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ABSTRACT 
Deep neural networks have proven useful in practical 

applications. However, many redundant connections 

unnecessarily inflate network size and computational 

complexity. Inspired by pruning in biological brains, sparse 

training methods such as Sparse Evolutionary Training (SET) 

and Accuracy based Sparse Evolutionary Training (AccSET) 

prove more efficient than fully connected counterparts by 

dynamically adding and removing connections. Contrasting to 

the great amount of research on deep neural networks, little 

research exists on the effect of varying hyperparameters and 

structure on the performance and behaviour of sparse neural 

networks. This paper investigates the influence of varying 

sparsity levels on the behaviour and performance of Sparse 

Evolutionary Training and provides new insights related to 

sparse training over a large sparsity horizon. This paper 

categorizes different levels of sparsity and defines the extreme 

sparse contour. It further delivers a systematic analysis of 

extremely sparse neural networks and a mathematical 

formulation of the relation between sparsity and accuracy 

which can estimate with great accuracy the expected accuracy 

of a model at a given sparsity level. The experiments in this 

research show that certain sparse neural networks can be 

trained at extreme sparsity levels. With these results, this paper 

contributes to the understanding of sparse training in artificial 

neural networks and underlines the importance of sparse neural 

networks to the implementation of machine learning in limited 

computing devices. 
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1. INTRODUCTION 
Deep learning has proven effective for practical applications as 

image recognition, natural language processing and 

autonomous driving [21]. Through its popularity, deep learning 

has become synonymous with artificial intelligence. While 

some results can be practically applied, the great number of 

connections inherent to deep neural networks necessitate great 

computing power and could lead to overfitting [20].  

Backpropagation lies at the basis of most modern machine 

learning. [30] Applications of the chain rule in programming 

have been introduced in the 1960s and 1970s as a precursor to 

backpropagation [15]. Backpropagation itself has been 

popularized as early as 1986 [31]. Still, much machine learning 

literature was limited to theoretical research because of the 

great computational cost of neural networks and the absence of 

required computing capacity [34]. While computing power has 

greatly increased over the years, many state-of-the-art fully 

connected deep learning models still require great computing 

power with great computational cost [34]. Sparse neural 

networks address this large computing requirement. 

Research on biological neural networks supports the concept of 

sparsity in artificial neural networks as it has shown that 

connectivity between neurons decreases with increased cortical 

size [17]. Similarly, research on artificial neural networks has 

revealed many of its connections to be redundant [11]. 

Subsequent techniques have been developed to increase the 

effectiveness and training speed of neural networks by 

removing redundant connections, creating sparse neural 

networks [26]. Initial sparse training methods start with a fully 

connected neural network. Subsequently, this fully connected 

neural network is iteratively pruned to achieve the sparse 

structure [14, 16, 20, 22]. Other sparse training methods 

initialise a sparse structure from scratch that is subsequently 

trained in sparse-to-sparse training[10, 12, 13, 19, 27]. 

Research has found that biological brains constantly add and 

remove connections. Contrasting, initial sparse training 

algorithms and many sparse-to-sparse training methods prune 

edges before training [26]. In 2018 Mocanu et al. [27] proposed 

Sparse Evolutionary Training, a sparse training model inspired 

by synaptic pruning in biological brains. SET constantly adds 

and removes edges during training. In 2020 Lapshyna [19] 

observed that the total number of connections in biological 

brains changes while the total number of edges during SET is 

fixed and introduced adaptive performance-based connectivity 

in AccSET  

Different sparse training methods have been developed over the 

past years [5, 10, 12, 16, 22, 27]. However, little literature 

exists on the influence of varying hyperparameter and model 

characteristics on the performance of sparse neural networks 

[8]. Researchers have already shown great decrease in 

parameter count with insignificant accuracy decrease [26]. 

With sparsity at the core of this fairly new research field, this 

paper will investigate the following research question: 

What is the influence of varying sparsity levels on the 

behaviour and performance of Sparse Evolutionary Training? 

The Background section of this paper explains the basic 

concepts on which this paper is based. It introduces the 

fundamentals of the multilayer perceptron, sparse training and 

SET. The Related work section discusses literature most 

relevant to this research, discussing related papers on sparse 

training, Sparse Evolutionary Training, training in the extreme 

sparsity regime and difficulties of training sparse neural 
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networks. The Method section discusses the research methods 

used in this paper. The Results section specifies the 

implementation details, presents the experiment results and 

provides a systematic analysis. The Conclusion section 

discusses the implications of the results and the relevance of 

this paper to research in sparse neural networks. Finally, the 

Future work section discusses the limitations of this paper and 

how the results invite further research. 

Through the analysis of training Sparse Evolutionary Training 

at varying sparsity levels, this paper contributes: 

• New insights related to the sparse training over a 

large sparsity horizon 

• A systematic analysis of extremely sparse networks 

• A mathematical formulation of the relation between 

sparsity and accuracy, estimating with great accuracy 

the expected accuracy of a model at a given sparsity 

level. 

2. BACKGROUND 

2.1 Multilayer perceptron (MLP) 
Inspired by neural networks in the brain, the multilayer 

perceptron is an artificial neural network that can be trained to 

produce accurate predictions based on input data [1]. It consists 

of artificial neurons that are ordered in an input-, output- and 

one or multiple hidden layers. Neurons are connected to 

neurons in neighbouring layers through connections, 

parameters or edges. The total number of edges is also referred 

to as parameter count. Every edge is associated with a weight 

value that modifies values as they propagate from one neuron 

to the next. Weights are initially set randomly and are 

subsequently trained to collectively make accurate predictions 

on given data. Every artificial neuron has an activation function 

that transforms its output number to a normalized value [5]. 

Figure 1 shows the structure of artificial neurons and multilayer 

perceptrons. 

Unless weights are set manually through a priori knowledge, 

MLPs are trained through supervised-, unsupervised-, or 

reinforcement learning. Supervised learning involves the 

adjustment of weights based on the prediction errors of the 

MLP. The adjustment of the weights is carried out by 

backpropagation [30]. In unsupervised learning, there is no a 

priori set of classifications. The neural network is supposed to 

discover statistically significant features based on the input 

data. In reinforcement learning, the system learns through trial 

and error how situations should be mapped to actions. A reward 

function provides feedback on the appropriateness of an action 

in each situation. See Artificial Neural Networks by Abraham 

[1] for further explanation of MLPs. 

2.2 Sparse neural networks 
In conventional MLPs, a single neuron is connected to all 

neurons in neighbouring layers. However, many edges in these 

fully connected MLPs are associated with near-zero weights 

and can be removed to greatly decrease hardware impact while 

limiting accuracy decrease [10, 12, 16, 20]. MLPs with at least 

one edge missing between layers are called sparse neural 

networks. Figure 2 shows the difference between fully 

connected- and sparsely connected layers. 

 

 

2.3 Sparse Evolutionary Training (SET) 
As will be discussed in Section 3.1 and 3.2.1, many sparse 

training methods initially reduce the number of connections 

once and train afterwards [9, 14, 16, 20, 22, 25]. Contrasting, 

biological brains constantly remove and add connections [5]. 

SET [24, 27] is a sparse training method inspired by this 

behaviour in biological brains. SET constantly adds and 

removes edges during training. The method works as follows: 

1. Initialise a random sparse neural network with 

sparsity level ε. 

2. Update weights. 

3. Remove a fixed fraction ζ of edges with the smallest 

positive and the largest negative weights. 

4. Add the same number of edges ζ and randomize their 

weights. 

5. Repeat steps 2 – 4 until the desired accuracy is 

achieved. Omit step 4 on the last training epoch. 

3. RELATED WORK 
Sparse neural networks have proven effective in greatly 

decreasing parameter count while maintaining high accuracy 

levels [10, 12, 16, 20]. Consequently, the subject has seen a 

great increase in published literature over the past years [33]. 

Various methods have been proposed to optimize pruning 

techniques and model performance. This section will discuss 

the most relevant recent developments in sparse neural training.   

3.1 Dense-to-sparse training 
In a fully connected multilayer perceptron, every artificial 

neuron is connected to all neurons in the neighbouring layers. 

For every layer Ln except the last layer, Ln x Ln+1 edges are 

connecting it to the next layer and need to be updated in every 

epoch. Consequently, there has been much incentive to reduce 

the number of edges that need to be updated and much research 

has been focused on pruning.  

The term pruning has been introduced in 1989  by Mozer and 

Smolensky [28] and in 1991 by  LeCun et al. [20] in Optimal 

Brain Damage (OBD). OBD was the first sparse training 

method using dense-to-sparse training. It consists of an initial 
Figure 1: Artificial neuron (a) and multilayer perceptron (b) 

 

Figure 2: Fully connected layers (a) vs sparsely connected 

layers (b) 

 



 

 

dense training phase where a regular fully connected neural 

network is trained and where it becomes evident which 

connections are important to performance. Afterwards, the 

sparse training phase is used to prune the connections that are 

unessential towards network performance. These training- and 

pruning phases are repeated for several steps p until an 

optimum between parameter count and performance is found. 

In 2015 Han et al. [16] proposed a three-step pruning method 

that refined the former method for deep neural networks. On 

the ImageNet dataset, compared to denser connected 

counterparts AlexNet and VGG-16, the training method 

reduces the parameter count by 9x and 13x respectively and 

greatly reduces the percentage of near-zero weights.  

While these initial pruning methods have been able to 

drastically decrease parameter count, the smaller architectures 

resulting from pruning are more difficult to train from the start 

and reach lower accuracy than the original networks. 

Answering this problem, in 2019, Frankle and Carbin [14] 

introduced the Lottery Ticket Hypothesis. It states that if the 

remaining weights after pruning are set to their original 

initialisation value, this subnetwork can be trained to match the 

test accuracy of the original network with at most the same 

number of iterations. However, if the weights of the same 

subnetwork are set to random values, the performance achieved 

is significantly lower. The hypothesis has shown that if the 

remaining weights are set to their initial value, the number of 

successive training steps can be reduced to p=2. 

Alternatively, in 2019 Lee et al. [22] developed Single-Shot- 

Network Pruning (SNIP), a sparse training method that prunes 

a network once before training. Connections are pruned based 

on their influence on the loss function. The resulting sparse 

network is subsequently trained without additional pruning. On 

the CIFAR-10 dataset, compared to AlexNet, SNIP reduces the 

parameter count by 10x with less than one percent increase in 

error.  

3.2 Sparse-to-sparse training 
Dense-to-sparse training has proven effective in reducing 

parameter count while achieving high performance. In addition 

to pruning fully connected layers in dense-to-sparse training, 

much literature has started focusing on sparse-to-sparse 

training. These are neural networks that start with a sparse 

architecture and are subsequently further pruned and trained. 

Sparse-to-sparse training is often referred to as sparse training.  

3.2.1 Static sparse connectivity 
Various methods exist to initialize the fixed sparsity structure 

before training. In 2016 Mocanu et al. introduced the first 

model training sparse neural networks from scratch instead of 

pruning a fully connected and pre-trained neural network [25]. 

The proposed Complex Boltzmann Machines (XBM) which 

nodes are not fully connected to all neighbouring nodes are an 

adaptation of Restricted Boltzmann Machines (RBM) [9]. The 

initial sparse topological structure before training is achieved 

by using varying concepts from graph theory, network science 

and data statistics. The XBM outperforms many previous 

sparse training methods and achieves similar performance as 

RBM with 40 times fewer weights.  

In 2017, Bourely et al. [4] showed that random initialization of 

a fixed sparse structure can achieve higher accuracy than fully 

connected neural networks. Another approach is the 

initialization of a fixed sparse structure through pre-training. 

Inspired by the previously mentioned Lottery Ticket 

 

1 See [29] for definitions. 

Hypothesis, in 2020, You et al. [36] suggested that “winning 

tickets” could be drawn very early in training instead of pruning 

a fully trained artificial neural network. Compared to the 

original Lottery Ticket Hypothesis, these Early Bird tickets 

allow for training with very low training cost.   

These training methods have shown effective in decreasing 

parameter count while maintaining high accuracy. However, 

the main disadvantage of sparse neural networks with static 

sparse connectivity is that the optimal sparse topology has to be 

discovered and designed manually.  

3.2.2 Dynamic sparse connectivity 
Addressing this problem, in 2018 Dai et al. [10] proposed 

NeST, a sparse training method that initializes a random sparse 

neural network. It subsequently alternates between adding 

connections that can quickly reduce the value of the loss 

function and removing connections whose weight is below a 

pre-defined threshold. On the ImageNet dataset, compared to 

AlexNet, NeST reduces the parameter count by 15.7x with an 

insignificant change in error rate.  

Another method, Sparse Momentum, published in 2019 by 

Dettmers [12] prunes weights by magnitude, redistributes 

weights across layers dependent on the mean momentum1 

magnitude of already existing weights and grows new weights 

according to momentum magnitude of zero-valued weights. On 

the CIFAR-10 dataset, compared to AlexNet-s and Alexnet-b, 

Sparse Momentum reduces the parameter count by 10x with a 

1,7% to 2% increase in error.  

Similar to pruning, dynamic sparse connectivity has been 

inspired by the biological brain. Unlike static sparse training 

methods, it has been shown that the biological constantly 

prunes redundant- and grows new connections [5].   

In 2017 and 2018, Mocanu et al. [24, 27] proposed SET that 

adds and removes a static percentage of edges during training 

and keeps the total number of edges fixed. SET reduces the 

number of edges required quadratically in bipartite layers and 

achieves greater accuracy than fully connected MLPs. 

Compared to Sparse Momentum [12], SET performs with 

slightly lower accuracy on the CIFAR10 and MNIST database 

with a WRN-28-2 and LeNet 300-100 model respectively.  

Inspired by biological neural networks and SET, in 2020 

Lapshyna [19]  proposed AccSET that dynamically adds edges 

during training based on accuracy. The total number of edges 

is dynamic. Compared to SET, AccSET performs in 

experiments on the Fashion-MNIST, CIFAR10 and HIGSS 

dataset with slightly worse accuracy and 65.3%, 51.6% and 

58.6% decrease in the number of connections [19]. 

Continuing on the Lottery Ticket Hypothesis, in 2020 Evci et 

al. [13] proposed Rigging the Lottery: Making All Tickets 

Winners. Training sparse networks with effective initial values 

is a quick process. However, the original research in which the 

Lottery Ticket Hypothesis was proposed, requires to first train 

a fully connected neural network to convergence to discover 

the sparse topology. Evci et al. propose Rigging the Lottery 

(RigL), where a randomly initialized neural network is used to 

achieve similar performance without needing to discover an 

effective topology (the “winning ticket”). 

3.3 Extreme sparsity in training 
With the success of  sparse training in the aforementioned 

literature in developing highly performant sparse neural 



 

 

networks, researchers have started investigating how to 

maximize the sparsity in sparse training. 

Cho et al. [6] observed a general trade-off in the literature 

between computation, sensitivity to hyperparameters and test 

performance. In 2020 Cho et al. [6] suggested Extremely 

Sparse Pruned Networks (ESPN), a sparse training method 

inspired by SNIP. While SNIP uses a single shot estimator, 

ESPN uses standard iterative gradient updating to learn a sparse 

mask. ESPN achieves extremely high sparsity levels (> 99%) 

on various datasets with higher test accuracy compared to other 

sparse training methods such as SNIP.  

Alternatively, Yu et al. [35] propose a joint pruning and 

quantization method to achieve extremely high sparsity 

(~99%). The quantization phase uses the sparse model from the 

pruning phase and has a neglectable impact on computational 

performance. The quantization phase transforms weights into 

powers of two. It allows the model to use shifters instead of 

multipliers and further reduces hardware impact. The model 

achieves almost 99% memory reduction on stereo depth 

estimation and a 99.7% hardware cost reduction. 

3.4 Truly sparse neural networks 
The decrease in connections in sparse neural networks reduces 

required computing capacity and increases efficiency in 

training [10, 12, 16, 20]. However, at the time of writing this 

paper, for most implementations, these improvements are 

theoretical. As Curci et al. [8] state, most modern deep neural 

networks frameworks are optimized for dense matrix 

multiplications on graphics processing units (GPUs). The 

sparsity is only simulated by training a binary weight mask. 

Ultimately these sparse neural networks are trained as dense 

neural networks and merely provide insight into the capacity of 

true sparse neural networks. Currently, the only hardware 

exception is the 2020 NVIDIA A100 GPU [18], supporting a 

sparsity level of 50%. 

Curci et al. [8] further mention that next to the supporting 

hardware architecture, most literature on various aspects of 

neural networks such as optimizers and activation functions are 

focussed on deep neural networks and subsequently argue that 

these subjects should be revisited for sparse neural networks. 

Addressing the problem of spare matrix multiplications, Liu et 

al. [23] proposed in 2021 a pure Python implementation that 

allows SET to be trained with 1.000.000 neurons on a standard 

laptop without a GPU. This is two orders of magnitude larger 

than any MLP trained on commodity hardware. The 

implementation uses various sparse data structure from the 

Python library SciPy [32]: compressed sparse rows [2], linked 

lists, coordinate list and dictionaries of keys.  

4. METHOD 
In this section, the method and devised strategy for the 

execution of the research are discussed. Three steps have been 

performed in the execution of experiments for this research. In 

the first step, SET has been trained with various levels of 

sparsity. In the second step, the results of the second step have 

been used to analyse the influence of sparsity on the 

performance of SET and have been used to categorized 

different sparsity levels. In the third step, it has been 

determined what mathematical function best describes the 

relation between sparsity and accuracy. 

4.1 Step 1: Mapping sparsity, accuracy and 

structure 
As indicated in Section 2.3, the sparsity in SET is determined 

by two hyperparameters: ε and ζ. ε determines the initial 

sparsity of the neural network and ζ determines the sparsity 

during training. Values for ε and ζ lie in the interval [0, 1] and 

represent the percentage of sparsity. Regions within the initial 

interval that appear to require more detailed investigation have 

been trained with successfully smaller step sizes until the 

accuracy of sufficient precise sparsity levels has been achieved. 

The accuracy for each sparsity level ζ is plotted with accuracy 

along the vertical axis and sparsity along the horizontal axis. 

Further, to better understand the influence of different sparsity 

levels on the neural network itself, these same intervals have 

been used to visualize how different sparsity levels influence 

the structure of the sparse neural network. Specifically: 

• The number of connections from each neuron in the 

first layer to all the neurons in the first hidden layer. 

• The sum of weights associated with the connections 

from each neuron in the first layer to all the neurons 

in the first hidden layer. 

4.2 Step 2: Classifying sparsity 
The results of Step 1 have been used to investigate the influence 

of sparsity on the structure and performance of Sparse 

Evolutionary Training. Having mapped the sparsity to the 

accuracy and the structure of the network, different sparsity 

intervals have been classified depending on their effect on 

accuracy and structure. 

4.3 Step 3: Mathematical modelling 
The form of the plotted graph as described in Step 1 has been 

used to estimate the type of function that most accurately 

models the relation between sparsity and accuracy. Parameters 

have been used to shift and scale the function to the most 

appropriate proportions and allow for future modification that 

might be required with different hyperparameters or datasets. 

Parameters whose function can be directly interpreted in terms 

of their relation to characteristics of the dataset, model or 

results have been defined as such and set to the appropriate 

value. Other parameters have been given placeholder names 

and their values have been determined by multivariate gradient 

descent.  

5. RESULTS 
The following section discusses the conducted experiments as 

described in the previous section and their subsequent results. 

First, the implementation details of the SET algorithm are 

stated and the figures and tables used to display the results are 

explained. Second, the training results are analysed and used to 

categorize different sparsity levels. Third, a mathematical 

Algorithm 1: Weight pruning-regrowing cycle – 

Implementation II from Liu et al. [23] 



 

 

function is devised that models the relation between sparsity 

and accuracy. 

5.1 Implementation details 
The SET algorithm was trained using the implementation from  

Selima Curci [7] in Python and SciPy as proposed by Liu et al. 

[23] mentioned in Section 3.4. The model initializes an Erdős–

Rényi sparse weight masks with a uniform distribution. The 

sparse weight matrices are transferred to three vectors 

representing a compressed sparse row using coordinate lists. 

During the feed-forward- and backpropagation step, the 

weights are stored in the compressed sparse row format. The 

implementation of the pruning and the regrowing cycle can be 

seen in Algorithm 1.  

The neural network contains an input-, three hidden and one 

output layer. The input layer has 784 nodes, corresponding to 

pixels in the images of the dataset; the hidden layers contain 

1000 nodes each; the output layer has 10 nodes, corresponding 

to the 10 different classes in the dataset. The hyperparameters 

can be found in Table 2. For each sparsity level ζ, the SET 

algorithm has been trained on Fashion-MNIST for 1000 

epochs.  

The experiment has been conducted as described in Section 

4.1:Step 1: The algorithm has been trained three times with 

successively decreasing intervals and stepsizes. The SET 

algorithm was initially trained on ζ values in the (0,1) interval 

with stepsize 0.1. The accuracy remained practically unaffected 

for values in the (0,0.9) interval. The stepsize of 0.1 was too 

large to clearly show the dropoff point. Subsequent training 

with values in the (0,1) interval with stepsize 0.01 showed that 

a significant decrease started around ζ=0.98. Even further 

subsequent training with values in the (0.98,1) interval with 

stepsize 0.001 showed that accuracy starts decreasing rapidly 

after ζ=0.987. These results will be interpreted in Section 5.2 

and Section 5.3. 

 

ζ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.910 0.920 0.930

Actual accuracy 0.870 0.881 0.874 0.871 0.869 0.868 0.873 0.874 0.866 0.865 0.863 0.867 0.861

Approximated accuracy 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868

ζ 0.940 0.950 0.960 0.970 0.980 0.981 0.982 0.983 0.984 0.985 0.986 0.987 0.988

Actual accuracy 0.854 0.860 0.861 0.850 0.838 0.838 0.849 0.835 0.845 0.839 0.841 0.844 0.834

Approximated accuracy 0.868 0.868 0.868 0.867 0.862 0.861 0.860 0.859 0.857 0.855 0.852 0.849 0.845

ζ 0.989 0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

Actual accuracy 0.842 0.818 0.821 0.816 0.811 0.809 0.795 0.776 0.767 0.755 0.710 0.619

Approximated accuracy 0.840 0.835 0.828 0.821 0.811 0.800 0.786 0.770 0.750 0.726 0.698 0.664

Table 1: Accuracy of SET trained on Fashion-MNIST for different ζ after 1000 epochs and approximated accuracy with intervals [0, 

9] with stepsize 0.1, [0.91, 0.98] with stepsize 0.01 and [0.98, 1] with stepsize 0.001. 

 

Figure 3: Accuracy of SET trained on Fashion-MNIST for different ζ after 1000 epochs and approximated accuracy with intervals [0, 

9] with stepsize 0.1, [0.91, 0.98] with stepsize 0.01 and [0.98, 1] with stepsize 0.001. 

 

Table 2: Hyperparameters used in training SET on Fashion-

MNIST 

 

Hyperparameter Value Hyperparameter Value

Learning rate 0.05 Batch size 40

Optimiser SGD ε 13

Momentum 0.9 Loss Categorical

Activation Function ReLU Dropout rate 0.2



 

 

 

In all tables and figures, accuracy is defined as the highest level 

of accuracy that has been achieved in any of the 1000 epochs 

of training on the test set. 

Table 1 shows the results for different ζ values. Figure 3 graphs 

these results onto three plots with various zoom levels 

corresponding to the different intervals and stepsizes. The 

approximated accuracy is plotted by a mathematical function 

that will be elaborated in section 5.2.  

Figure 4 shows heatmaps for different ζ values. The 784 pixels 

in the heatmap correspond to those in the dataset images and 

the 784 neurons in the input layer. The heatmaps in the first and 

third row show how many neurons are connected from that 

neuron in the input layer to the neurons in the first hidden layer.  

 

 

The heatmaps in second and fourth row show the sum of the 

weights of the connections from that neuron in the input layer 

to the neurons in the first hidden layer. In short, Figure 4 

summarizes the number of neuron connections (first and third 

row) and the summed weight of the neuron connections (second 

and fourth row). 

5.2 Extreme sparsity 
The images in the first and third row in Figure 4 show that at 

lower sparsity (ζ={0.2, 0.4, 0.6}), the number of connections to 

the input layer are lined up to an abstract form of all images in 

the dataset. Because the images in the dataset do not have a 

background, a clear distinction is visible in the heatmaps 

between fore- and background. As ζ increases, the 

correspondence between the image and the number of 

connections per pixel disappears. At ζ=0.96, all visual 

correspondence has ceased. It appears that with such high 

levels of sparsity, the neural network cannot develop into a 

stable structure. As the number of connections cannot change 

in SET, the distribution of connections appears to become 

random. 

The images in the second and fourth row show that for ζ={0.2, 

0.4, 0.6} a similar structure appears to those in the images in 

the first and third row. Again, at higher sparsity levels, the 

structure starts to fade. Unlike the number of connections, the 

total weight of all connections can change. The heatmaps show 

that as the sparsity increases, most neurons are attributed with 

small weights and remaining neurons are associated with larger 

weight values. Again, the sparsity at which the correspondence 

to the images ceases lies at around ζ=0.96. In  other research, 

SET and it’s comparable variant AccSET use ζ=0.3 [19][27]. 

Table 2 and Figure 3 show that sparsity can be increased to 

Figure 4:  Heatmaps after SET trained on Fashion-MNIST for 1000 epochs with ζ={0.2, 0.4, 0.6, 0.9, 0.95, 0.96, 0.995, 1} 

 

Figure 5: Heatmap showing the MSE of Formula 2 with 

different values for a and b. 

 



 

 

ζ=0.96 without any decrease in accuracy. The decrease of 

accuracy at ζ=0.96 corresponds to the cessation of a stable 

structure in the neural network at also ζ=0.96.  

SET shows to be effective at high levels of sparsity. However, 

there appears to be a transition from normal sparsity, where the 

neural network operates effectively, to what can be called 

‘extreme sparsity’, where the neural network is unable to 

develop a stable structure and starts losing accuracy. For this 

dataset and configuration of SET, the transition point or 

extreme sparsity contour (ESC) appears to lie at ζ=0.96. 

5.3  Sparsity dependent accuracy modelling 
The first plot in Figure 3 displays how accuracy changes with 

varying ζ in the (0, 1) interval. The long plateau at the interval 

(0, 0.96) and stark decrease at the interval (0.96, 1) hint at an 

exponential relationship. It appears that the standard 

exponential form 𝑒𝑥 can be modified to conform to the first plot 

in Figure 3. The relation between accuracy and ζ can thus be 

modelled as follows: 

                    𝑎𝑐𝑐(𝜁) = −0.204𝑒183(𝜁−1) + 0.868              (1) 

With a Mean Square Error (MSE) of 0.013%, this equation 

models the relationship between sparsity and accuracy of the 

sparse neural network with very high accuracy. Table 2 and 

Figure 3 shows how the approximated values of this formula 

plot against the actual accuracy achieved by the sparse neural 

network. Modelling the effect of ζ on the accuracy, this 

function can aid in the hyperparameter selection process. 

The formula has been optimized for training SET on Fashion-

MNIST with the hyperparameters from Table 1. For other 

datasets and hyperparameter configurations, the formula might 

not be suitable and needs to be adjusted. As described in 

Section 4.3, the function can be parameterized such that it is 

adaptable to any sparse neural network with a similar 

exponential relationship between ζ and accuracy. The general 

function is as follows: 

                   𝑎𝑐𝑐(𝜁)𝑎,𝑏,𝑎𝑐𝑐𝑝
= −𝑎𝑒𝑏(𝜁−1) + 𝑎𝑐𝑐𝑝                  (2) 

Here, accp is the mean accuracy level of the plateau of the 

exponential function before the extreme sparsity line: 

                  𝑎𝑐𝑐𝑝 =
∑ 𝑎𝑐𝑐𝑟(𝜁)𝐸𝑆𝐶

𝜁=0

𝑁𝜁
                  (3) 

Here, Accr(ζ) is defined as mapping the accuracy after training 

the sparse neural network on a dataset to ζ. Again ESC is the 

extreme sparsity contour. Nζ is defined as the total number of 

zeta values that are being summed.  

In Formula (2), a and b can be altered to adjust the angle of the 

function and move the curve to the most appropriate point. 

Optimal values for a and b can be found by using multivariate 

gradient descent. Figure 5 shows how different values for a and 

b influence the MSE of the function. 

6. CONCLUSION 
Inspired by SET and AccSET, this paper researches how 

training Sparse Evolutionary Training at extreme sparsity 

regime influences testing accuracy and answers the following 

research question: 

What is the influence of varying sparsity levels on the 

behaviour and performance of Sparse Evolutionary Training? 

In answering this question, this paper delivers 

• New insights related to the sparse training over a 

large sparsity horizon 

• A systematic analysis of extremely sparse networks 

• A mathematical formulation of the relation between 

sparsity and accuracy, estimating with very good 

accuracy the expected accuracy of a model at a given 

sparsity level. 

In this research, it has been shown that SET can be trained on 

Fashion-MNIST with training sparsity levels as high as 96% 

without losing accuracy. The accuracy plateaus before this 

point and roughly exponentially declines afterwards. The 

plateau and decline in accuracy correspond to the existence and 

cessation of correspondence between the number and the 

summed weights of the connections between input and the first 

hidden layer and the abstraction of the images in the dataset. 

This transition point between normal- and extreme sparsity is 

defined as the ‘extreme sparsity contour’. Furthermore, an 

exponential function has been developed that models the 

influence of training sparsity on the testing accuracy with an 

MSE of 0.013%. The parameters can be adjusted to conform to 

varying hyperparameters and neural network structures. This 

function can aid those working on sparse neural networks in 

determining what sparsity level might be appropriate for a 

given experiment or implementation.  

Sparse Neural Networks have proven effective in greatly 

reducing parameter count while maintaining high accuracy. 

With its systematic analysis of sparsity in Sparse Evolutionary 

Training, this paper contributes to the understanding of sparse 

neural networks. It underlines the effectiveness of pruning in 

decreasing parameter count and therewith the importance of 

sparse neural networks towards the implementation of machine 

learning in limited computing devices. 

7. FUTURE WORK 
It has been shown that SET can be trained up to extremely high 

sparsity levels without a decrease in accuracy. The relation 

between sparsity and accuracy has shown to be exponential and 

can be estimated with very high accuracy by a mathematical 

model. Similar to these results, research by Cho et al. [6] shows 

a similar exponential relationship between sparsity and 

accuracy for ESPN, SNIP and other sparse training methods. 

For ESPN the ESC appears to also lie around ζ=0.96. Further 

research might validate the broader relevance of ESC. 

The SET algorithm has been trained with hyperparameters as 

shown in Table 1 on the Fashion-MNIST dataset. To confirm 

the generalizability of the results in this paper, further research 

should be conducted with varying hyperparameters, datasets 

and sparse training methods. Primary considerations for such 

research are the confirmation of an exponential relation 

between sparsity and accuracy, and the confirmation that the 

accuracy starts decreasing concurrently to the cessation of a 

correspondence between the number and the summed weights 

of the connections between input and the first hidden layer. If 

these primary concerns are confirmed, research might focus on 

secondary concerns. Currently, the parameters of 𝑎𝑐𝑐(𝜁) can 

only be found after initial training. In further research, a model 

might be developed describing the relation between these 

parameters and the characteristics of datasets and training 

methods. It will allow researchers and general users to use the 

function to determine appropriate sparsity levels for their 

training. 
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