
Robustness of sparse MLPs
for supervised feature selection

Neil Kichler
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

n.j.kichler@student.utwente.nl

ABSTRACT
Deep Neural Networks have seen great success yet require
increasingly higher dimensional data to be applied suc-
cessfully. To reduce the ever-increasing computational,
energy and memory requirements, the concept of spar-
sity has emerged as a leading approach. Sparse-to-sparse
training methods allow training and inference on more
resource-limited devices. It has been hinted in previous
work (SET [39] and RigL [13]) that such methods could
be applied to feature selection since they may implicitly
encode the input neuron strengths during training. How-
ever, a proper investigation of this potential idea has not
taken place in the domain of supervised feature selection.
This paper develops a method for supervised feature selec-
tion using Sparse Evolutionary Training applied to Multi-
Layer Perceptrons (SET-MLP). The focus is on investi-
gating the robustness of this feature selection mechanism
to changes in the topology of SET-MLPs. We develop
and perform an experimentally driven analysis on some
prominent datasets to evaluate the generalizability, initial-
ization dependence and similarity of the underlying net-
works of the feature selection process. We find for the
selected datasets that SET-MLP produces similar feature
selections for different underlying network topologies and
can recover from bad initialization. This work provides
a basis for understanding whether supervised feature se-
lection using sparse training methods are robust to topo-
logical changes. The problem addressed can have further
implications in understanding sparse training, given that
it visualizes some aspects of the random exploratory na-
ture of these methods. Furthermore, it discusses the po-
tential viability of sparse-to-sparse training methods for
supervised feature selection.

Keywords
Robustness, Supervised Feature Selection, Sparse Neural
Networks, Sparse Topology, Network Topology Distance

1. INTRODUCTION
Over the past decade, Deep Neural Networks (DNN) have
become the de-facto standard for image classification, ma-
chine translation, natural language processing, and many
more domains [30]. They tackle increasingly difficult prob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

lems by increasing the size of the models and their param-
eters [2, 47, 24]. This improved state-of-the-art perfor-
mance, however, comes at a cost. Most modern DNNs use
many dense layers but reach fundamental computational
constraints and large memory footprints, often requiring
many TPU/GPUs for training and inference [44, 28]. Be-
sides, many deep learning models are prone to overparam-
eterization [10, 11] and memorization [50, 25] in the search
for generalization. Overparameterization is not only com-
putationally inefficient, but it may also hinder the explain-
ability of the network, as correlations tend to increase non-
linearly when increasing the parameter space.

Many network pruning methods already exist for improv-
ing the computational cost at the inference stage [31, 22,
43, 21, 40, 34, 23]. In pruning methods, the model is still
trained as usual with over-parameterization in place, but
at a second stage, the unimportant connections in the net-
work will be removed based on a certain criterion (see Fig-
ure 1).

Input

Hidden

Output

T
ra

in
C

o
n
n
ec

ti
o
n
s

Prune

Refine

Figure 1. An illustration of a typical pruning pipeline.

After that, the pruned model can be fine-tuned to account
for a potential reduction in accuracy [36]. Many adapta-
tions exist that, in essence, try to compress a dense model
to a sparse model. Yet this dense-to-sparse training, as
performed in, e.g., Single-Shot Network Pruning [32] or
Dynamic Network Surgery [18], still requires the initial
memory footprint of the dense network. The main ben-
efit of such pruning methods seems to not be given by
inheriting important weights, but by the resulting sparse
architecture [36, 14, 15]. These methods can thus be seen

1

as a form of topological neural network search. To keep
up with ever more challenging problems, simply scaling
the existing dense-to-sparse models may turn out not to
be enough [47, 26].

Only recently, more effort has been put into developing
completely sparse-to-sparse training methods in which the
neural network can dynamically alter the topology through-
out training while keeping the number of connections at
all times bounded [38]. Deep Rewiring [6] looks at the
problem theoretically by altering the back-propagation al-
gorithm to incorporate a simultaneous optimization of the
connectivity graph. Evolutionary algorithms such as Sparse
Evolutionary Training (SET) [39] and RigL [13], on the
other hand, take inspiration from biological phenomena.
SET has shown to produce scale-free topologies [4, 8] and
is based on on-the-fly connection pruning/regrowing while
staying sparse throughout the training process.

Further reductions in computational costs can be achieved
through feature extraction and feature selection. Dimen-
sionality reduction can be vital in reducing model com-
plexity and can reduce over-fitting. Feature extraction al-
gorithms derive useful information from the data to trans-
form the data onto a new feature space [20]. The goal is to
compress the data while keeping the most relevant infor-
mation. However, the memory requirements may still be
similar, given that all features are still being used. Fea-
ture selection, on the other hand, will filter the existing
features into a subset of features. It has the potential to
reduce the model complexity, improve the generalization
capability and explainability of the model [19]. Since some
sparse training algorithms (e.g. SET [39] and RigL [13])
seem to encode importance to the input nodes, this weight
information could potentially be used for feature selection.
For unsupervised training of Autoencoders, a truly sparse
selection process called QuickSelection has shown promis-
ing results by reducing the parameter size by at least an
order of magnitude while significantly increasing the com-
putational efficiency [3].

Many areas of sparse training and feature selection of
DNNs are still unexplored [38]. For supervised learning
methods like MLPs it is yet unclear whether the weights
of the input neurons will correlate with the feature impor-
tance. Moreover, once features are selected, it is still an
open question whether such a feature selection is robust
to topological changes in the network.

The goal of this research is thus to understand the be-
haviour of SET-MLPs for supervised feature selection con-
cerning robustness. It ultimately should inform whether
the recent trends into sparse training will pay-off as good
memory-efficient candidates for going beyond state-of-the-
art DNNs. To pursue our goal, we have defined the fol-
lowing research questions as the basis of our research:

Limits How far can we stress SET-MLP in terms of spar-
sity and the number of features selected while retaining
accuracy?

Similarity How similar is the feature selection of different
SET-MLPs trained on the same dataset?

Initialization-dependence How does SET-MLP respond to
bad initializations?

Generalizability How generally applicable are SET-MLPs
for feature selection?

In this paper, we study these open questions to start un-
derstanding how robust supervised feature selection with
SET-MLPs is to topological changes in the network. We
make the following specific contributions:

(1) We develop a supervised feature selection method using
SET-MLPs.

(2) We create a unique framework designed for sparse
training methods to perform a broad evaluation of their
robustness characteristics for feature selection.

(3) We repeat some experiments by Liu et al. [35] on Sparse
Topology Metrics and improve the original algorithm and
implementation. We then analyze the similarity of the
network topology obtained by different SET runs that are
used for feature selection.

(4) We establish an inverse problem in which a sparse-to-
sparse network has to find the complete opposite feature
importance from what it would select after initialization.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work in sparse-to-sparse train-
ing and feature selection by illustrating the general con-
cepts. After that, the specific methodology and experi-
mental setup in use to answer the above research questions
is discussed in Section 3 and 4. In Section 5, the results
are presented and discussed in Section 6. Finally, the lim-
itations and open questions of the study are discussed,
resulting in possible future directions.

Input

Hidden

Output

Train

Drop Add

Next Epoch

Figure 2. Illustration of the SET algorithm for a MLP.

2. RELATED WORK
In this section, we introduce related work in sparse neu-
ral networks, feature selection and topological similarity
metrics that are the basis of this study.

While DNNs have been a topic of research for several
decades, the benefits of sparse architectures are still being
explored. Gale et al. [15] extensively evaluate many fixed
pruning and sparsification methods. The experiments in-
dicate that simple pruning techniques can achieve equal

2

or better performance than complex pruning techniques
that may perform more inconsistently. In addition, they
observe that it is more difficult to train a fixed learned
sparse architecture through pruning than a model that in-
corporates sparsification in the optimization and training
process [15]. The resulting sparse architecture seems to be
the crucial aspect. For a traditional example, see Single-
Shot Network Pruning (SNIP), where Lee et al. [32] at-
tempt to find a mask to filter an initially dense neural
network before training. After pruning, training proceeds
as usual with the static, sparse network. An additional
limitation to pruning is that the initial memory footprint
is still required, which may not be suitable for low resource
environments.

Various types of sparse-to-sparse training techniques exist
that could be used as the basis of the study [38]. Mocanu
et al. have proposed the concept of Sparse Evolutionary
Training (SET) in 2018 [39] after initially attempting to
use a fixed sparse connectivity pattern in 2016 [37]. SET
uses Erdös-Rényi graph initialization to create the initial
sparse network. It is a graph where each edge in the same
layer has an equal probability to be taken. SET then takes
the currently trained sparse network and removes a frac-
tion of the weights with the smallest magnitude. It then
randomly creates as many new connections across the net-
work as were removed. Figure 2 visualizes this method.
SET is similar to an evolutionary process in that it can
produce a sparse, scale-free network topology. As a result,
it requires significantly fewer connections and quadrati-
cally reduces the number of parameters at no decrease in
accuracy [39, 7]. To allow for faster convergence than ran-
dom evolution, RigL [13] and Top-KAST [27] make use
of the gradient information from non-existing connections
during the regrow phase. However, the information needed
from these non-existent connections may turn out to not
be scalable enough. A similar strategy that is based on the
momentum of each parameter has also been explored by
Dettmers and Zettlemoyer [12]. Given that the robustness
of such methods will be analysed, the convergence rate is
of secondary importance. Instead, the simplicity of SET
creates a transparent platform for further study. In addi-
tion, the random regrow strategy makes SET less biased
by gradient information which is preferred in a study of
robustness.

Sparse training can also be adapted to other applications
such as feature selection resulting in lower computational
costs for larger data sets. The work by Atashgahi et al.
[3] demonstrates that the ideas developed for SET can
map over to unsupervised training of Autoencoders to
perform unsupervised feature selection. In essence, the
weights of the input neurons are taken as a metric for
choosing the important features. Whether these meth-
ods will translate to supervised training on SET-MLPs is
still unclear. To gain further insights into the topological
structures of sparse DNNs, Liu et al. [35] propose a Neural
Network Sparse Topology Distance (NNSTD) metric. It
enables one to compare and visualize different sparse net-
work topologies. NNSTD treats the neural network as a
neural graph such that it can use the well-known Graph
Edit Distance (GED) [42]. It considers the minimum dis-
tance needed to transform a graph g1 into another graph
g2:

GED(g1, g2) = min
∀p∈P(g1,g2)

c(p), (1)

where p is a sequence of transformations in the set of all
possible transformations P that has a total cost of c(p).

The idea is then to take two layers at a time from both
networks, and for each combination of neurons, the delta
between the connections is computed in terms of the Nor-
malized Edit Distance (NED) given by:

NED(g1, g2) =
|g1 \ g2 ∪ g2 \ g1|
|g1 ∪ g2|

, (2)

where g1, g2 are two layers coming from two networks.

3. PROPOSED METHODS
To address the research questions regarding the robust-
ness of supervised feature selection using sparse neural
networks, this section details the proposed methods.

Drop Addy
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

Network

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

N
et

w
or

k

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
n

ce

0 25 50 75 100
Features Dropped [%]

0

20

40

60

80

A
cc

u
ra

cy
[%

]

Support-Vector

K-Nearest Neighbours

Extra-Trees

N

Network Initialization

Robustness Evaluation

SET Training

Weights evolution

n1

n2

nN

F1

F2

FN

F1 F2 FN

Feed-forward &
Back-propagation

No

Yes

sample epoch? epoch
+= 1

Feature Selection

Node Strength

NNSTD

Classification

Figure 3. Illustration of Evaluation Framework (see Section
3.1 for a description), where N is the number of runs, n the
nth run and Fi the ith selected feature set.

3.1 Evaluation Framework
The evaluation framework follows closely the proposed re-
search questions of Section 1 (see Figure 3). In general,
various SET-MLPs are trained on the datasets and used
for feature selection as discussed in Section 3.2. The se-
lected features are then used to perform classification with
various standard classifiers (see Section 4), and the ac-
curacy on these tasks will be recorded. We repeat the
general setup for various sparsity levels of the SET-MLP.
We not only apply feature selection at the end of training
SET, but perform the same evaluation after several sample
epochs. To visualize the feature selection, several images
are created which indicate the prevalence of the features
over multiple runs (see Section 3.3). Finally, the Network
Topology Distance is used to judge the similarity of the
underlying SET networks (see Section 2 and 3.3).

3.2 Feature Selection
Various feature selection mechanisms can be thought of
that use the weight and connectivity information of SET-
MLP. Since the focus of this research is not on finding the
best possible feature selection approach, only a simple,
straightforward method is introduced and used for feature
selection. Concretely, first a SET-MLP is trained as de-
fined in [39] and visualized in Figure 2. Afterwards, the
first weight layer representing the input neurons will be

3

used to determine the node strengths. This was also al-
ready done by Atashgahi et al. [3] for unsupervised feature
selection and follows the typical graph theory conception
of node strength. A node strength s is determined by
taking the sum of the magnitude of all its outgoing con-
nections:

si =

N1∑
j=1

|w1
i,j |, (3)

where N1 represents the number of neurons in the first
hidden layer of the network. Similarly, w1

i,j is the weight

associated with input neuron i and the jth neuron of the
first hidden layer.

This strength can now be used to rank the features such
that finally, only the most important percentage of fea-
tures is selected:

F = {fi|i ∈ Z, 0 ≤ i ≤ N0, si ≥ Sk}; k = bN0λc, (4)

where F is the resulting set of selected features, fi the ith

feature, Sk the kth element of the sorted set (descending)
of node strengths, N0 the number of input neurons, and
λ the percentage of features to be selected.

3.3 Network Similarity Metrics
Quantifying the similarity of different SET-MLP topolo-
gies can be achieved through various means.

Images.
The first method in use visualizes the features as an im-
age where each pixel represents a different feature. It is
especially useful in image classification tasks to get an in-
tuitive understanding of the feature selection. It can be
used to show the evolution of the feature selection after
various training epochs of the SET-MLP. In addition, dif-
ferent intensity levels of the colour can provide insight into
spatially locating the essential features.

Sparse Topology Distance.
To better quantify the similarity of different topologies,
the method introduced by Liu et al. [35] is also used
here and explained in Section 2. Given the complexity
of this algorithm, adding more runs into the comparison
will drastically increase the computation time. Therefore,
we improved the computational cost of the inner loop of
the official implementation through typical optimization
strategies (use of Numba [29], a JIT backend to Python)1.
Also, by identifying that the elements in g1 and g2 are all
unique, the computation of the Normalized Edit Distance
(NED) can further be simplified to:

d(g1, g2) =
|g1|+ |g2| − 2|g1 ∩ g2|

|g1 ∪ g2|
, (5)

where d represents the NED and g1, g2 two layers coming
from two networks.

4. EXPERIMENTAL SETUP
To assess the robustness of feature selection using SET-
MLP, several experiments have been conducted to give

1The code is available at: https://git.snt.utwente.nl/
s2106019/sparse_topology_distance

insight into the research questions in a step-wise fashion.
Note that we explicitly do not look at the raw accuracy,
but limit this study to the specific robustness characteris-
tics. To begin with, the first experiment tests the classifi-
cation accuracy for various classifiers and varying numbers
of features selected. The feature selection is performed us-
ing SET-MLP as described in Section 3.2. The classifiers
that are taken into consideration are support-vector [46],
k-nearest neighbours [1] and extra-trees classifier [16]. The
general characteristics of a fixed sparsity level for SET-
MLP are first explored in detail. Then, the same experi-
ment is performed for different sparsity levels of SET. For
all experiments, the number of features selected ranges
from 0% to 100% in 10% increments. It allows to ex-
plore the scaling behaviour of the feature selection and
may highlight the potential critical percentage of features
needed to still perform the classification task with reason-
able accuracy.

4.1 Initialization Dependence
Much previous work already points out the sensitivity of
various neural networks to their initialization [45]. This is
also tested for SET-MLP by using different random seeds
for each run. In combination with the other aspects of the
evaluation, this should provide a solid ground to explore
whether different seeds create different resulting networks
and feature selections. Furthermore, a worst-case scenario
is performed, in which the SET-MLP is first trained as nor-
mal. After that, the process is repeated, however, the most
important features that have been found are disabled com-
pletely during initialization by setting all the correspond-
ing connections to 0. The rest is initialized randomly as
usual. Note that the sparsity level is nonetheless the same,
resulting in more unimportant weights. This process can
loosely be thought of as the inverse problem in which the
network has to find the complete opposite from what it re-
ceived as input. The performance of this task can then be
evaluated by comparing the feature selection of the initial
run with that of the modified one. The specific configura-
tions of these experiments given a dataset are provided in
the next sections.

Table 1. Dataset properties

Name Features Type Samples Classes
F-MNIST 784 Image 70000 10

Lung 3312 Microarray 203 5

4.2 Datasets
It has been shown in the past that specific attributes
of a dataset can significantly alter the performance of
a model [33, 41]. Therefore, it is vital to perform the
above-mentioned tests on a variety of datasets with differ-
ent characteristics. The default dataset, with which the
most detailed analysis is performed, is Fashion-MNIST
[49]. It poses an image classification problem and is par-
ticularly useful in getting an intuitive understanding of
the behaviour of an algorithm. Since it has 28× 28 pixels
per image, this dataset has 784 features and 10 possible
output classes. From the biological domain, Lung from
the scikit-feature feature selection repository [33] is used
as another continuous, multi-class dataset with 3312 fea-
tures and 5 output classes. Table 1 provides an overview
of the dataset characteristics.

4.3 Hyperparameters
SET has various hyperparameters that can alter the per-
formance of the model. Throughout the test process, all

4

https://git.snt.utwente.nl/s2106019/sparse_topology_distance
https://git.snt.utwente.nl/s2106019/sparse_topology_distance

70

80

A
cc

u
ra

cy
[%

]
1 3 5 7 9 11 13 15

Features Dropped [%]

17 19 21 23 25 27 29

0 100

31

Support-Vector

K-Nearest Neighbours

Extra-Trees

Figure 4. In each plot, the classification accuracy of support-vector, k-nearest neighbour and extra-trees classifier is plotted
against the percentage of features dropped ranging from 0% to 100%. Features Dropped indicates the percentage of
features that were removed by the feature selection. Every plot represents a different sparsity level of SET’s underlying
network ranging from using ε = 1, 3, ..., 31 (see top label).

these parameters are held constant unless explicitly stated
otherwise. The fraction of weights removed at each epoch
is ζ = 0.3. So, 30% of the weights are removed and re-
placed at each epoch using the process illustrated in Figure
2. The sparsity of the network is based on the variable ε,
which determines how many edges are selected during ini-
tialization. The sparsity level is by default at ε = 13.
It, for instance, roughly equates to a 2% density level
(1− sparsity) in the first hidden layer of Fashion-MNIST.
Besides, Nesterov momentum is used during optimization
with α = 0.9, and the batch size is 40 and 2 for Fashion-
MNIST and Lung, respectively. All data is normalized to
mean 0 and unit variance. We train SET for 400 epochs
using a learning rate of η = 0.05 and a weight-decay of
2e−4. No dropout is used during this process.

0 25 50 75 100
Features Dropped [%]

0

20

40

60

80

A
cc

u
ra

cy
[%

]

Support-Vector

K-Nearest Neighbours

Extra-Trees

Figure 5. Classification accuracy of support-vector (green),
k-nearest neighbours (red) and extra-trees (blue) classifier
for different feature selections. The feature selection is per-
formed using the proposed method (see Section 3.2). 32
runs, Fashion-MNIST, ε = 13.

4.4 Implementation
The implementation of SET2 is written in Python and uses
purely sparse datastructures for working with the weights.

2The official SET repository from which the second listed
implementation is used can be found on GitHub.

For this, SciPy’s sparse matrices are used [48]. In partic-
ular, the second listed implementation is the foundation
of this research and uses Numba [29] for the performance-
critical sections. We have adapted the code slightly to
fit our needs and provide feature selection and various
plotting functions3. For the datasets Fashion-MNIST and
Lung, 3 hidden layers with each 3000 neurons are used for
SET. Besides, we use 2

3
of the data as training data and

the rest for validation. The split size is the same for both
training of SET and the classifiers. In each run, a differ-
ent random split is taken and SET will have a different
initialization.

4.5 Evaluation Environment
The experiments were performed on a quad-core CPU,
namely an Intel(R) Core(TM) i7-8550U CPU @1.8 GHz
with a maximum clock speed of 4 GHz run on Linux. The
implementation can use all the available cores, however,
no GPUs were used during this process given the limited
hardware support for sparse methods.

5. RESULTS
This section presents the findings of the experiments men-
tioned in Section 4.

Baseline Accuracy at fixed sparsity levels.
First, we explore how many features can be dropped for
the classification task before seeing noticeable accuracy
degradation. When looking at Figure 5, we can see that
the accuracy is unaltered for up to 80% dropped features.
The accuracy of all classifiers reduce by 3 − 5% at 10%
of remaining features and drops significantly afterwards.
This behaviour is reasonable since, at some point, there ex-
ist too few features to make meaningful predictions. More
interesting is the fact that the variance of the accuracy
remains small for the 32 runs. These accuracies form a
baseline for the following experiment.

Accuracy at different sparsity levels.
Next, we explore how the accuracy of the different classi-
fiers changes if SET is performed at varying sparsity levels.

3The code of this paper is available at:
git.snt.utwente.nl/s2106019/robustness_set

5

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://git.snt.utwente.nl/s2106019/robustness_set

Epoch: 0 Epoch: 5 Epoch: 10

Epoch: 20 Epoch: 30 Epoch: 40

Epoch: 50 Epoch: 75 Epoch: 100

0

8

16

24

32

p
re

va
le

n
ce

(a) Erdös-Rényi graph initialization.

Epoch: 0 Epoch: 5 Epoch: 10

Epoch: 20 Epoch: 30 Epoch: 40

Epoch: 50 Epoch: 75 Epoch: 100

0

10

20

30

40

50

p
re

va
le

n
ce

(b) Worst-Case initialization.

Figure 6. Node strength visualization of SET-MLPs underlying network using (a) Erdös-Rényi and (b) worst-case initial-
ization (see Section 4.1). 70% of features dropped, Dataset is Fashion-MNIST.

We vary ε from 1 to 31 and perform the same evaluation
as before. Looking at Figure 4, we mostly see that the per-
formance of the classifiers remains stable but drops faster
for very low densities. The deviations from low to high
sparsity are more pronounced for smaller ε. This is most
notable in the k-nearest neighbours classifier, where the
accuracy stabilizes for ε = 13 even at 90% dropped fea-
tures.

0 20 40 60 80
Features Dropped [%]

76

77

78

79

80

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

100

Figure 7. K-Nearest Neighbours classifier accuracy for dif-
ferent feature selections. The legend shows the colours of
the different training epochs of SET-MLP before the fea-
ture selection was performed. Based on 32 runs, Fashion-
MNIST.

Accuracy at various stages of SET.
To further explore the true impact of SET feature selection
on the accuracy of classifiers like k-nearest neighbours, we
let SET train for 0, 5, 10, 20, 30, 40, 50, 75 and 100 epochs
before performing feature selection (see Figure 7). We can
identify that after 20 epochs, a boundary occurs whereby
the accuracy remains very close together and in the er-
ror margin of the experiment. More importantly, the plot
shows that for an increased number of dropped features,
the difference between training and no training - thus ran-
dom feature selection - becomes more pronounced. For

the case of the k-nearest neighbours classifier, the accu-
racy increases from 77% to 79% at 20% remaining fea-
tures. Figure 11a and 11b contain similar results for the
support-vector and extra-trees classifier, respectively.

Feature selection similarity.
Given that the accuracy remains stable for the various
classifiers, it remains to see whether the actual feature
selection by SET remains stable as well. For this, the
28×28 pixels representing the features of Fashion-MNIST
are given a prevalence score at various stages of the SET
training phase. The prevalence score counts in how many
runs the feature selection selected the feature (see Fig-
ure 6a). The feature selection is performed after training
the SET-MLP for the specified number of epochs and re-
moves 70% of the features. Initially, the distribution is
random due to the Erdös-Rényi graph initialization. Af-
ter 20 epochs, the feature pixels located at the borders
are removed, which is reasonable given that most pictures
are black at the borders in Fashion-MNIST. However, also
the center is given less importance, indicating that this
method selects features on the contours of most clothing.

Feature selection inverse problem.
Another robustness criterion mentioned as a research ques-
tion was the initialization dependence of SET. That is,
does SET require specific initialization - which in this case
is Erdös-Rényi graph - or is it robust to varying initial net-
works? We establish a worst-case scenario as described in
Section 4.1 by first training SET to find the important
features to then explicitly remove those features in the
initialization of the actual run. It only alters the first hid-
den layer and keeps other layers Erdös-Rényi initialized.
An inverse problem is created, which should ideally result
in the inverse image at the final epoch (assuming that the
initial features were indeed the important ones). Figure
6b presents this process in which SET successfully recovers
its initial feature importance.

Topological similarity of SET.
It remains to investigate whether the different runs of
SET produce different networks or if very similar network
structures can emerge. For this investigation the Net-

6

work Topology Distance (NNSTD) is used as discussed
in Section 2 and 3. Based on the NNSTD, the SET net-
works that were used for feature selection (after epoch 400)
are all similarly distant from each other, hovering around
0.87± 0.01. So, even though the feature selection remains
almost the same, the actual network topology does not.
It indicates that many networks exist that perform well.
The plot on the right side of Figure 8 shows the evolution
of a single network. The results seem to be independent of
the initialization strategy. We can observe that the sim-
ilarity is largest and spreads outwards from the diagonal
line. This is in line with expectation given that one ex-
pects, e.g., epoch 40 to be more similar to epoch 30 and 50
than epoch 300. The NNSTD suggests that the network
keeps on changing even after 300 epochs. Interestingly,
the initial epochs are much closer together. Overall, the
NNSTD remains above 0.5 in all cases.

Network

N
et

w
or

k

0 510 30 50 100200399
Epoch

0
5

10
20
30
40
50
75

100
150
200
300
399

E
p

o
ch

0.0

0.2

0.4

0.6

0.8

1.0

p
re

va
le

n
ce

Figure 8. Network Topology Distance for Fashion-MNIST.
On the left, networks from different runs are compared for
topological similarity. The right figure shows one specific
SET network at different stages of training. The missing
label values are always in between the two neighbouring
labels.

Generalizability.
To start exploring the generalizability of this method, we
also investigate the performance on Lung [33]. For Lung,
the general accuracy characteristics remain the same (see
Figure 9), however, higher variance in the accuracy can
be observed. This is to be expected given that Lung con-
tains only a few hundred samples. In Figure 10, we also
observe that training SET-MLP becomes more important
once more than 50% of the features are dropped. How-
ever, overall, the higher variance overshadows any signif-
icant gains. For the extra-trees classifier, these findings
are more pronounced. Additional results for the extra-
trees and support-vector classifier are given in Figure 11c
and 11d, respectively. The Madelon dataset has also been
used and shows some of the limitations of this method
when SET-MLP does not converge completely in the given
time and thus results in poor feature selection4. Madelon
is an artificially created dataset consisting of many noisy,
redundant features which makes it more difficult for SET
to gain any useful information most of the time. Given
the random evolutionary nature of SET, the convergence
may thus take a long time. Further analysis is beyond the
scope of this research, given that feature selection should
be reasonably fast to be useful.

6. DISCUSSION
In this paper, we provided several perspectives into an-
swering whether feature selection using SET-MLPs is ro-
bust. Connecting the initial findings of Fashion-MNIST,
we observe a qualitative difference after training SET for

4For results on the Madelon dataset see the Addendum

0 25 50 75 100
Features Dropped [%]

70

80

90

A
cc

u
ra

cy
[%

]

Support-Vector

K-Nearest Neighbours

Extra-Trees

Figure 9. Classification accuracy of support-vector (green),
k-nearest (red) and extra-trees (blue) classifier for different
feature selections. The feature selection is performed using
the proposed method (see Section 3.2). 32 runs, Lung, ε =
13.

20 epochs. Here the accuracy increases (as seen in Figure
7) since SET removes the unnecessary boundary features
present in Fashion-MNIST pictures (see Figure 6a). It is
likely not a coincidence, as many runs come to the same
results even given a bad initialization (see Figure 6b). The
convergence of SET is fast in these cases and thus estab-
lishes itself as a practical method for feature selection. The
similarity of the networks turns out to be different given
the NNSTD metric. This is in line with the findings of
Liu et al. [35]. Overall, the observed distance is slightly
smaller compared to the existing results. This may be
explained by the fact that we used 3000 hidden neurons
per layer compared to 784 hidden neurons. In general,
the Network Topology Distance metric is very sensitive
to changes in the network structure, resulting in almost
everything getting the same large distance score.

0 20 40 60 80
Features Dropped [%]

93

94

95

96

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

99

Figure 10. K-Nearest Neighbours classifier accuracy for
different feature selections. Features Dropped indicates
the percentage of features that were removed by the feature
selection. The legend shows the colours of the different
training epochs of SET-MLP before the feature selection
was performed. Based on 32 runs, Lung.

Liu et al. discuss very minor changes in the network, which
can be picked up using this metric. However, for a more
coarse-grained analysis, NNSTD is of limited use. Other

7

https://git.snt.utwente.nl/s2106019/robustness_set/-/raw/master/Paper_Robustness_SET_Addendum.pdf?inline=false

similarity metrics would have to be created given that, to
our knowledge, no other methods exist in the literature.

These findings also create a connection to the Lottery
Ticket Hypothesis [14]. It states that there exist subnet-
works of randomly initialized, dense neural networks which
can achieve the same accuracy as the initial network af-
ter training at most the same number of iterations. SET
seems to find such substructures more systematically and
is one reason why feature selection is possible with it.

7. CONCLUSION
In this work, we introduced a procedure to evaluate the ro-
bustness of SET-MLPs for use in supervised feature selec-
tion. Notwithstanding the limitations mentioned in Sec-
tion 8, we demonstrated that SET-MLPs indeed produce
similar feature selections while the underlying networks
may differ significantly. Even in worst-case initialization
scenarios, SET can select meaningful features, providing a
solid basis for a robust feature selection mechanism. After
several epochs, the benefits of SET-MLP feature selection
are already present, making it a viable feature selection
strategy beyond traditional methods. The generalizabil-
ity of this method has been experimentally tested on var-
ious datasets, however, it remains to be seen whether it
holds up for larger-scale datasets with many more output
classes. Ultimately, this research provides a hopeful fu-
ture for sparse training and feature selection, which has
the potential to drastically decrease the memory footprint
and computational cost of new and existing classification
methods.

8. LIMITATIONS AND FUTURE WORK
This paper investigates the feature selection capabilities
of SET using a rather simple selection mechanism (see
Section 3.2). It cannot be excluded that better feature
selection strategies exist. An elaborate study of various
techniques is warranted, and future work may look into
possible new yet unknown approaches. The qualitative
aspect of the results is, however, likely to not change and
is the reason for choosing this simple mechanism. As with
any experimental study, one should analyse the behaviour
on many more datasets. Given the few output classes of
the chosen datasets, it will be interesting to see whether
the results hold up for larger, more complex datasets. The
Madelon dataset already gives some indications of the
limitations of this method. If SET-MLP cannot quickly
enough converge, it will result in bad feature selections.

In terms of analysing the robustness of this method, many
other perspectives can be thought of. It may turn out
that on larger datasets, the feature selection ignores cer-
tain, uncommon output classes. Hooker et al. [25] already
looked into whether compressed models can forget. They
form an analysis on dis-aggregated measures of model per-
formance, which could also be used in similar studies on
feature selection using sparse-to-sparse training. It is also
interesting to see whether the robustness characteristics
of this approach can extend to robustness to adversarial
attacks on the dataset. It has been explored for image
classification by Goodfellow et al. [17], Carlini and Wag-
ner [9] and Bastani et al. [5] among others, but similar
studies are lacking for feature selection strategies.

9. ACKNOWLEDGMENTS
I thank my supervisors, Decebal Mocanu and Zarah Atash-
gahi for continuous and insightful feedback to both writing
and executing this thesis.

0 20 40 60 80
Features Dropped [%]

70

71

72

73

74

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

100

(a) Fashion-MNIST: Extra-Trees classifier.

0 20 40 60 80
Features Dropped [%]

80

81

82

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

100

(b) Fashion-MNIST: Support-Vector classifier.

0 20 40 60 80
Features Dropped [%]

86

88

90

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

99

(c) Lung: Extra-Trees classifier.

0 20 40 60 80
Features Dropped [%]

94

95

96

A
cc

u
ra

cy
[%

]

0

5

10

20

30

40

50

75

99

(d) Lung: Support-Vector classifier.

Figure 11. Additional classification results. Mean classifier
accuracy for different feature selections based on 32 runs.
Features Dropped indicates the percentage of features
that were removed by the feature selection. The legend
shows the colours for different training epochs of SET-MLP.

8

References
[1] Naomi S. Altman. 1992. An introduction to ker-

nel and nearest-neighbor nonparametric regression.
American Statistician 46, 3 (1992), 175–185. https:

//doi.org/10.1080/00031305.1992.10475879

[2] Dario Amodei, Danny Hernandez, Girish Sastry, Jack
Clark, Greg Brockman, and Ilya Sutskever. 2018.
AI and Compute. https://openai.com/blog/

ai-and-compute/

[3] Zahra Atashgahi, Ghada Sokar, Tim van der Lee,
Elena Mocanu, Decebal C. Mocanu, Raymond Veld-
huis, and Mykola Pechenizkiy. 2020. Quick and
Robust Feature Selection: the Strength of Energy-
efficient Sparse Training for Autoencoders. arXiv (12
2020). http://arxiv.org/abs/2012.00560

[4] Albert L. Barabási and Réka Albert. 1999. Emer-
gence of scaling in random networks. Science 286,
5439 (10 1999), 509–512. https://doi.org/10.

1126/science.286.5439.509

[5] Osbert Bastani, Yani Ioannou, Leonidas Lampropou-
los, Dimitrios Vytiniotis, Aditya Nori, and Antonio
Criminisi. 2016. Measuring Neural Net Robustness
with Constraints. Advances in Neural Information
Processing Systems (5 2016), 2621–2629. http:

//arxiv.org/abs/1605.07262

[6] Guillaume Bellec, David Kappel, Wolfgang Maass,
and Robert Legenstein. 2017. Deep Rewiring: Train-
ing very sparse deep networks. arXiv (11 2017).
http://arxiv.org/abs/1711.05136

[7] David D. Bourgin, Joshua C. Peterson, Daniel Re-
ichman, Stuart J. Russell, and Thomas L. Griffiths.
2019. Cognitive Model Priors for Predicting Hu-
man Decisions. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, Kamalika
Chaudhuri and Ruslan Salakhutdinov (Ed.). PMLR,
5133–5141. http://proceedings.mlr.press/v97/

peterson19a/peterson19a.pdf

[8] Ed Bullmore and Olaf Sporns. 2009. Complex brain
networks: Graph theoretical analysis of structural
and functional systems. , 186–198 pages. https:

//doi.org/10.1038/nrn2575

[9] Nicholas Carlini and David Wagner. 2017. Towards
Evaluating the Robustness of Neural Networks. In
Proceedings - IEEE Symposium on Security and Pri-
vacy. Institute of Electrical and Electronics Engineers
Inc., 39–57. https://doi.org/10.1109/SP.2017.49

[10] Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando de Freitas.
2013. Predicting Parameters in Deep Learning.
Advances in Neural Information Processing Systems
(6 2013). http://arxiv.org/abs/1306.0543

[11] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann
LeCun, and Rob Fergus. 2014. Exploiting Linear
Structure Within Convolutional Networks for Effi-
cient Evaluation. Advances in Neural Information
Processing Systems 2, January (4 2014), 1269–1277.
http://arxiv.org/abs/1404.0736

[12] Tim Dettmers and Luke Zettlemoyer. 2019. Sparse
networks from scratch: Faster training without losing
performance. arXiv (7 2019). https://arxiv.org/

abs/1907.04840

[13] Utku Evci, Trevor Gale, Jacob Menick, Pablo S.
Castro, and Erich Elsen. 2020. Rigging the Lot-
tery: Making All Tickets Winners. In Proceedings
of the 37th International Conference on Machine
Learning, Hal Daumé III and Aarti Singh (Eds.).
2943–2952. http://proceedings.mlr.press/v119/

evci20a/evci20a.pdf

[14] Jonathan Frankle and Michael Carbin. 2018. The
Lottery Ticket Hypothesis: Finding Sparse, Train-
able Neural Networks. arXiv (3 2018). http:

//arxiv.org/abs/1803.03635

[15] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
State of Sparsity in Deep Neural Networks. arXiv (2
2019). http://arxiv.org/abs/1902.09574

[16] Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine Learning
63, 1 (4 2006), 3–42. https://doi.org/10.1007/

s10994-006-6226-1

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learn-
ing Representations, ICLR 2015 - Conference Track
Proceedings. International Conference on Learning
Representations, ICLR. https://arxiv.org/abs/

1412.6572

[18] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016.
Dynamic Network Surgery for Efficient DNNs. Ad-
vances in Neural Information Processing Systems (8
2016), 1387–1395. http://arxiv.org/abs/1608.

04493

[19] Isabelle Guyon and Andre Elisseeff. 2003.
An Introduction to Variable and Feature
Selection André Elisseeff. Journal of Ma-
chine Learning Research 3 (2003), 1157–1182.
https://www.jmlr.org/papers/volume3/guyon03a/

guyon03a.pdf?ref=driverlayer.com/web

[20] Isabelle Guyon and André Elisseeff. 2006. An
Introduction to Feature Extraction. In Feature
Extraction. Vol. 207. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–25. https://doi.org/10.

1007/978-3-540-35488-8_1

[21] Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both Weights and Connections for
Efficient Neural Networks. Advances in Neural In-
formation Processing Systems 2015-Janua (6 2015),
1135–1143. http://arxiv.org/abs/1506.02626

[22] Babak Hassibi and David G. Stork. 1992. Second or-
der derivatives for network pruning: Optimal Brain
Surgeon. In Proceedings of the 5th International Con-
ference on Neural Information Processing Systems.
Morgan Kaufmann, 164–171.

[23] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia
Li, and Song Han. 2018. AMC: AutoML for Model
Compression and Acceleration on Mobile Devices. In
Proceedings of the European Conference on Computer
Vision (ECCV). 784–800. https://arxiv.org/abs/

1802.03494v4

[24] Joel Hestness, Sharan Narang, Newsha Ardalani,
Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Mostofa A. Patwary, Yang Yang, and Yanqi Zhou.

9

https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
http://arxiv.org/abs/2012.00560
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
http://arxiv.org/abs/1605.07262
http://arxiv.org/abs/1605.07262
http://arxiv.org/abs/1711.05136
http://proceedings.mlr.press/v97/peterson19a/peterson19a.pdf
http://proceedings.mlr.press/v97/peterson19a/peterson19a.pdf
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1109/SP.2017.49
http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1404.0736
https://arxiv.org/abs/1907.04840
https://arxiv.org/abs/1907.04840
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1902.09574
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1608.04493
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf?ref=driverlayer.com/web
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf?ref=driverlayer.com/web
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.1007/978-3-540-35488-8_1
http://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1802.03494v4
https://arxiv.org/abs/1802.03494v4

2017. Deep Learning Scaling is Predictable, Empir-
ically. arXiv (12 2017). http://arxiv.org/abs/

1712.00409

[25] Sara Hooker, Aaron Courville, Gregory Clark, Yann
Dauphin, and Andrea Frome. 2019. What Do Com-
pressed Deep Neural Networks Forget? arXiv
preprint arXiv:1911.05248 (11 2019). http://

arxiv.org/abs/1911.05248

[26] Mark Horowitz. 2014. 1.1 computing’s energy prob-
lem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). IEEE, 10–14. https:

//doi.org/10.1109/ISSCC.2014.6757323

[27] Siddhant M Jayakumar, Razvan Pascanu, Jack W.
Rae, Simon Osindero, Deepmind Erich, and Elsen
Deepmind. 2021. Top-KAST: Top-K Always Sparse
Training. Advances in Neural Information Process-
ing Systems (2021). https://arxiv.org/abs/2106.

03517

[28] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-Luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey
Dean, Ben Gelb, Tara V. Ghaemmaghami, Rajen-
dra Gottipati, William Gulland, Robert Hagmann,
Richard C. Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
Mackean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross,
Matt Ross, Amir Salek, Emad Samadiani, Chris Sev-
ern, Gregory Sizikov, Matthew Snelham, Jed Souter,
Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vi-
jay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe H. Yoon. 2017. In-Datacenter Per-
formance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Sym-
posium on Computer Architecture. ACM, New York,
NY, USA. https://doi.org/10.1145/3079856.

3080246

[29] Siu K. Lam, Antoine Pitrou, and Stanley Seibert.
2015. Numba: A LLVM-based Python JIT Com-
piler. In Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC - LLVM ’15.
ACM Press, New York, New York, USA, 1–6. https:

//doi.org/10.1145/2833157.2833162

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. , 436–444 pages. https://

doi.org/10.1038/nature14539

[31] Yann LeCun, John S. Denker, and Sara A. Solla.
1990. Optimal Brain Damage. In Advances in
Neural Information Processing Systems (NIPS 1989)
(2 ed.). Morgan Kaufmann, Denver, CO, 598–
605. https://papers.nips.cc/paper/1989/file/

6c9882bbac1c7093bd25041881277658-Paper.pdf

[32] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. 2018. SNIP: Single-shot Network Pruning
based on Connection Sensitivity. arXiv (10 2018).
http://arxiv.org/abs/1810.02340

[33] Jundong Li, Kewei Cheng, Suhang Wang, Fred
Morstatter, Robert P. Trevino, Huan Liu, and Jil-
iang Tang. 2017. Feature Selection: A Data Perspec-
tive. Comput. Surveys 50, 6 (2017), 1–45. https:

//doi.org/10.1145/3136625

[34] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou.
2017. Runtime Neural Pruning. In Proceedings
of the 31st International Conference on Neural
Information Processing Systems. 2178–2188. https:

//proceedings.neurips.cc/paper/2017/file/

a51fb975227d6640e4fe47854476d133-Paper.pdf

[35] Shiwei Liu, Tim Van der Lee, Anil Yaman, Zahra
Atashgahi, Davide Ferraro, Ghada Sokar, Mykola
Pechenizkiy, and Decebal C. Mocanu. 2021. Topo-
logical Insights into Sparse Neural Networks. In
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 12459 LNAI.
Springer Science and Business Media Deutsch-
land GmbH, 279–294. https://doi.org/10.1007/

978-3-030-67664-3_17

[36] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018. Rethinking the Value of
Network Pruning. https://arxiv.org/abs/1810.

05270v2

[37] Decebal C. Mocanu, Elena Mocanu, Phuong H.
Nguyen, Madeleine Gibescu, and Antonio Liotta.
2016. A topological insight into restricted Boltz-
mann machines. Machine Learning 104, 2-3
(9 2016), 243–270. https://doi.org/10.1007/

s10994-016-5570-z

[38] Decebal C. Mocanu, Elena Mocanu, Tiago Pinto, Se-
lima Curci, Phuong H. Nguyen, Madeleine Gibescu,
Damien Ernst, and Zita A. Vale. 2021. Sparse Train-
ing Theory for Scalable and Efficient Agents. Proc.
of the 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2021) (3
2021). http://arxiv.org/abs/2103.01636

[39] Decebal C. Mocanu, Elena Mocanu, Peter Stone,
Phuong H. Nguyen, Madeleine Gibescu, and Anto-
nio Liotta. 2018. Scalable training of artificial neu-
ral networks with adaptive sparse connectivity in-
spired by network science. Nature Communications
9, 1 (12 2018), 1–12. https://doi.org/10.1038/

s41467-018-04316-3

[40] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning Convolutional
Neural Networks for Resource Efficient Inference.
5th International Conference on Learning Represen-
tations, ICLR 2017 - Conference Track Proceedings
(11 2016). http://arxiv.org/abs/1611.06440

[41] Dijana Oreski, Stjepan Oreski, and Bozidar Klicek.
2017. Effects of dataset characteristics on the perfor-
mance of feature selection techniques. Applied Soft
Computing Journal 52 (3 2017), 109–119. https:

//doi.org/10.1016/j.asoc.2016.12.023

10

http://arxiv.org/abs/1712.00409
http://arxiv.org/abs/1712.00409
http://arxiv.org/abs/1911.05248
http://arxiv.org/abs/1911.05248
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://arxiv.org/abs/2106.03517
https://arxiv.org/abs/2106.03517
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://papers.nips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://papers.nips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
http://arxiv.org/abs/1810.02340
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3136625
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://doi.org/10.1007/978-3-030-67664-3_17
https://doi.org/10.1007/978-3-030-67664-3_17
https://arxiv.org/abs/1810.05270v2
https://arxiv.org/abs/1810.05270v2
https://doi.org/10.1007/s10994-016-5570-z
https://doi.org/10.1007/s10994-016-5570-z
http://arxiv.org/abs/2103.01636
https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1038/s41467-018-04316-3
http://arxiv.org/abs/1611.06440
https://doi.org/10.1016/j.asoc.2016.12.023
https://doi.org/10.1016/j.asoc.2016.12.023

[42] Alberto Sanfeliu, Alberto Sanfeliu, and King S. Fu.
1983. A Distance Measure Between Attributed Rela-
tional Graphs for Pattern Recognition. IEEE Trans-
actions on Systems, Man and Cybernetics SMC-13, 3
(1983), 353–362. https://doi.org/10.1109/TSMC.

1983.6313167

[43] Nikko Ström. 1997. Sparse connection and
pruning in large dynamic artificial neural
networks. Fifth European Conference on
Speech Communication and Technology (1997).
https://www.isca-speech.org/archive/archive_

papers/eurospeech_1997/e97_2807.pdf

[44] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for Deep
Learning in NLP. ACL 2019 - 57th Annual Meet-
ing of the Association for Computational Linguistics,
Proceedings of the Conference (6 2019), 3645–3650.
http://arxiv.org/abs/1906.02243

[45] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. 2013. On the importance of initial-
ization and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Machine
Learning. PMLR, 1139–1147. http://proceedings.

mlr.press/v28/sutskever13.html

[46] Johan A. K. Suykens and Joos Vandewalle. 1999.
Least squares support vector machine classifiers. Neu-
ral Processing Letters 9, 3 (1999), 293–300. https:

//doi.org/10.1023/A:1018628609742

[47] Neil C. Thompson, Kristjan Greenewald, Keeheon
Lee, and Gabriel F. Manso. 2020. The Computa-
tional Limits of Deep Learning. arXiv (7 2020).
http://arxiv.org/abs/2007.05558

[48] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Niko-
lay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C. J. Carey, Ilhan
Polat, Yu Feng, Eric W. Moore, Jake Vander-
Plas, Denis Laxalde, Josef Perktold, Robert Cim-
rman, Ian Henriksen, E. A. Quintero, Charles R.

Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, Aditya Vi-
jaykumar, Alessandro Pietro Bardelli, Alex Roth-
berg, Andreas Hilboll, Andreas Kloeckner, Anthony
Scopatz, Antony Lee, Ariel Rokem, C. Nathan
Woods, Chad Fulton, Charles Masson, Christian
Häggström, Clark Fitzgerald, David A. Nicholson,
David R. Hagen, Dmitrii V. Pasechnik, Emanuele
Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Fe-
lix Lenders, Florian Wilhelm, G. Young, Gavin A.
Price, Gert Ludwig Ingold, Gregory E. Allen, Gre-
gory R. Lee, Hervé Audren, Irvin Probst, Jörg P.
Dietrich, Jacob Silterra, James T. Webber, Janko
Slavič, Joel Nothman, Johannes Buchner, Johannes
Kulick, Johannes L. Schönberger, José V. de Mi-
randa Cardoso, Joscha Reimer, Joseph Harrington,
Juan L. C. Rodŕıguez, Juan Nunez-Iglesias, Justin
Kuczynski, Kevin Tritz, Martin Thoma, Matthew
Newville, Matthias Kümmerer, Maximilian Boling-
broke, Michael Tartre, Mikhail Pak, Nathaniel J.
Smith, Nikolai Nowaczyk, Nikolay Shebanov, Olek-
sandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T.
McGibbon, Roman Feldbauer, Sam Lewis, Sam Ty-
gier, Scott Sievert, Sebastiano Vigna, Stefan Pe-
terson, Surhud More, Tadeusz Pudlik, Takuya Os-
hima, Thomas J. Pingel, Thomas P. Robitaille,
Thomas Spura, Thouis R. Jones, Tim Cera, Tim
Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay,
Yaroslav O. Halchenko, and Yoshiki Vázquez-Baeza.
2020. SciPy 1.0: fundamental algorithms for sci-
entific computing in Python. Nature Methods 17,
3 (3 2020), 261–272. https://doi.org/10.1038/

s41592-019-0686-2

[49] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017.
Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv (8
2017). http://arxiv.org/abs/1708.07747

[50] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben-
jamin Recht, and Oriol Vinyals. 2016. Understand-
ing deep learning requires rethinking generalization.
Commun. ACM 64, 3 (11 2016), 107–115. http:

//arxiv.org/abs/1611.03530

11

https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://www.isca-speech.org/archive/archive_papers/eurospeech_1997/e97_2807.pdf
https://www.isca-speech.org/archive/archive_papers/eurospeech_1997/e97_2807.pdf
http://arxiv.org/abs/1906.02243
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
http://arxiv.org/abs/2007.05558
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

	Introduction
	Related Work
	Proposed Methods
	Evaluation Framework
	Feature Selection
	Network Similarity Metrics

	Experimental setup
	Initialization Dependence
	Datasets
	Hyperparameters
	Implementation
	Evaluation Environment

	Results
	Discussion
	Conclusion
	Limitations and Future Work
	Acknowledgments

