has primarily been
used to detect larger movements such as a person falling
down, walking or running. There are a few exceptions
where CSI is used to detect smaller human movements
such as detecting what a person is saying by analyzing the
shape of their mouth [13].

This paper aims to take a small step towards implementing
this remote sensing of human gestures in healthcare on
a larger scale, to alleviate some of the work pressure for
caregivers and improve the quality of healthcare for elderly
people with Alzheimer’s disease.

To achieve the aforementioned goal, the following research
question will be answered: How can the rate of small hu-
man gestures be determined by using unobtrusive sensing?
This main research question will be explored using the
following sub-questions:

1. How can actual human gestures and background noise
be differentiated?

2. What is the best way to identify the rate of human
gestures?

The rest of the paper discusses related work and method-
ology before moving on to the results. The results section
first explores the the first sub-question by using different
methods to filter CSI data and comparing them. The sec-
ond sub-question is researched by using different machine
learning models on data for different receivers spread out
across the test area. After the results section, the dis-
cussion section will discuss the results found in the results
section and form answers to the sub-questions and research
question. The paper is finished off by a conclusion with
recommendations for further work.
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2. RELATED WORK
Human movement detection using remote sensing has been
researched extensively and have produced interesting re-
sults over the years. Most of the earlier solutions in this
field were centered around using cameras to detect move-
ment [4]. There were however several drawbacks to using
a camera to detect movement, such as the need for a line
of sight and privacy concerns for the users. To combat this
issue, radar technology was used to remove the need for
a line of sight and reduce privacy concerns. One example
of this radar technology being used is a study where the
radar was able to detect humans through a 10cm thick
concrete wall [9].

A more recent invention in the field of remote sensing
is using Wi-Fi signals to detect human movements using
Channel State Information (CSI). This topic was shortly
introduced in the introduction, most research using CSI
is however focused on larger human movements. Most
current research focuses on movements such as walking,
running or falling down [2, 5, 15]. One example includes
using CSI to determine the movement speeds of different
body parts and relating them to a certain body movement
[14]. Different parts of these research papers might be
used in the healthcare for elderly people, for example to
detect whether a person has fallen down or detect certain
other body movements. CSI has also been researched on a
smaller scale, one example of this is in a paper that details
the detecting of mouth movements to ”hear”what a person
is saying by measuring the reflection of Wi-Fi signals [13].
Lastly, research has been done on the presence of multiple
people in a room and the ability to detect gestures while
there are more than one person in the room [12]. This re-
search can also be implemented in an elderly home where
multiple people are present in the same room.

3. METHODOLOGY
As mentioned before in the introduction, this paper aims
to take a small step towards implementing remote sensing
technology in healthcare to measure the level of agitation
of elderly people with Alzheimer’s disease. This paper fo-
cuses on processing and interpreting CSI data from two
participants, using three different receivers, obtained in a
realistic test environment. Each receiver has 9 channels
with 30 subcarriers, which gives a large amount of data to
process. The sender sends 100 packets per second, so that
gives 12000 data points in a span of two minutes. This CSI
data, together with video data for each participant, was
gathered under a broader ongoing project ENTWINE by
co-author Nikita Sharma, before the current global pan-
demic. Only a small part (two participants) of this data
set was used for this preliminary research, the manuscript
of making the full data publicly available is under process
at the moment. Participants were asked to perform sev-
eral activities on different locations for a certain amount
of time, the location of the transmitter, receivers and lo-
cations where participants performed certain activities are
shown on Figure 1. The blue circle ”Tx1” is the transmit-
ter, the green circles ”Rx<>” are receivers and the red
circles ”L<>” are locations where participants performed
activities. Only three receivers were used, those are Rx1,
Rx2 and Rx3. The last receiver, Rx4, is not interesting
for this research paper since it is located in another room.

To prepare the available data per receiver for use with
machine learning algorithms, signal denoising methods are
used. The first method that is used is a moving average
filter, also known as a rolling mean, this method is im-
plemented using the Pandas package in Python. The sec-

Figure 1. Experiment setup

ond method that is experimented with is a Savitzky-Golay
Filter, which is implemented using the SciPy package in
Python. These methods were chosen because of their pop-
ularity. To further prepare data for machine learning, the
best channel was selected for each receiver to achieve the
best possible signal. To obtain one signal, several options
are explored such as taking the mean, the minimum and
the maximum of the 30 subcarriers.

After there is one CSI signal, the data is compared to
video data gathered while participants were performing
their activities. This video data is used to annotate the
CSI data to indicate when a certain activity is performed.
For example, peaks and valleys in a CSI signal, which cor-
respond to video data, were annotated to indicate when
a person was sitting or standing. This data was all anno-
tated with the use of an online CSI annotation tool, found
at https://trainset.geocene.com/.

After the data is prepared and annotated, three differ-
ent machine learning algorithms are trained and compared
to see which is the best at detecting human movements.
The first algorithm, Long Short Term Memory (LSTM) is
implemented in Python using the Keras and TensorFlow
packages. The second one, Convolutional Neural Network
(CNN) is also implemented using Keras and TensorFlow.
The last algorithm that is looked at is a Support Vector
Machine (SVM), which is implemented using the Scikit-
learn package in Python.

At last, after the three machine learning algorithms have
been trained and compared, the rate of a movement is
calculated using the results from the machine learning al-
gorithms.

4. RESULTS
4.1 Sub-Question 1
To answer the question ”How can actual human gestures
and background noise be differentiated?”, some signal de-
noising and smoothing techniques are looked at. The main
goal is to remove as much noise as possible from the sig-
nal and keep the peaks and valleys intact. However, before
the data is smoothed, the 30 different subcarriers are com-
bined into one signal by taking the mean value of each row,
the minimum value of each row and by taking the max-
imum value of each row. Figure 2 shows the difference
between these three. The minimum value has the largest
amplitude of the three graphs, which makes it easier to
detect when a person is performing an action. The min-
imum value graph, which is used in further experiments,
does have some outliers that are 0, these are smoothed out
in the next sections by different algorithms.
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Figure 2. The mean (blue), min (orange) and max (green)
values for all 30 subcarriers of one channel

4.1.1 Rolling Average Smoothing
The first smoothing method looked at is the Moving Av-
erage, also known as Rolling Average. This method works
by taking a certain window size, summing all values in that
window and then dividing it by the window size. This then
results in a straight line from the first point in the window
to the second point in the window. Several different win-
dow sizes between 50 and 200 are tested to see if rolling
average is sufficient in denoising the signal while keeping
the peaks and valleys intact.

Figure 3 shows the difference of one of the CSI signals be-
tween several window sizes. In this figure, each window
size is compared with the previous window size (in incre-
ments of 50) on a total of 12000 data points. It is clear
that a higher window size ensures a smoother signal with
less random variations. Figure 3 a) shows the graph of
window size 50, the general shape of the signal is intact;
however, there are still too many fluctuations, especially
at the peaks and in the valleys. Compare that to the result
in Figure 3 d), where there are little to no random fluctu-
ations left in the peaks and valleys of the signal while the
general shape of the signal stays intact. The only prob-
lem that is left is that the width and height of the peaks
and valleys are modified by a larger window size, Figure 4
shows the effects of a larger window size in more detail.

As mentioned before, the higher the window size for rolling
average smoothing, the more detail is lost and the more
condensed the peaks and valleys are. In Figure 4 it is very
visible that window size 50 (blue line) has the width and
height of the peaks very close to the original raw data,
while window size 200 (red line) has a smoother line that
can give a rough indication of when a person is perform-
ing a certain activity, yet lacks details about the width
and height of the peaks, which means there is a lack of
detail regarding the length of an activity. Comparing all
four options, the graph with window size 150 looks most
promising when it comes to preserving the shape of the
graph as much as possible while also removing as much
noise as possible. However, this is not the best solution
to keep the shape of the signal as close as possible to the
original signal, another option that was explored is the
Savitzky-Golay Filter.

4.1.2 Savitzky-Golay Filter
The second method looked at is the Savitzky-Golay Fil-
ter [10], this method works similarly to the rolling average
filter by taking a certain window size; however, for the
Savitzky-Golay Filter one can also choose the polynomial
degree. It works by taking the window size, a certain
polynomial of degree n and consequently fitting that poly-
nomial to the data points in the selected window. Several
different window sizes and polynomial degrees were tested
to see which one fit the original data the best and kept
the width of the peaks intact, starting with a polynomial
degree of 2 since polynomial degree 1 is the same as rolling
average smoothing.

In all three cases with different polynomial degrees, the
first two window sizes (101 and 201) are not sufficient,
since there are still too many small details in the graphs.
Take for example a look at the small peak at x ≈ 2400 in
Figure 5, the blue line (window size 101) and the orange
line (window size 201) still have a substantial peak there
while the other two lines have smoothed them out more.
In all cases, window size 401 is also insufficient, since it
distorts the shape of the peak too much. Figures 5, 6 and
7 show at x ≈ 2700 that the peak for window size 401
is almost a triangle, which defeats the purpose of using a
Savitzky-Golay Filter. Figure 8 plots different polynomial
degrees for a window length of 301.

Figure 3. Different window sizes for rolling window denoising
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Figure 4. Different window sizes compared

Figure 5. Comparison of Savitzky Golay filters with differ-
ent window lengths, polynomial degree = 2

Figure 6. Comparison of Savitzky Golay filters with differ-
ent window lengths, polynomial degree = 3

Figure 7. Comparison of Savitzky Golay filters with differ-
ent window lengths, polynomial degree = 4

.

Figure 8. Comparison of Savitzky Golay filters with window
length = 301, and different polynomial degrees

As can be seen in Figure 8, the graphs for polynomial de-
gree 2 and 3 are the same and are quite good at smoothing
the original data while retaining the shape of the original
peaks. The same goes for polynomial degree 4, however
there are still too many small peaks for the purpose of
detecting movements consistently.

Figure 9 shows the best result from the rolling average
method (window size 150) and the best result from the
Savitzky-Golay Filter (window size 301, polynomial degree
3) and shows them side by side. From this figure it is
clear that the Savitzky-Golay Filter is better at preserving
the shape of the peaks while also filtering out most of
the random noise from the original data. Therefore, this
method is used to smooth all data.

Figure 9. Savitzky Golay filter and rolling average compar-
ison
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4.2 Sub-question 2
Three different machine learning algorithms are used in
order to classify whenever a person is sitting or standing,
this information can then be used to calculate the rate
of those human gestures. The three algorithms that are
used are Long Short Term Memory (LSTM), Support Vec-
tor Machine (SVM) and a Convolutional Neural Network
(CNN). These three algorithms will be compared to see
which is the best at classifying human movements. For
the purpose of clarity, all figures in this subsection will be
on one specific signal from receiver 1, person 2. In the
comparison section of this subsection, the performance of
these algorithms will be shown on signals from different
receivers and different persons.

4.2.1 LSTM
The first algorithm that is explored is the LSTM, which
was implemented in python using TensorFlow. The model
used for training has one input layer with an input dimen-
sion of TIME STEPS, one LSTM layer with N units and
one output layer which decides whether a person is sit-
ting or standing. The TIME STEPS and N variables are
experimented with to find the best possible results. The
available 12000 data points are split 60% test data, 20%
validation data and 20% test data.

Both TIME STEPS and N were experimented with, TIME-
STEPS influences the depth of the LSTM layer while N

influences the width of the LSTM layer. To achieve the
best possible results, while also having a reasonable com-
putation time, both variables are experimented with sep-
arately.

Modifying TIME_STEPS.
To find out the best number for TIME STEPS, N is set
to 1000 to ensure the LSTM layer is wide enough for a
good accuracy. Time steps were tested in increments of
5, starting at 5. They were each tested 5 times with an
epoch of 10, since the accuracy already stabilizes at around
epoch 5. Table 1 shows the results of this experiment, this
table contains the average of 5 runs per time step. The
individual runs for each time step can be found in Table
8 on appendix A.

Time steps Overall Accuracy (%) Loss (%) Time (s)

5 93.914 0.051 21.864
10 95.142 0.037 29.21
15 95.246 0.039 35.086
20 94.604 0.45 44.12
25 95.45 0.036 48.834
30 95.514 0.037 55.094

Table 1. Impact of different time steps on a simple LSTM

The training time for the LSTM model appears to be lin-
ear with regards to the number of time steps, while the
accuracy and loss of all models are relatively the same
with a small increase of accuracy from 93.9% at 5 time
steps to 95.5% at 30 time steps. The best looking time
step is 15, since it has a very high accuracy of 95.2%, a
low loss with 3.9% and a decent training time of 35.1 sec-
ond for 12000 data points. If the need for a faster training
time arises, one could go for 5 (or even less) time steps and
still achieve an acceptable accuracy. For the purposes of
comparing the LSTM to other machine learning methods,
15 time steps will be used since it has a good accuracy for
an acceptable training time.

Modifying N.
To test the impact N has on the accuracy of the LSTM

algorithm, the optimal number of TIME STEPS which
was discovered in the previous section is used in all cases.
This experiment was also carried out with 10 epochs for
each N, the values for N are 1 to 5 and 10. The results for
individual runs for each value of N can be found in Table
9 on appendix A

As can be seen in Table 2, from N = 3 and onward the
accuracy does not really change anymore. N = 2 did have
some good results, while others were as poor as those in N
= 1. In these first few N values, the training time is also
not an issue, since it is a tiny increase from 13.29 seconds
at N = 1 to 13.67 seconds at N = 10. With these results
in mind, the chosen N value for the purposes of comparing
this LSTM to other machine learning methods is N = 5.
This N is chosen for having the smallest error margin for
training time while having roughly the same accuracy, loss
percentage and training time as other values, both higher
as well as lower than 5.

N value Overall Accuracy (%) Loss Time (s)

1 60.48 0.238 13.294
2 81.372 0.136 13.778
3 94.774 0.478 13.616
4 94.812 0.440 13.658
5 94.662 0.442 13.398
10 94.634 0.425 13.666

Table 2. Impact of different N size on a simple LSTM

4.2.2 CNN
The second algorithm that is explored is a Convolutional
Neural Network (CNN). The model used in this section
consists of one input layer, one hidden layer of size M and
one output layer of size 2. The output layer of size 2 is
because there are two final states, either a person is sitting
down or a person is standing up. The size N of the hidden
layer will also be experimented with, different values for
the number of neurons in this layer will be tested.

As can be seen in Table 3, the average accuracy and train-
ing time of the CNN will stay roughly the same after N
= 6 with the exception of N = 100000 which takes sig-
nificantly longer to train than the previous values in the
table (a 47.61% increase in training time compared to N
= 10000). The values in the table are a result of running
the CNN algorithm 5 times and taking the average over
all 5 runs, the complete results can be found in Table 10
on appendix A. Table 3 also shows that the loss decreases
the more neurons are in the hidden layer. Since the accu-
racy and training time stay roughly the same for N values
under 100000, N = 10000 will be used for further experi-
ments in this paper for the reason that it has the smallest
standard deviation for accuracy and loss while also having
the smallest loss value out of all different N values.

4.2.3 SVM
The last algorithm that is explored is the Support Vec-
tor Machine (SVM), which has advantages of fewer train-
ing parameters and higher stability in small-sample model
training, thus being a better choice than a CNN [8]. For
the SVM model, different kernels can be used. The most
used kernels are ”linear”, ”poly” and ”rbf”, these will be
tested to see which is the best at detecting when a person
is sitting or standing. The ”poly” kernel can have differ-
ent polynomial degrees, some different polynomial degrees
are also tested. Table 4 show that, in terms of accuracy
and loss, the different kernels give a similar result. The
main difference is in the training time of the SVM model
for different kernels, with the time being as low as 0.56

5



Size Accuracy (%) Loss Time (s)

1 90.34 0.56454 6.158
2 82.488 0.54688 6.71
3 87.418 0.54508 6.236
4 92.672 0.50554 5.99
5 89.332 0.47638 5.784
6 94.93 0.47662 5.746
7 92.276 0.44632 5.74
8 92.036 0.43408 5.764
9 93.268 0.41962 5.606

100 94.008 0.18562 5.992
200 94.54 0.16042 6.058
1000 94.658 0.14976 5.946
10000 95.196 0.13996 5.638
20000 92.52 0.19136 5.462
100000 95.142 0.14574 8.322

Table 3. Impact of the number of neurons in the hidden
layer of the CNN

seconds for ”rbf” while going to a massive 130.99 seconds
for the ”poly” kernel with a polynomial degree of 4. For
further experiments in this paper, the ”rbf” kernel will be
used since it has the lowest training time while having a
good accuracy.

N value Overall Accuracy (%) Loss Time (s)

linear 94.94 0.4366 0.65
poly, degree = 1 95.92 0.4368 0.79
poly, degree = 2 95.89 0.4371 0.59
poly, degree = 3 95.89 0.4371 11.72
poly, degree = 4 95.91 0.4369 130.99

rbf 95.87 0.4373 0.56

Table 4. Impact of different kernels on an SVM

4.2.4 Comparison
So far, the looked at machine learning algorithms have
been trained on only one CSI signal from person 2, receiver
1. In this section, the three machine learning algorithms
will be trained on all three receivers with data from person
1, person 2 and on data from both persons. This is done
to see if certain traits of the CSI signal are present in
different candidates. Tables 5, 6 and 7 show the results
of comparing the three aforementioned machine learning
algorithms on the signals of different receivers (0, 1 and 4)
and different participants (P1 and P2).

For all three receivers, the SVM is the best performing
machine learning algorithm with the highest overall accu-
racy for all receivers and all data, except for receiver 0
with data from both participants where it is in close sec-
ond place with 81.13% behind the LSTM with 81.68%.
The receiver with the overall highest accuracies is receiver
1 which is located next to the sofa (Rx1 on Figure 1). The
accuracies for P2 were also significantly higher than the
accuracies for P1 in all cases.

4.3 Calculating the rate of gestures
The rate of sitting down and standing up is counted from
the available video data, person P1 stands up 18 times
while P2 stands up a total of 21 times. Figures 10, 11
and 12 are all from receiver 1 and person 2, they show the
smoothed Savitzky-Golay graph in blue, the actual an-
notations in orange and the machine learning algorithm’s
decision in red. As can be seen in the figures, all ma-
chine learning methods have some trouble with the peak
at around 9000, this also causes all algorithms to count
more times than the actual number of sitting down and
standing up is. The rate of gestures is determined by
counting the number of peaks for the prediction graph

(red line) and subsequently dividing that number by 120,
which gives the average rate over two minutes. Figure
10, the LSTM, counts 22 times standing up, Figure 11,
the CNN, also counts 22 times, and Figure 12, the SVM,
counts 23 times.

Figure 10. Receiver 1, P2 predictions LSTM

Figure 11. Receiver 1, P2 predictions CNN

Figure 12. Receiver 1, P2 predictions SVM

4.4 Amplitudes for different receivers
The last findings looked at are the amplitudes of different
receivers for the same person, Figure 13 shows those dif-
ferent graphs. The values of receiver 0 are between 22.3
and 29.4, for receiver 1 they are between 15.2 and 32.3,
and for receiver 4 the values are between 11.8 and 26.2.

Figure 13. Amplitudes of different receivers for the same
person

5. DISCUSSION
The results in the previous section indicate that receiver
1 is the best for detecting human movements, this can be
seen in tables 5, 6 and 7. When combining these tables
with regard to the overall accuracies, Table 6/ receiver 1
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Loc1 R0 Train data (60%) Vali data (20%) Test data (20%) Vali acc (%) Overall acc (%) Sitting acc (%) Standing acc (%)

CNN P1 P1 P1 73.04 72.22 78.33 69.33
P2 P2 P2 89.33 89.13 84.69 97.92

P1 + P2 P1 + P2 P1 + P2 62.73 62.57 60.24 67.58
LSTM P1 P1 P1 76.65 72.42 76.67 70.18

P2 P2 P2 83.4 89.85 92.09 87.04
P1+P2 P1+P2 P1+P2 77.24 81.68 79.79 84.05

SVM P1 P1 P1 73.92 72.87 76.01 71.09
P2 P2 P2 90.25 89.85 87.64 93.48

P1+P2 P1+P2 P1+P2 80.38 81.13 84.23 78.33

Table 5. Results for receiver 0

Loc1 R1 Train data (60%) Vali data (20%) Test data (20%) Vali acc (%) Overall acc (%) Sitting acc (%) Standing acc (%)

CNN P1 P1 P1 72.17 71.59 88.98 61.59
P2 P2 P2 94.54 94.61 92.57 98.32

P1 + P2 P1 + P2 P1 + P2 69.52 69.1 73.64 62.66
LSTM P1 P1 P1 74.63 75.43 88.03 66.16

P2 P2 P2 93.63 94.86 96.31 92.7
P1+P2 P1+P2 P1+P2 66.95 74.36 72.37 79.93

SVM P1 P1 P1 75.08 75.95 85.55 67.72
P2 P2 P2 96.21 95.92 95.87 95.98

P1+P2 P1+P2 P1+P2 76.06 76.59 71.87 96.09

Table 6. Results for receiver 1

Loc1 R4 Train data (60%) Vali data (20%) Test data (20%) Vali acc (%) Overall acc (%) Sitting acc (%) Standing acc (%)

CNN P1 P1 P1 74.12 73.17 71.84 74.98
P2 P2 P2 94.83 94.33 95.79 92.99

P1 + P2 P1 + P2 P1 + P2 60.92 59.85 65.66 56.94
LSTM P1 P1 P1 82.35 74.38 74.82 73.89

P2 P2 P2 88.47 93.48 96.65 90.81
P1+P2 P1+P2 P1+P2 86.97 77.69 76.96 78.49

SVM P1 P1 P1 74.42 74.62 76.89 71.33
P2 P2 P2 95 95.05 93.68 96.46

P1+P2 P1+P2 P1+P2 77.21 77.75 75.49 80.58

Table 7. Results for receiver 4

gives the highest overall scores. Further results that sup-
port the assumption that receiver 1 is the best for detect-
ing human movements is found in Figure 13, which shows
the different amplitudes for different receivers. In this fig-
ure it is shown that receiver 1 has the largest difference
between the highest and lowest point of the graph. This
can be explained by the participant being between the
sender and receiver 1, as is seen on Figure 1. This causes
receiver 1 to have the highest value, while simultaneously
having the largest decreases in value. This is caused by the
participant performing movements which block the direct
signal between the sender and receiver.

However, this does not mean that a person has to be in
between the sender and receiver. Figure 1 shows that other
receivers are also able to pick up human movements, this
is further indicated by tables 5 and 7 which have a slightly
lower accuracy overall than 6. However, these accuracies
are still sufficient enough to detect human movements.

Lastly, P2 has overall a much higher accuracy than either
P1 or P1 and P2 combined. This can be explained by
the two persons having a different body type/size, hav-
ing different postures while doing the same movement and
performing those movements at a different rate, thus the
signal being fundamentally different.

6. CONCLUSION
The difference between background noise and actual ges-
tures can be determined by looking at the available CSI
data from 30 different subcarriers for one receiver. The
minimum value of those subcarriers is then taken to ob-

tain a graph with clear features, which is then smoothed
using a Savitzky-Golay Filter to remove the noise.

Several different machine learning algorithms were used to
identify the rate of human gestures, which all gave roughly
the same answer. The accuracy of these machine learning
algorithms were compared and it was determined that a
Support Vector Machine was the best at predicting when
a person was performing an activity in this case.

With the answers to the sub-questions, the research ques-
tion ”How can the rate of small human gestures be de-
termined by using unobtrusive sensing?” can be answered.
The rate of small human gestures can be determined by
taking available CSI data, using a Savitzky-Golay Filter to
remove noise from the data, feeding the filtered data into
a Support Vector Machine and finally count how often the
SVM predicts a certain movement.

Although this paper looked at several different ways to
determine the rate of a movement, from using different
smoothing techniques to different machine learning algo-
rithms, there is still room for improvement in the future.
One thing that comes to mind to improve this research is
having more participants do the same tasks, since there
were only two participants mentioned in this paper. This
would increase the accuracy at which machine learning
algorithms detect certain movements since there is more
data to learn from. Secondly, other machine learning al-
gorithms could be explored to see if accuracy can further
be improved. Lastly, a product could be developed that
detects the rate of human gestures in real time, with which
caregivers could determine a patient’s agitation level.
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Appendix A

Time step 5 Time step 20
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 94.11 5.03 22.51 1 95.91 3.78 44.78
2 95.01 4.7 21.62 2 95.86 3.46 42.55
3 95.2 4.11 21.81 3 96.03 3.55 45.06
4 92.28 5.7 21.59 4 95.09 4.02 44.45
5 92.97 6.02 21.79 5 90.13 7.51 43.76
Average 93.914 5.112 21.864 Average 94.604 4.464 44.12

Time step 10 Time step 25
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 95.55 3.8 29.7 1 94.56 4.14 51.07
2 95.05 3.72 28.53 2 96 3.29 49.05
3 93.97 4.45 29.97 3 96.02 3.45 48.03
4 95.53 3.46 28.77 4 95.01 3.93 47.76
5 95.61 3.38 29.08 5 95.66 3.38 48.26
Average 95.142 3.762 29.21 Average 95.45 3.638 48.834

Time step 15 Time step 30
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 95.63 3.51 36.15 1 94.51 4.26 54.27
2 94.87 4.9 34.55 2 95.42 3.65 53.08
3 95.23 3.81 34.62 3 96.02 3.5 55.61
4 95.44 3.35 34.89 4 96.01 3.43 55.38
5 95.06 3.97 35.22 5 95.61 3.44 57.13
Average 95.246 3.908 35.086 Average 95.514 3.656 55.094

Table 8. Modifying time
steps full results

N = 1 N = 4
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 60.48 24.05 14.45 1 95.46 3.84 14.08
2 60.48 23.93 13.06 2 94.47 4.15 13.31
3 60.48 23.09 12.86 3 94.66 4.26 13.08
4 60.48 24.07 12.72 4 95.19 5.13 12.91
5 60.48 23.93 13.38 5 94.28 4.62 14.91
Average 60.48 23.814 13.294 Average 94.812 4.4 13.658

N = 2 N = 5
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 60.48 23.94 14.57 1 94.9 4.46 14.14
2 94.24 5.55 12.94 2 94.94 4.29 13.21
3 60.48 21.27 13.02 3 94.27 4.48 13.47
4 95.82 6.33 13.75 4 94.81 3.96 12.75
5 95.84 10.7 14.61 5 94.39 4.91 13.42
Average 81.372 13.558 13.778 Average 94.662 4.42 13.398

N = 3 N = 10
Run # Acc (%) Loss (%) Time (s) Run # Acc (%) Loss (%) Time (s)
1 93.83 6.05 14.03 1 94.63 4.31 14.16
2 94.88 5.12 12.6 2 93.51 4.82 13.15
3 95.02 4.16 13.95 3 95.27 3.97 14.16
4 95 4.2 13.96 4 94.78 4.07 13.29
5 95.14 4.39 13.54 5 94.98 4.1 13.57
Average 94.774 4.784 13.616 Average 94.634 4.254 13.666

Table 9. Modifying N full
results

Size 1 Size 2 Size 3
Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s)
1 90.66 0.6007 6.51 1 95.72 0.5413 6.15 1 91.66 0.5054 6.24
2 93.62 0.5986 6.17 2 82.32 0.53 7.21 2 93.83 0.5263 6.13
3 90.15 0.5579 5.96 3 94.17 0.4287 7.02 3 95.32 0.5245 5.61
4 89.59 0.5782 6.02 4 79.83 0.5569 7 4 95.88 0.5704 6.37
5 87.68 0.4873 6.13 5 60.4 0.6775 6.17 5 60.4 0.5988 6.83
Average 90.34 0.56454 6.158 Average 82.488 0.54688 6.71 Average 87.418 0.54508 6.236

Size 4 Size 5 Size 6
Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s)
1 94.1 0.5581 5.77 1 88.82 0.4758 6.04 1 92.61 0.5053 6.12
2 86.45 0.5552 5.64 2 95.92 0.4926 5.71 2 95.93 0.4242 6.02
3 95.43 0.4244 7.28 3 92.31 0.4761 5.14 3 95.92 0.4837 5.44
4 91.83 0.4699 5.71 4 73.98 0.5151 5.43 4 95.9 0.5095 5.69
5 95.55 0.5201 5.55 5 95.63 0.4223 6.6 5 94.29 0.4604 5.46
Average 92.672 0.50554 5.99 Average 89.332 0.47638 5.784 Average 94.93 0.47662 5.746

Size 7 Size 8 Size 9
Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s)
1 95.28 0.4604 6.04 1 91.89 0.4304 5.79 1 93.67 0.5052 6.21
2 90.91 0.4592 5.53 2 91.76 0.4528 5.62 2 95.37 0.3661 5.45
3 85.29 0.494 5.59 3 90.53 0.4057 5.59 3 93.45 0.3982 5.43
4 94.07 0.396 5.94 4 92.58 0.4973 5.78 4 89.42 0.4061 5.46
5 95.83 0.422 5.6 5 93.42 0.3842 6.04 5 94.43 0.4225 5.48
Average 92.276 0.44632 5.74 Average 92.036 0.43408 5.764 Average 93.268 0.41962 5.606

Size 100 Size 200 Size 1000
Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s)
1 95.92 0.1756 5.74 1 95.23 0.1472 6.28 1 94.67 0.1468 5.8
2 95.91 0.1699 5.51 2 93.99 0.1661 5.55 2 95.28 0.1373 6.5
3 94.54 0.1674 5.39 3 94.32 0.1621 6.16 3 92.33 0.193 5.69
4 90.79 0.2166 6.76 4 95.87 0.1453 6.68 4 95.48 0.1349 6.26
5 92.88 0.1986 6.56 5 93.29 0.1814 5.62 5 95.53 0.1368 5.48
Average 94.008 0.18562 5.992 Average 94.54 0.16042 6.058 Average 94.658 0.14976 5.946

Size 10000 Size 20000 Size 100000
Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s) Run Acc (%) Loss Time (s)
1 95.39 0.1356 6.25 1 95.92 0.1296 5.83 1 94.36 0.1528 9.2
2 95.25 0.1377 5.66 2 93.4 0.1682 5.5 2 95.65 0.1329 8
3 95.67 0.1321 5.47 3 94.63 0.1479 5.36 3 95.55 0.1552 8.19
4 94.05 0.1601 5.34 4 82.93 0.3796 5.28 4 94.44 0.1512 8.03
5 95.62 0.1343 5.47 5 95.72 0.1315 5.34 5 95.71 0.1366 8.19
Average 95.196 0.13996 5.638 Average 92.52 0.19136 5.462 Average 95.142 0.14574 8.322

Table 10. CNN full results
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