

Towards understanding and modelling sparse training
algorithms at extreme sparsity regime

Vincent van Engers
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

v.p.g.vanengers@student.utwente.nl

ABSTRACT
Deep neural networks have proven useful in practical

applications. However, many redundant connections

unnecessarily inflate network size and computational

complexity. Inspired by pruning in biological brains, sparse

training methods such as Sparse Evolutionary Training (SET)

and Accuracy based Sparse Evolutionary Training (AccSET)

prove more efficient than fully connected counterparts by

dynamically adding and removing connections. Contrasting to

the great amount of research on deep neural networks, little

research exists on the effect of varying hyperparameters and

structure on the performance and behaviour of sparse neural

networks. This paper investigates the influence of varying

sparsity levels on the behaviour and performance of Sparse

Evolutionary Training and provides new insights related to

sparse training over a large sparsity horizon. This paper

categorizes different levels of sparsity and defines the extreme

sparse contour. It further delivers a systematic analysis of

extremely sparse neural networks and a mathematical

formulation of the relation between sparsity and accuracy

which can estimate with great accuracy the expected accuracy

of a model at a given sparsity level. The experiments in this

research show that certain sparse neural networks can be

trained at extreme sparsity levels. With these results, this paper

contributes to the understanding of sparse training in artificial

neural networks and underlines the importance of sparse neural

networks to the implementation of machine learning in limited

computing devices.

Keywords

Artificial Neural Network, Sparse Neural Network, Sparse

Evolutionary Training, Synaptic Pruning, Accuracy based

Sparse Evolutionary Training, Extreme Sparsity Regime.

1. INTRODUCTION
Deep learning has proven effective for practical applications as

image recognition, natural language processing and

autonomous driving [21]. Through its popularity, deep learning

has become synonymous with artificial intelligence. While

some results can be practically applied, the great number of

connections inherent to deep neural networks necessitate great

computing power and could lead to overfitting [20].

Backpropagation lies at the basis of most modern machine

learning. [30] Applications of the chain rule in programming

have been introduced in the 1960s and 1970s as a precursor to

backpropagation [15]. Backpropagation itself has been

popularized as early as 1986 [31]. Still, much machine learning

literature was limited to theoretical research because of the

great computational cost of neural networks and the absence of

required computing capacity [34]. While computing power has

greatly increased over the years, many state-of-the-art fully

connected deep learning models still require great computing

power with great computational cost [34]. Sparse neural

networks address this large computing requirement.

Research on biological neural networks supports the concept of

sparsity in artificial neural networks as it has shown that

connectivity between neurons decreases with increased cortical

size [17]. Similarly, research on artificial neural networks has

revealed many of its connections to be redundant [11].

Subsequent techniques have been developed to increase the

effectiveness and training speed of neural networks by

removing redundant connections, creating sparse neural

networks [26]. Initial sparse training methods start with a fully

connected neural network. Subsequently, this fully connected

neural network is iteratively pruned to achieve the sparse

structure [14, 16, 20, 22]. Other sparse training methods

initialise a sparse structure from scratch that is subsequently

trained in sparse-to-sparse training[10, 12, 13, 19, 27].

Research has found that biological brains constantly add and

remove connections. Contrasting, initial sparse training

algorithms and many sparse-to-sparse training methods prune

edges before training [26]. In 2018 Mocanu et al. [27] proposed

Sparse Evolutionary Training, a sparse training model inspired

by synaptic pruning in biological brains. SET constantly adds

and removes edges during training. In 2020 Lapshyna [19]

observed that the total number of connections in biological

brains changes while the total number of edges during SET is

fixed and introduced adaptive performance-based connectivity

in AccSET

Different sparse training methods have been developed over the

past years [5, 10, 12, 16, 22, 27]. However, little literature

exists on the influence of varying hyperparameter and model

characteristics on the performance of sparse neural networks

[8]. Researchers have already shown great decrease in

parameter count with insignificant accuracy decrease [26].

With sparsity at the core of this fairly new research field, this

paper will investigate the following research question:

What is the influence of varying sparsity levels on the

behaviour and performance of Sparse Evolutionary Training?

The Background section of this paper explains the basic

concepts on which this paper is based. It introduces the

fundamentals of the multilayer perceptron, sparse training and

SET. The Related work section discusses literature most

relevant to this research, discussing related papers on sparse

training, Sparse Evolutionary Training, training in the extreme

sparsity regime and difficulties of training sparse neural

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

35thTwente Student Conference on IT, July 2nd, 2021, Enschede, The

Netherlands. Copyright 2018, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

networks. The Method section discusses the research methods

used in this paper. The Results section specifies the

implementation details, presents the experiment results and

provides a systematic analysis. The Conclusion section

discusses the implications of the results and the relevance of

this paper to research in sparse neural networks. Finally, the

Future work section discusses the limitations of this paper and

how the results invite further research.

Through the analysis of training Sparse Evolutionary Training

at varying sparsity levels, this paper contributes:

• New insights related to the sparse training over a

large sparsity horizon

• A systematic analysis of extremely sparse networks

• A mathematical formulation of the relation between

sparsity and accuracy, estimating with great accuracy

the expected accuracy of a model at a given sparsity

level.

2. BACKGROUND

2.1 Multilayer perceptron (MLP)
Inspired by neural networks in the brain, the multilayer

perceptron is an artificial neural network that can be trained to

produce accurate predictions based on input data [1]. It consists

of artificial neurons that are ordered in an input-, output- and

one or multiple hidden layers. Neurons are connected to

neurons in neighbouring layers through connections,

parameters or edges. The total number of edges is also referred

to as parameter count. Every edge is associated with a weight

value that modifies values as they propagate from one neuron

to the next. Weights are initially set randomly and are

subsequently trained to collectively make accurate predictions

on given data. Every artificial neuron has an activation function

that transforms its output number to a normalized value [5].

Figure 1 shows the structure of artificial neurons and multilayer

perceptrons.

Unless weights are set manually through a priori knowledge,

MLPs are trained through supervised-, unsupervised-, or

reinforcement learning. Supervised learning involves the

adjustment of weights based on the prediction errors of the

MLP. The adjustment of the weights is carried out by

backpropagation [30]. In unsupervised learning, there is no a

priori set of classifications. The neural network is supposed to

discover statistically significant features based on the input

data. In reinforcement learning, the system learns through trial

and error how situations should be mapped to actions. A reward

function provides feedback on the appropriateness of an action

in each situation. See Artificial Neural Networks by Abraham

[1] for further explanation of MLPs.

2.2 Sparse neural networks
In conventional MLPs, a single neuron is connected to all

neurons in neighbouring layers. However, many edges in these

fully connected MLPs are associated with near-zero weights

and can be removed to greatly decrease hardware impact while

limiting accuracy decrease [10, 12, 16, 20]. MLPs with at least

one edge missing between layers are called sparse neural

networks. Figure 2 shows the difference between fully

connected- and sparsely connected layers.

2.3 Sparse Evolutionary Training (SET)
As will be discussed in Section 3.1 and 3.2.1, many sparse

training methods initially reduce the number of connections

once and train afterwards [9, 14, 16, 20, 22, 25]. Contrasting,

biological brains constantly remove and add connections [5].

SET [24, 27] is a sparse training method inspired by this

behaviour in biological brains. SET constantly adds and

removes edges during training. The method works as follows:

1. Initialise a random sparse neural network with

sparsity level ε.

2. Update weights.

3. Remove a fixed fraction ζ of edges with the smallest

positive and the largest negative weights.

4. Add the same number of edges ζ and randomize their

weights.

5. Repeat steps 2 – 4 until the desired accuracy is

achieved. Omit step 4 on the last training epoch.

3. RELATED WORK
Sparse neural networks have proven effective in greatly

decreasing parameter count while maintaining high accuracy

levels [10, 12, 16, 20]. Consequently, the subject has seen a

great increase in published literature over the past years [33].

Various methods have been proposed to optimize pruning

techniques and model performance. This section will discuss

the most relevant recent developments in sparse neural training.

3.1 Dense-to-sparse training
In a fully connected multilayer perceptron, every artificial

neuron is connected to all neurons in the neighbouring layers.

For every layer Ln except the last layer, Ln x Ln+1 edges are

connecting it to the next layer and need to be updated in every

epoch. Consequently, there has been much incentive to reduce

the number of edges that need to be updated and much research

has been focused on pruning.

The term pruning has been introduced in 1989 by Mozer and

Smolensky [28] and in 1991 by LeCun et al. [20] in Optimal

Brain Damage (OBD). OBD was the first sparse training

method using dense-to-sparse training. It consists of an initial
Figure 1: Artificial neuron (a) and multilayer perceptron (b)

Figure 2: Fully connected layers (a) vs sparsely connected

layers (b)

dense training phase where a regular fully connected neural

network is trained and where it becomes evident which

connections are important to performance. Afterwards, the

sparse training phase is used to prune the connections that are

unessential towards network performance. These training- and

pruning phases are repeated for several steps p until an

optimum between parameter count and performance is found.

In 2015 Han et al. [16] proposed a three-step pruning method

that refined the former method for deep neural networks. On

the ImageNet dataset, compared to denser connected

counterparts AlexNet and VGG-16, the training method

reduces the parameter count by 9x and 13x respectively and

greatly reduces the percentage of near-zero weights.

While these initial pruning methods have been able to

drastically decrease parameter count, the smaller architectures

resulting from pruning are more difficult to train from the start

and reach lower accuracy than the original networks.

Answering this problem, in 2019, Frankle and Carbin [14]

introduced the Lottery Ticket Hypothesis. It states that if the

remaining weights after pruning are set to their original

initialisation value, this subnetwork can be trained to match the

test accuracy of the original network with at most the same

number of iterations. However, if the weights of the same

subnetwork are set to random values, the performance achieved

is significantly lower. The hypothesis has shown that if the

remaining weights are set to their initial value, the number of

successive training steps can be reduced to p=2.

Alternatively, in 2019 Lee et al. [22] developed Single-Shot-

Network Pruning (SNIP), a sparse training method that prunes

a network once before training. Connections are pruned based

on their influence on the loss function. The resulting sparse

network is subsequently trained without additional pruning. On

the CIFAR-10 dataset, compared to AlexNet, SNIP reduces the

parameter count by 10x with less than one percent increase in

error.

3.2 Sparse-to-sparse training
Dense-to-sparse training has proven effective in reducing

parameter count while achieving high performance. In addition

to pruning fully connected layers in dense-to-sparse training,

much literature has started focusing on sparse-to-sparse

training. These are neural networks that start with a sparse

architecture and are subsequently further pruned and trained.

Sparse-to-sparse training is often referred to as sparse training.

3.2.1 Static sparse connectivity
Various methods exist to initialize the fixed sparsity structure

before training. In 2016 Mocanu et al. introduced the first

model training sparse neural networks from scratch instead of

pruning a fully connected and pre-trained neural network [25].

The proposed Complex Boltzmann Machines (XBM) which

nodes are not fully connected to all neighbouring nodes are an

adaptation of Restricted Boltzmann Machines (RBM) [9]. The

initial sparse topological structure before training is achieved

by using varying concepts from graph theory, network science

and data statistics. The XBM outperforms many previous

sparse training methods and achieves similar performance as

RBM with 40 times fewer weights.

In 2017, Bourely et al. [4] showed that random initialization of

a fixed sparse structure can achieve higher accuracy than fully

connected neural networks. Another approach is the

initialization of a fixed sparse structure through pre-training.

Inspired by the previously mentioned Lottery Ticket

1 See [29] for definitions.

Hypothesis, in 2020, You et al. [36] suggested that “winning

tickets” could be drawn very early in training instead of pruning

a fully trained artificial neural network. Compared to the

original Lottery Ticket Hypothesis, these Early Bird tickets

allow for training with very low training cost.

These training methods have shown effective in decreasing

parameter count while maintaining high accuracy. However,

the main disadvantage of sparse neural networks with static

sparse connectivity is that the optimal sparse topology has to be

discovered and designed manually.

3.2.2 Dynamic sparse connectivity
Addressing this problem, in 2018 Dai et al. [10] proposed

NeST, a sparse training method that initializes a random sparse

neural network. It subsequently alternates between adding

connections that can quickly reduce the value of the loss

function and removing connections whose weight is below a

pre-defined threshold. On the ImageNet dataset, compared to

AlexNet, NeST reduces the parameter count by 15.7x with an

insignificant change in error rate.

Another method, Sparse Momentum, published in 2019 by

Dettmers [12] prunes weights by magnitude, redistributes

weights across layers dependent on the mean momentum1

magnitude of already existing weights and grows new weights

according to momentum magnitude of zero-valued weights. On

the CIFAR-10 dataset, compared to AlexNet-s and Alexnet-b,

Sparse Momentum reduces the parameter count by 10x with a

1,7% to 2% increase in error.

Similar to pruning, dynamic sparse connectivity has been

inspired by the biological brain. Unlike static sparse training

methods, it has been shown that the biological constantly

prunes redundant- and grows new connections [5].

In 2017 and 2018, Mocanu et al. [24, 27] proposed SET that

adds and removes a static percentage of edges during training

and keeps the total number of edges fixed. SET reduces the

number of edges required quadratically in bipartite layers and

achieves greater accuracy than fully connected MLPs.

Compared to Sparse Momentum [12], SET performs with

slightly lower accuracy on the CIFAR10 and MNIST database

with a WRN-28-2 and LeNet 300-100 model respectively.

Inspired by biological neural networks and SET, in 2020

Lapshyna [19] proposed AccSET that dynamically adds edges

during training based on accuracy. The total number of edges

is dynamic. Compared to SET, AccSET performs in

experiments on the Fashion-MNIST, CIFAR10 and HIGSS

dataset with slightly worse accuracy and 65.3%, 51.6% and

58.6% decrease in the number of connections [19].

Continuing on the Lottery Ticket Hypothesis, in 2020 Evci et

al. [13] proposed Rigging the Lottery: Making All Tickets

Winners. Training sparse networks with effective initial values

is a quick process. However, the original research in which the

Lottery Ticket Hypothesis was proposed, requires to first train

a fully connected neural network to convergence to discover

the sparse topology. Evci et al. propose Rigging the Lottery

(RigL), where a randomly initialized neural network is used to

achieve similar performance without needing to discover an

effective topology (the “winning ticket”).

3.3 Extreme sparsity in training
With the success of sparse training in the aforementioned

literature in developing highly performant sparse neural

networks, researchers have started investigating how to

maximize the sparsity in sparse training.

Cho et al. [6] observed a general trade-off in the literature

between computation, sensitivity to hyperparameters and test

performance. In 2020 Cho et al. [6] suggested Extremely

Sparse Pruned Networks (ESPN), a sparse training method

inspired by SNIP. While SNIP uses a single shot estimator,

ESPN uses standard iterative gradient updating to learn a sparse

mask. ESPN achieves extremely high sparsity levels (> 99%)

on various datasets with higher test accuracy compared to other

sparse training methods such as SNIP.

Alternatively, Yu et al. [35] propose a joint pruning and

quantization method to achieve extremely high sparsity

(~99%). The quantization phase uses the sparse model from the

pruning phase and has a neglectable impact on computational

performance. The quantization phase transforms weights into

powers of two. It allows the model to use shifters instead of

multipliers and further reduces hardware impact. The model

achieves almost 99% memory reduction on stereo depth

estimation and a 99.7% hardware cost reduction.

3.4 Truly sparse neural networks
The decrease in connections in sparse neural networks reduces

required computing capacity and increases efficiency in

training [10, 12, 16, 20]. However, at the time of writing this

paper, for most implementations, these improvements are

theoretical. As Curci et al. [8] state, most modern deep neural

networks frameworks are optimized for dense matrix

multiplications on graphics processing units (GPUs). The

sparsity is only simulated by training a binary weight mask.

Ultimately these sparse neural networks are trained as dense

neural networks and merely provide insight into the capacity of

true sparse neural networks. Currently, the only hardware

exception is the 2020 NVIDIA A100 GPU [18], supporting a

sparsity level of 50%.

Curci et al. [8] further mention that next to the supporting

hardware architecture, most literature on various aspects of

neural networks such as optimizers and activation functions are

focussed on deep neural networks and subsequently argue that

these subjects should be revisited for sparse neural networks.

Addressing the problem of spare matrix multiplications, Liu et

al. [23] proposed in 2021 a pure Python implementation that

allows SET to be trained with 1.000.000 neurons on a standard

laptop without a GPU. This is two orders of magnitude larger

than any MLP trained on commodity hardware. The

implementation uses various sparse data structure from the

Python library SciPy [32]: compressed sparse rows [2], linked

lists, coordinate list and dictionaries of keys.

4. METHOD
In this section, the method and devised strategy for the

execution of the research are discussed. Three steps have been

performed in the execution of experiments for this research. In

the first step, SET has been trained with various levels of

sparsity. In the second step, the results of the second step have

been used to analyse the influence of sparsity on the

performance of SET and have been used to categorized

different sparsity levels. In the third step, it has been

determined what mathematical function best describes the

relation between sparsity and accuracy.

4.1 Step 1: Mapping sparsity, accuracy and

structure
As indicated in Section 2.3, the sparsity in SET is determined

by two hyperparameters: ε and ζ. ε determines the initial

sparsity of the neural network and ζ determines the sparsity

during training. Values for ε and ζ lie in the interval [0, 1] and

represent the percentage of sparsity. Regions within the initial

interval that appear to require more detailed investigation have

been trained with successfully smaller step sizes until the

accuracy of sufficient precise sparsity levels has been achieved.

The accuracy for each sparsity level ζ is plotted with accuracy

along the vertical axis and sparsity along the horizontal axis.

Further, to better understand the influence of different sparsity

levels on the neural network itself, these same intervals have

been used to visualize how different sparsity levels influence

the structure of the sparse neural network. Specifically:

• The number of connections from each neuron in the

first layer to all the neurons in the first hidden layer.

• The sum of weights associated with the connections

from each neuron in the first layer to all the neurons

in the first hidden layer.

4.2 Step 2: Classifying sparsity
The results of Step 1 have been used to investigate the influence

of sparsity on the structure and performance of Sparse

Evolutionary Training. Having mapped the sparsity to the

accuracy and the structure of the network, different sparsity

intervals have been classified depending on their effect on

accuracy and structure.

4.3 Step 3: Mathematical modelling
The form of the plotted graph as described in Step 1 has been

used to estimate the type of function that most accurately

models the relation between sparsity and accuracy. Parameters

have been used to shift and scale the function to the most

appropriate proportions and allow for future modification that

might be required with different hyperparameters or datasets.

Parameters whose function can be directly interpreted in terms

of their relation to characteristics of the dataset, model or

results have been defined as such and set to the appropriate

value. Other parameters have been given placeholder names

and their values have been determined by multivariate gradient

descent.

5. RESULTS
The following section discusses the conducted experiments as

described in the previous section and their subsequent results.

First, the implementation details of the SET algorithm are

stated and the figures and tables used to display the results are

explained. Second, the training results are analysed and used to

categorize different sparsity levels. Third, a mathematical

Algorithm 1: Weight pruning-regrowing cycle –

Implementation II from Liu et al. [23]

function is devised that models the relation between sparsity

and accuracy.

5.1 Implementation details
The SET algorithm was trained using the implementation from

Selima Curci [7] in Python and SciPy as proposed by Liu et al.

[23] mentioned in Section 3.4. The model initializes an Erdős–

Rényi sparse weight masks with a uniform distribution. The

sparse weight matrices are transferred to three vectors

representing a compressed sparse row using coordinate lists.

During the feed-forward- and backpropagation step, the

weights are stored in the compressed sparse row format. The

implementation of the pruning and the regrowing cycle can be

seen in Algorithm 1.

The neural network contains an input-, three hidden and one

output layer. The input layer has 784 nodes, corresponding to

pixels in the images of the dataset; the hidden layers contain

1000 nodes each; the output layer has 10 nodes, corresponding

to the 10 different classes in the dataset. The hyperparameters

can be found in Table 2. For each sparsity level ζ, the SET

algorithm has been trained on Fashion-MNIST for 1000

epochs.

The experiment has been conducted as described in Section

4.1:Step 1: The algorithm has been trained three times with

successively decreasing intervals and stepsizes. The SET

algorithm was initially trained on ζ values in the (0,1) interval

with stepsize 0.1. The accuracy remained practically unaffected

for values in the (0,0.9) interval. The stepsize of 0.1 was too

large to clearly show the dropoff point. Subsequent training

with values in the (0,1) interval with stepsize 0.01 showed that

a significant decrease started around ζ=0.98. Even further

subsequent training with values in the (0.98,1) interval with

stepsize 0.001 showed that accuracy starts decreasing rapidly

after ζ=0.987. These results will be interpreted in Section 5.2

and Section 5.3.

ζ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.910 0.920 0.930

Actual accuracy 0.870 0.881 0.874 0.871 0.869 0.868 0.873 0.874 0.866 0.865 0.863 0.867 0.861

Approximated accuracy 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868

ζ 0.940 0.950 0.960 0.970 0.980 0.981 0.982 0.983 0.984 0.985 0.986 0.987 0.988

Actual accuracy 0.854 0.860 0.861 0.850 0.838 0.838 0.849 0.835 0.845 0.839 0.841 0.844 0.834

Approximated accuracy 0.868 0.868 0.868 0.867 0.862 0.861 0.860 0.859 0.857 0.855 0.852 0.849 0.845

ζ 0.989 0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

Actual accuracy 0.842 0.818 0.821 0.816 0.811 0.809 0.795 0.776 0.767 0.755 0.710 0.619

Approximated accuracy 0.840 0.835 0.828 0.821 0.811 0.800 0.786 0.770 0.750 0.726 0.698 0.664

Table 1: Accuracy of SET trained on Fashion-MNIST for different ζ after 1000 epochs and approximated accuracy with intervals [0,

9] with stepsize 0.1, [0.91, 0.98] with stepsize 0.01 and [0.98, 1] with stepsize 0.001.

Figure 3: Accuracy of SET trained on Fashion-MNIST for different ζ after 1000 epochs and approximated accuracy with intervals [0,

9] with stepsize 0.1, [0.91, 0.98] with stepsize 0.01 and [0.98, 1] with stepsize 0.001.

Table 2: Hyperparameters used in training SET on Fashion-

MNIST

Hyperparameter Value Hyperparameter Value

Learning rate 0.05 Batch size 40

Optimiser SGD ε 13

Momentum 0.9 Loss Categorical

Activation Function ReLU Dropout rate 0.2

In all tables and figures, accuracy is defined as the highest level

of accuracy that has been achieved in any of the 1000 epochs

of training on the test set.

Table 1 shows the results for different ζ values. Figure 3 graphs

these results onto three plots with various zoom levels

corresponding to the different intervals and stepsizes. The

approximated accuracy is plotted by a mathematical function

that will be elaborated in section 5.2.

Figure 4 shows heatmaps for different ζ values. The 784 pixels

in the heatmap correspond to those in the dataset images and

the 784 neurons in the input layer. The heatmaps in the first and

third row show how many neurons are connected from that

neuron in the input layer to the neurons in the first hidden layer.

The heatmaps in second and fourth row show the sum of the

weights of the connections from that neuron in the input layer

to the neurons in the first hidden layer. In short, Figure 4

summarizes the number of neuron connections (first and third

row) and the summed weight of the neuron connections (second

and fourth row).

5.2 Extreme sparsity
The images in the first and third row in Figure 4 show that at

lower sparsity (ζ={0.2, 0.4, 0.6}), the number of connections to

the input layer are lined up to an abstract form of all images in

the dataset. Because the images in the dataset do not have a

background, a clear distinction is visible in the heatmaps

between fore- and background. As ζ increases, the

correspondence between the image and the number of

connections per pixel disappears. At ζ=0.96, all visual

correspondence has ceased. It appears that with such high

levels of sparsity, the neural network cannot develop into a

stable structure. As the number of connections cannot change

in SET, the distribution of connections appears to become

random.

The images in the second and fourth row show that for ζ={0.2,

0.4, 0.6} a similar structure appears to those in the images in

the first and third row. Again, at higher sparsity levels, the

structure starts to fade. Unlike the number of connections, the

total weight of all connections can change. The heatmaps show

that as the sparsity increases, most neurons are attributed with

small weights and remaining neurons are associated with larger

weight values. Again, the sparsity at which the correspondence

to the images ceases lies at around ζ=0.96. In other research,

SET and it’s comparable variant AccSET use ζ=0.3 [19][27].

Table 2 and Figure 3 show that sparsity can be increased to

Figure 4: Heatmaps after SET trained on Fashion-MNIST for 1000 epochs with ζ={0.2, 0.4, 0.6, 0.9, 0.95, 0.96, 0.995, 1}

Figure 5: Heatmap showing the MSE of Formula 2 with

different values for a and b.

ζ=0.96 without any decrease in accuracy. The decrease of

accuracy at ζ=0.96 corresponds to the cessation of a stable

structure in the neural network at also ζ=0.96.

SET shows to be effective at high levels of sparsity. However,

there appears to be a transition from normal sparsity, where the

neural network operates effectively, to what can be called

‘extreme sparsity’, where the neural network is unable to

develop a stable structure and starts losing accuracy. For this

dataset and configuration of SET, the transition point or

extreme sparsity contour (ESC) appears to lie at ζ=0.96.

5.3 Sparsity dependent accuracy modelling
The first plot in Figure 3 displays how accuracy changes with

varying ζ in the (0, 1) interval. The long plateau at the interval

(0, 0.96) and stark decrease at the interval (0.96, 1) hint at an

exponential relationship. It appears that the standard

exponential form 𝑒𝑥 can be modified to conform to the first plot

in Figure 3. The relation between accuracy and ζ can thus be

modelled as follows:

 𝑎𝑐𝑐(𝜁) = −0.204𝑒183(𝜁−1) + 0.868 (1)

With a Mean Square Error (MSE) of 0.013%, this equation

models the relationship between sparsity and accuracy of the

sparse neural network with very high accuracy. Table 2 and

Figure 3 shows how the approximated values of this formula

plot against the actual accuracy achieved by the sparse neural

network. Modelling the effect of ζ on the accuracy, this

function can aid in the hyperparameter selection process.

The formula has been optimized for training SET on Fashion-

MNIST with the hyperparameters from Table 1. For other

datasets and hyperparameter configurations, the formula might

not be suitable and needs to be adjusted. As described in

Section 4.3, the function can be parameterized such that it is

adaptable to any sparse neural network with a similar

exponential relationship between ζ and accuracy. The general

function is as follows:

 𝑎𝑐𝑐(𝜁)𝑎,𝑏,𝑎𝑐𝑐𝑝
= −𝑎𝑒𝑏(𝜁−1) + 𝑎𝑐𝑐𝑝 (2)

Here, accp is the mean accuracy level of the plateau of the

exponential function before the extreme sparsity line:

 𝑎𝑐𝑐𝑝 =
∑ 𝑎𝑐𝑐𝑟(𝜁)𝐸𝑆𝐶

𝜁=0

𝑁𝜁
 (3)

Here, Accr(ζ) is defined as mapping the accuracy after training

the sparse neural network on a dataset to ζ. Again ESC is the

extreme sparsity contour. Nζ is defined as the total number of

zeta values that are being summed.

In Formula (2), a and b can be altered to adjust the angle of the

function and move the curve to the most appropriate point.

Optimal values for a and b can be found by using multivariate

gradient descent. Figure 5 shows how different values for a and

b influence the MSE of the function.

6. CONCLUSION
Inspired by SET and AccSET, this paper researches how

training Sparse Evolutionary Training at extreme sparsity

regime influences testing accuracy and answers the following

research question:

What is the influence of varying sparsity levels on the

behaviour and performance of Sparse Evolutionary Training?

In answering this question, this paper delivers

• New insights related to the sparse training over a

large sparsity horizon

• A systematic analysis of extremely sparse networks

• A mathematical formulation of the relation between

sparsity and accuracy, estimating with very good

accuracy the expected accuracy of a model at a given

sparsity level.

In this research, it has been shown that SET can be trained on

Fashion-MNIST with training sparsity levels as high as 96%

without losing accuracy. The accuracy plateaus before this

point and roughly exponentially declines afterwards. The

plateau and decline in accuracy correspond to the existence and

cessation of correspondence between the number and the

summed weights of the connections between input and the first

hidden layer and the abstraction of the images in the dataset.

This transition point between normal- and extreme sparsity is

defined as the ‘extreme sparsity contour’. Furthermore, an

exponential function has been developed that models the

influence of training sparsity on the testing accuracy with an

MSE of 0.013%. The parameters can be adjusted to conform to

varying hyperparameters and neural network structures. This

function can aid those working on sparse neural networks in

determining what sparsity level might be appropriate for a

given experiment or implementation.

Sparse Neural Networks have proven effective in greatly

reducing parameter count while maintaining high accuracy.

With its systematic analysis of sparsity in Sparse Evolutionary

Training, this paper contributes to the understanding of sparse

neural networks. It underlines the effectiveness of pruning in

decreasing parameter count and therewith the importance of

sparse neural networks towards the implementation of machine

learning in limited computing devices.

7. FUTURE WORK
It has been shown that SET can be trained up to extremely high

sparsity levels without a decrease in accuracy. The relation

between sparsity and accuracy has shown to be exponential and

can be estimated with very high accuracy by a mathematical

model. Similar to these results, research by Cho et al. [6] shows

a similar exponential relationship between sparsity and

accuracy for ESPN, SNIP and other sparse training methods.

For ESPN the ESC appears to also lie around ζ=0.96. Further

research might validate the broader relevance of ESC.

The SET algorithm has been trained with hyperparameters as

shown in Table 1 on the Fashion-MNIST dataset. To confirm

the generalizability of the results in this paper, further research

should be conducted with varying hyperparameters, datasets

and sparse training methods. Primary considerations for such

research are the confirmation of an exponential relation

between sparsity and accuracy, and the confirmation that the

accuracy starts decreasing concurrently to the cessation of a

correspondence between the number and the summed weights

of the connections between input and the first hidden layer. If

these primary concerns are confirmed, research might focus on

secondary concerns. Currently, the parameters of 𝑎𝑐𝑐(𝜁) can

only be found after initial training. In further research, a model

might be developed describing the relation between these

parameters and the characteristics of datasets and training

methods. It will allow researchers and general users to use the

function to determine appropriate sparsity levels for their

training.

8. ACKNOWLEDGEMENT
My sincere gratitude goes to my supervisor Elena Mocanu. Her

valuable feedback and great enthusiasm during the entire

process have been of invaluable support in the development of

this research.

9. REFERENCES
[1] Abraham, A. 2005. Artificial Neural Networks.

In Handbook of measuring system design.

[2] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato,

J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and

Van der Vorst, H. 1994. In Templates for the solution of

linear systems: building blocks for iterative methods.

Society for Industrial and Applied Mathematics.

[3] Bishop, C.M. 1995. Neural networks for pattern

recognition. Oxford university press.

[4] Bourely, A., Boueri, J.P. and Choromonski, K. 2017.

Sparse neural networks topologies. arXiv preprint

arXiv:1706.05683.

[5] Chechik, G., Meilijson, I. and Ruppin, E. 1998. Synaptic

pruning in development: a computational account.

In Neural computation, 10(7), pp.1759-1777.

[6] Cho, M., Joshi, A. and Hegde, C. 2020. ESPN:

Extremely Sparse Pruned Networks. arXiv preprint

arXiv:2006.15741.

[7] Curci, S. 2020. SelimaC/Tutorial-SCADS-Summer-

School-2020-Scalable-Deep-Learning. [online] GitHub.

Available at: <https://github.com/SelimaC/Tutorial-

SCADS-Summer-School-2020-Scalable-Deep-

Learning/blob/master/set_mlp.py> [Accessed 26 June

2021].

[8] Curci, S. Mocanu, D.C. and Pechenizkiyi, M., 2021.

Truly Sparse Neural Networks at Scale. arXiv preprint

arXiv:2102.01732.

[9] Fischer, A. and Igel, C. 2012, September. An

introduction to restricted Boltzmann machines.

In Iberoamerican congress on pattern recognition (pp.

14-36). Springer, Berlin, Heidelberg

[10] Dai, X., Yin, H. and Jha, N.K. 2019. NeST: A neural

network synthesis tool based on a grow-and-prune

paradigm. In IEEE Transactions on Computers, 68(10),

pp.1487-1497.

[11] Denil, M. Shakibi, B., Dinh, L., Ranzato, M.A. and de

Freitas, N., 2013, December. Predicting parameters in

deep learning. In Proceedings of the 26th International

Conference on Neural Information Processing Systems-

Volume 2 (pp. 2148-2156).

[12] Dettmers, T. and Zettlemoyer, L. 2019. Sparse networks

from scratch: Faster training without losing

performance. In International Conference on Learning

Representations. 2020.

[13] Evci, U., Gale, T., Menick, J. Castro, P.S. and Elsen, E.,

2020, November. Rigging the lottery: Making all tickets

winners. In International Conference on Machine

Learning (pp. 2943-2952). PMLR.

[14] Frankle, J. and Carbin, M. 2018, September. The Lottery

Ticket Hypothesis: Finding Sparse, Trainable Neural

Networks. In International Conference on Learning

Representations. 2018.

[15] Goodfellow, I., Bengio, Y. and Courville, A. 2016. 6.5

back-propagation and other differentiation algorithms.

In Deep Learning, pp.200-220.

[16] Han, S., Pool, J., Tran, J. and Dally, W.J. 2015. Learning

both weights and connections for efficient neural

networks. In Proceedings of the 28th International

Conference on Neural Information Processing Systems-

Volume 1 (pp. 1135–1143).

[17] Herculano-Houzel, S., Mota, B., Wong, P. and Kaas, J.H.

2010. Connectivity-driven white matter scaling and

folding in primate cerebral cortex. In Proceedings of the

National Academy of Sciences, 107(44), pp.19008-

19013.

[18] Jeff Pool. Accelerating sparsity in the Nvidia ampere

architecture 2020. URL

https://developer.download.nvidia.

com/video/gputechconf/gtc/2020/presentations/s22085-

accelerating-sparsity-in-the-nvidia-

amperearchitecture%E2%80%8B.pdf.

[19] Lapshyna, V. 2020. Sparse artificial neural networks:

Adaptive performance-based connectivity inspired by

human-brain processes. Bachelor's thesis, University of

Twente.

[20] LeCun, Y. Denker, J.S. and Solla, S.A., 1990. Optimal

brain damage. In Advances in neural information

processing systems (pp. 598-605).

[21] LeCun, Y. Bengio, Y. and Hinton, G., 2015. Deep

learning. In Nature, 521(7553), pp.436-444.

[22] Lee, N. Ajanthan, T. and Torr, P.H., 2019, May. SNIP:

Single-shot network pruning based on connection

sensitivity. In International Conference on Learning

Representations. 2019.

[23] Liu, S., Mocanu, D.C., Matavalam, A.R.R., Pei, Y. and

Pechenizkiy, M. 2021. Sparse evolutionary deep learning

with over one million artificial neurons on commodity

hardware. Neural Computing and Applications, 33(7),

pp.2589-2604.

[24] Mocanu, D.C. 2017. Network computations in artificial

intelligence. Ph.D. thesis, Technische Universiteit

Eindhoven.

[25] Mocanu, D.C., Mocanu, E., Nguyen, P.H., Gibescu, M.

and Liotta, A. 2016. A topological insight into Restricted

Boltzmann Machines. In Machine Learning, 104(2),

pp.243-270.

[26] Monacu, D.C., Monacu, E., Pinto, T., Curci, S., Nguyen,

P., Gibescu, M., Ernst, D. and Vale, Z. 2021. Sparse

Training Theory for Scalable and Efficient Agents.

In Proceedings of the 20th International Conference on

Autonomous Agents and Multiagent Systems-Blue Sky

Ideas Track.

[27] Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H.,

Gibescu, M. and Liotta, A. 2018. Scalable training of

artificial neural networks with adaptive sparse

connectivity inspired by network science. In Nature

communications, 9(1), pp.1-12.

[28] Mozer, M.C. and Smolensky, P. 1989. Using relevance

to reduce network size automatically. Connection

Science, 1(1), pp.3-16.

[29] Ruder, S. 2016. An overview of gradient descent

optimization algorithms. . In International Conference on

Learning Representations. 2019.

[30] Rumelhart, D.E., Durbin, R., Golden, R. and Chauvin, Y.

1995. Backpropagation: The basic theory.

In Backpropagation: Theory, architectures and

applications, pp.1-34.

[31] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. 1986.

Learning representations by back-propagating errors.

In Nature, 323(6088), pp.533-536.

[32] Scipy.org. 2021. SciPy.org — SciPy.org. [online]

Available at: <https://www.scipy.org/> [Accessed 26

June 2021].

[33] Souza, L. 2021. The Case For Sparsity in Neural

Networks, Part 2: Dynamic Sparsity. [online] Numenta.

Available at:

<https://numenta.com/blog/2020/10/30/case-for-sparsity-

in-neural-networks-part-2-dynamic-sparsity> [Accessed

25 June 2021].

[34] Thompson, N.C., Greenewald, K., Lee, K. and Manso,

G.F. 2020. The computational limits of deep learning. In

International Conference on Learning Representations.

2017.

[35] Yu, P.H., Wu, S.S., Klopp, J.P., Chen, L.G. and Chien,

S.Y. 2020. Joint Pruning & Quantization for Extremely

Sparse Neural Networks. In International Conference on

Learning Representations. 2020.

[36] You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X.,

Baraniuk, R.G., Wang, Z. and Lin, Y. 2019, September.

Drawing Early-Bird Tickets: Toward More Efficient

Training of Deep Networks. In International Conference

on Learning Representations.

