
Loop-breaking Approaches for Vehicle Route Planning
with Multi-agent Q-routing

Jaap Meerhof
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.j.meerhof@student.utwente.nl

ABSTRACT
Computation of vehicle routes between locations in ur-
ban road networks is challenging due to the highly chang-
ing dynamics of vehicle traffic patterns. Reinforcement
Learning (RL) is a powerful machine learning approach
that can be exploited to develop autonomic control compo-
nents in dynamic environments. Q-routing is an RL-based
adaptive routing algorithm, originally proposed to improve
packet routing in network communications. Q-routing can
be exploited to self-adaptively compute vehicle routes in
dynamic traffic scenarios. The Q-routing algorithm up-
dates Q-tables to learn and predict travel times between
road junctions. During the exploration stage, path track-
ing from the Q-tables may behave as a random walk from
the source to the destination. However, if a loop is formed
in multi-agent Q-routing, path tracking might loop for-
ever until Q-table entries for the offending “loop nodes”
are updated by another agent. Therefore, the formed loop
must be broken somehow in order to find a simple (loop-
less) route path. In this research, four different approaches
will be experimented with. This is done with the goal of
breaking loops in Q-routing vehicle routing. The four dif-
ferent approaches are Loop-Erased Self-Avoiding Random,
Negative Reward Function, Dual Reinforcement Learning
and N-Learning. This is done with the goal of finding the
most effective approach that leads to the shortest vehicle
routes. In this paper the self defined N-learning algorithm
combined with Dual Reinforcement Learning and the Neg-
ative Reward Function proved to be the most effective at
lessening route loops and provided the vehicles with the
shortest routes out of the different variations tested.

Keywords
Q-learning, Q-routing, Reinforcement Learning, Routing
Loop Breaking, Vehicle Routing Planning

1. INTRODUCTION
Finding the shortest path in vehicular networks has been
a topic of research for a long time, it continues to be an
art that is short of research. Finding the optimal path of
a vehicle in a network is called Vehicle Routing Planning
(VeRP). An optimal path would be a path that allows a
vehicle to reach its destination the fastest. VeRP is made

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

more difficult as other vehicles cause congestion that make
it so that the shortest path might not be the fastest path.
There are algorithms that provide an answer to VeRP. An
example of a popular shortest path algorithm is Dijkstra’s
algorithm, this is not an algorithm that would be used
in realistic vehicular routing networks as road networks
nowadays are getting too complex. Therefore new short-
est path algorithms have been developed [1]. RL could be
the next improvement when it comes to the development
of routing algorithms. Boyan and Littman [6] used RL
to route packets around in an adaptive (realistic) environ-
ment using Q-routing. Q-routing is based on Q-learning
which is an algorithm proposed by Watkins and Dayan
[15]. This application of Q-learning into the computational
network setting can be taken further to tackle VeRP. Q-
routing is normally used to route a packet through a cable
to another router, this can be compared to sending a ve-
hicle from a junction via a road to another junction. The
original Q-routing algorithm has one Q-table that con-
tains all the information gained in the network. Garcia-
Robledo [8] proposed a multi-agent event-stream vehicle
routing scheme, this means that the Q-routing algorithm
was changed so that every junction is an agent with their
own Q-table. For example, if a car arrives at a junction an
event will be called that interacts with the Q-table. Hav-
ing the system distributed means that the computations
of the network are automatically distributed as well, this
makes the system more scalable and faster in theory. The
main problem is that current research on Q-routing focuses
on the Vehicle Routing Problem (VRP). The VRP can be
defined as the combinatorial optimization problem of find-
ing a set of optimal paths for a group of vehicles in order
to service numerous customers [8]. This is a well known
problem in the fields of transportation [13] and computer
science. However, this paper will focus on assisting a Q-
routing-based approach to break loops and converge faster
to shorter vehicle routes when solving VeRP. This paper
proposes four different variations of the Q-routing algo-
rithm that reduce the number of loops in routes produced
by Q-routing during its exploration stage. This is a prob-
lem where vehicles get stuck in loops that cause congestion
and long travel times. These loops are eventually broken
as the Q-routing algorithm converges, they nonetheless
need to be broken faster to assist Q-routing in converg-
ing faster to shorter vehicle routes. Variations of the Q-
routing algorithm that should lessen the looping problem
will be put forward. These variations will provide answers
to the Research Questions (RQ) of this paper:

1. What are possible variations of the Q-routing algo-
rithm that reduce the number of route loops during
the Q-routing exploration stage?

2. Which Q-routing algorithm is most effective regard-
ing VeRP?

1

(a) Which Q-routing variation reduces the number
of vehicle route loops the most?

(b) Which Q-routing variation produces the short-
est vehicle route lengths?

The paper will first look into the available literature that is
related to the Q-routing loop problem. Four different vari-
ations of the Q-routing algorithm will be explained and ex-
plored. These four algorithms are called Loop-Erased Self-
Avoiding Random Walk, Dual Reinforcement Q-Routing,
Negative Reward Function and N-Learning. A recommen-
dation will be made as to what variation of the Q-routing
algorithm is the one that is most effective regarding VeRP.

2. RELATED WORK
The Q-routing algorithm as first described by Boyan and
Littman was initially made to improve packet routing.
The variation of this algorithm that will be used in this
research can be found in Equation 1. Q-routing uses a sin-
gle Q-table represented as Q that holds all the Q-values.
A Q-value represents the expected time a packet would
be traveling if it took a certain decision. The network
in the normal packet routing setting consists of multiple
routers called nodes. These nodes can reach certain other
nodes and transmit packets. In Equation 1 Qx(d, y) is the
Q-value of node x where a packet has destination d and
wants to go to node y. The Q-table is initialized with
small random values so the algorithm will randomly move
in the beginning. When a packet is at a node it will look
for the best Q-value for its destination and take this route
until it reaches its destination. When a packet has moved
from one router to another it will update the Q-table using
Equation 1. This equation updates the Q-value with a new
value that represents the expected time to move a packet.
η is the “learning rate”, this will influence how much a Q-
value adapts to an update. s is the time it took to travel
from node x to node y (including queue time). In normal
packet routing q+ s is used where s is the travel time and
q is the queue time. However in Garcia-Robledo’s paper s
is used to specify the time traveled on a road. Variable t
can be retrieved via Equation 2. This equation retrieves
the best (minimum) Q-value to reach d via y. This is
done so that the old value Qx(d, y) is updated by adding
the change after multiplying it by the “learning rate”. It
was pointed out by Boyan and Littman that the this al-
gorithm could be seen as a variation of the Bellman-Ford
shortest path algorithm that asynchronously performs its
path relaxation step.

Qx(d, y) = Qx(d, y) + η(s+ t−Qx(d, y)) (1)

t = min
z∈neighbours of y

Qy(d, z) (2)

There are plenty of working shortest paths algorithms for
static network systems [1]. However, the algorithm pro-
posed in this paper as well as in Garcia-Robledo can adapt
to changes in the network.

The problem of packets traveling in loops is also acknowl-
edged in Bitaillou et al. [2]. Bitaillou et al. gives the fol-
lowing thoughts on how the loop problem could be fixed
in Q-routing: “Another possibility is to change the reward
in the Q-function. Indeed, the distance (in hop count)
could be considered in order to help the choice of the best
route. The reward can also take account of the number
of dropped packets.” The problem is also acknowledged in
Kiadi et al. [11] as they conclude that the looping problem
“can be fixed by adding more logic to the code to identify

the loops (that is more expensive to do) or to change the
stop criteria”.

To the best of the knowledge of this author, this paper
is the first attempt to address the Q-routing route loop
problem when solving VeRP.

3. MULTI-AGENT Q-ROUTING
The Q-routing algorithm for solving VeRP used in this
paper is a simplification of Garcia-Robledo’s Multi-Agent
Event-Stream Vehicle Routing Scheme. This is an adap-
tion of the Q-routing algorithm proposed by Boyan and
Littmann to work in road networks. One change is that
Garcia-Robledo’s algorithm has multiple agents. This means
that there are multiple Q-tables instead of one. These Q-
tables are stored inside of the different
junctions/nodes. In this road network, routers now are
junctions and network links now are roads. The Event-
Stream part of the algorithm symbolises the fact that these
agents will have to stream events to each other to up-
date the Q-tables. In this paper it is assumed that event-
streaming does not affect the amount of loops made and
will therefore not be simulated. Both Garcia-Robledo’s,
as the system used in this paper, uses Python, TraCI, and
SUMO. SUMO provides a traffic simulation package and
Python can interface with SUMO via TraCI to update ve-
hicle’s routes and get information on the road network. A
SUMO network has junctions and roads which TraCI calls
nodes and edges respectively, these terms will be used in-
terchangeably.

The algorithm has a simulator that creates a junction ob-
ject for every junction in the SUMO road network. Every
junction x in the simulator is initialized with Algorithm
1. This algorithm uses set Nx, this is a set that contains
all neighbouring nodes of node x. The different sets and
variables are explained in Table 1. Algorithm 1 creates
a Q-table for every Junction, it does this by assigning a
small random float for all available Q-values. The Q-table
has multiple Q-values for every outgoing road, every out-
going road holds a Q-value for every possible destination.
This way a vehicle can request a Q-value for every possible
road at a junction with the random destination.

Algorithm 1: Init Q-Table

Input : -
Output: sets a Junction’s Q-table

for x in J do
for outgoing road in Nx do

for destination in J do

Jx.Q[outgoing road.getID()][destination.getID()]
← small random float

end for
end for

end for

This work will use TraCI to retrieve all vehicles in the
SUMO simulation. Every new vehicle in the simulation
will be given a new route by the Simulator. The imple-
mentation creates this route by taking the best road that
the different junctions advertise. The routing protocol can
be found in Algorithm 2, in this algorithm the best edge
can be changed before adding it to route R. This is use-
ful for the different variations that can change the routing
algorithm using best edge.

When a new vehicle first appears on a random road it will

2

set its destination to be a random junction. If a vehicle is
on a new road (or on the road it first appeared on) it will
request a new route from the junction at the end of the
road. The Q-table of the next junction will first be queried
to find the best edge to reach the vehicle’s destination.
The set B is used to hold the different outgoing edges
by storing 2-tuples with the edge and Q-value sorted by
Q-value. If there are multiple outgoing edges with the
same Q-value than a random one will be chosen. The next
junction at the end of the chosen road will then return
its best edge. This process will continue until the vehicle
has a route that reaches the destination or when the road
assembled is longer than 2∗|J|. The original Q-routing
algorithm will not always be able to backtrack a route
to the destination due to route loops, for this reason the
extra condition 2∗|J| is added to break the route backtrack
algorithm. After a vehicle has received a new route the Q-
value of the last junction will be updated. This is done by
using Equation 1 and 2. The time spent (s) on a road is
retrieved via TraCI . The best estimated travel time from
the next junction is retrieved via Equation 2.

Algorithm 2: Route

Input : vehicleID, current edge, destination id
Output: route R for a vehicle with vehicleID

best edge = current edge
R = set(current edge)
next node = current edge.getToNode()
while next node.getID() is not destination id and
length of R < 2*|J| do

B = set()
for outgoing edge in Jx.outgoing edges do
Q− value =
Jnext node.Q[outgoing edge.getID()][destination id]
B.append((outgoing edge, Q− value))

end for
sort B in ascending order by Q-values
// randomize if there are multiple choice’s for
best edge
A = set()
best cost = B[0][1]
for tup in B do

if tup[1] > best cost then
break

end if
A.append(tup[0])

end for
best edge = Choose (e.g. random) from A
best edge = B[0][0]
next node = best edge.getToNode()
R.append(best edge)

end while
return R

Figure 1. Vehicle requesting for a new route at next junc-
tion

Table 1. Variables
Symbol Meaning

J Set of all junctions
Qx Q table of junction x
P Path so far

Nx Outgoing Neighbouring roads from Junction x
R Route taken by a vehicle so far
L Loop-causing edges that will cause

A random choice of edge the next time reached
B Set with 2-tuple (edges, Q-value)

with the best edges
α Punish factor = 1.05
β Punish severery factor = 0.05
η ”Learning rate” parameter of Q-function = 0.5

4. VARIATIONS
All variations of the Q-routing algorithm change the be-
haviour of the routing protocol in Algorithm 2. The varia-
tions can change the best edge and edit the new expected
route to change how the algorithm functions.

4.1 Loop-Erased Self-Avoiding
Random Walks

In the beginning the vehicles will move around mostly ran-
domly. When a new vehicle appears, a loop-less route
can be made by following a Loop-Erased Random Walk
(LERW). This is a mathematical term that is normally
used in a mathematical lattice. It is created by doing a
Simple Random Walk (SRW), an SRW can be compared
to a vehicle taking random directions until it reaches its
destination. A LERW is an SRW. However, after a loop
is formed the nodes in the loop will be removed from the
route. This will make a walk that reached its destination
without intersecting itself [14]. This Loop-Erasing prop-
erty is illustrated in Figure 2. Figure 2 explains how the
LERW is used if Q-routing fails.

3

Figure 2. A: Vehicle is in a position where it would have to
make a loop. B: The created loop is deleted and the nodes
will now ignore Q-values. C: vehicle will be able to reach
destination as loop causing nodes are random.

Then there are also Self-Avoiding Random Walks, this is
an SRW that will avoid going to the same node twice by
choosing different paths. If there is no path available to
continue the walk the walk will terminate [9]. This Self-
Avoiding property is illustrated in Figure 3. In this paper
a variation of the Q-routing algorithm was created that
will be called a Loop-Erased Self-Avoiding Random Walk
(LESARW). This variation is not the same as the Loop-
Erased Self-Avoiding Walk as defined in B. Duplantier [7].

Figure 3. Vehicle will
avoid the best edge with
the lowest Q-value to
avoid loop

This is because the varia-
tion is not only a random
walk that removes loops.
The implementation of the
self defined LESARW vari-
ation of the Q-routing al-
gorithm first checks if the
best edge given by the Q-
routing algorithm will not
create a loop. If this is not
true then the algorithm will
attempt to find a different
edge that does not create a
loop with the best Q-value.
If this also fails the original
best edge will be used and
the loop that will be created
will be removed. All nodes that were in the loop will be
added to the set L that holds all nodes that were in a loop.
All edges that go to a node that has been in a loop will
instead route the vehicle randomly. This brings back the
randomness to the Q-routing algorithm to assure that the
vehicle can reach the destination. This algorithm can be
found in Algorithm 3, and is illustrated in Figure 2.

4.2 Negative Reward Function
The loop problem might be lessened by changing the re-
ward function of the Q-routing algorithm [2]. If an agent
is stuck in a loop the Q-values of the edge that made the
loop could be made higher so that this edge might not be
taken in the future. This has been done with seemingly
good results in the Deep Q-Routing algorithm proposed
in Jalil et al. [10]. The algorithm used in the simulations
can be found in Algorithm 5. This algorithm will call the
punish algorithm (Algorithm 6) on all roads that were in
the loop. The punish algorithm highers the Q-value of this
road with the punish factor α. The roads that were in the
loop are removed from the route so that the routing algo-
rithm can continue with a loop-less route. The Q-values
will not be punished to have a higher Q-value than the
other edges. One node might end up with all outgoing
edges to have the same maximum Q-value for a given des-
tination. The algorithm will in that case pick a random
edge with the best Q-value.

Algorithm 3: Loop-Erased Self-Avoiding Random Walk

Input : best edge from normal Q-routing
Output: new best edge

if best edge is in L then
best edge = Choose an element (e.g. random) from
Nx

else if (best edge.getToNode() is in R) or (best edge is
in P) then
found new option = false
for neighbour in Nx do

if neighbour is not in R or P then
best edge = neighbour
found new option = true
break;

end if
end for
if not (found new option) and not (best edge in P)
then

R, L = delete until(R, best edge, L)
end if

end if
return best edge

Algorithm 4: delete until

Input : Route R, best edge and loop causing nodes L
Output: R without a loop up until best edge and L

for i in enumerate(reversed(R)) do
route.pop(i)
L.append(R[i])
if R[i] is best edge.getID() then

return R, L
end if

end for
return R, L

Figure 4. A: Vehicle is routed to a position where the best
decision will make a loop. B: The two edges in the loop are
punished. C: The vehicle can now make a route.

4.3 Dual Reinforcement Q-Routing
The original Q-routing algorithm uses forward exploration.
In forward exploration the sending junction updates its Q-
table when it sends out a vehicle. In S. Kumar’s Dual Re-
inforcement Q-Routing (DRQ-Routing) [12] network nodes
also use backwards exploration. With backwards explo-
ration the receiving network node also updates its Q-table.
Having two kinds of exploration doubles speed at which
the system converges. This in term will cause the system
to have fewer loops. One important change was made to
the DRQ-Routing algorithm as described in S. Kumar’s
paper. For DRQ-Routing to work effectively in the net-
work made the algorithm will use the same destination
d for backwards and forwards exploration. In the origi-

4

Algorithm 5: Negative Reward

Input : best edge from q-routing and destination
Output: Route

if best edge is in R then
for edge in reversed(R) do

R.pop(edge)
from node = J.get(edge.getFromNode())
from node.punish(edge, destination) //
algorithm 6
if edge is best edge then

return R
end if

end for
return R

end if

Algorithm 6: Punish

Input : route edge id, destination node id, x
(current node), s severity of punishment

Output: updates the Q-table by “punishing” node x

old = Jx.Q[route edge id][destination node id]
new = old * (α + (β*s))
max = Jx.get max q value(destination node id)
if new > max then
new = max

end if
Jx.Q[route edge id][destination node id] = new

nal DRQ-Routing the backwards exploration will use the
starting junction s as a destination to update a Q-value.
This makes it so that a single vehicle with destination d
will learn its environment two times faster, if it were to up-
date a Q-value with s as a destination this would not be
the case. The only possible problem with DRQ-Routing is
that DRQ-Routing is perfect for networks where the same
travel time is experienced when sending a packet the other
way around. This can be done in the original Q-routing
setting as a wireless will have the similar speeds and re-
liabilities when sending the other way around. When a
vehicle network is under a higher load a road might be
congested on an outgoing road. However, it might be clear
on the ingoing road.

Figure 5. A: a road network with two nodes 1 and 2 con-
nected via two way edge 1. B: normal forward exploration
where node 0 updates its Q-table to node 1 via edge 1. C:
forward and backwards exploration, node 1 now also up-
dates its Q-table to node 0 over the outgoing edge 1.

4.4 N-Learning
After a vehicle has traveled over a road it can update the
Q-value of the junction it came from with the parame-
ter s from Equation 1. The original Q-routing will only
retrieve one value t via Equation 2. However, the travel
time s could be used for all minimum Q-values t of the

next junction. This is done in the N-Learning variation,
the junction at the end of the road on which a vehicle
experienced travel time s will provide the junction at the
beginning of the road with all N minimum Q-values for
all destinations available. This way N Q-values can be
updated instead of one. This will lessen the time for the
system to converge N times faster. One problem with N-
Learning is that packets with N Q-values will have to be
sent each time an update needs to happen if a network
has N junctions. Each junction in N-Learning would re-
quire more bandwidth the larger the network. Algorithm
7 shows the added for loop in the update function.

Algorithm 7: N Learning

Input : s (travel time), next node, x (curent node),
edge id

Output: Updates all Q-values over the taken road
with id edge id

for node in J do
destination id = node.getID()
old = Qx[edge id][destination id]
if next node.getID() == destination id then
t = 0

else
t = next node.getmin(destination id // Equation
2

end if
new = old +
η((s+t)−old)Qx[edge id][destination id] = new

end for

5. ASSESSMENT AND RESULTS
To answer research questions RQ1 and RQ2, simulations
were done in an irregular grid road network first found in
Boyan and Littman’s paper on Q-routing [6]. In this net-
work, a vehicle is able to move in all possible directions
as illustrated in Figure 1. The types of roads most resem-
ble collector roads as they have two lanes. The irregular
6 x 6 grid used can be seen in Figure 6. The junctions
are not controlled by traffic lights. In this paper’s simula-
tions, vehicles appear every 15 full simulation steps result-
ing in 2000 vehicles going trough the network after 30000
steps. The simulations, however, checked on the vehicles
5 times per SUMO step. Resulting in 150000 simulation
steps being done. The network was on a low load with
these settings.

5.1 Loop Performance
Figure 7 reveals the amount of loops made over time for
the different variations. The Original Q-routing algorithm
performed the worst in terms of loops being made followed
by DRQ-R (DRQ-Routing). The LESARW already more
than halved the amount of loops. The LESARW with
DRQ-Routing was quick to converge and avoid loops. The
negative Reward Function with DRQ-Routing performed
better than the LESARW with DRQ-routing. However,
not by a significant margin. It can also be noted that the
amount of new loops being made by LESARW with DRQ-
Routing in the end was lower as the Negative Reward
Function creates more loops in the later half of the sim-
ulation. The variation that revealed the most promising
results was N-Learning. N-learning combined with DRQ-
Routing and the Negative Reward Function produced only
24 loops. Combining the different variations produced the
best results throughout the testing.

5

Figure 6. The Irregular 6 x 6 Grid Road Network used
to carry out the simulations. First used by Boyan and
Littman, and later used in most Q-routing papers.

Figure 7. Loops made over simulation time by the different
Q-routing variations

5.2 Routing Performance
Figure 8 and 9 reveal the different Q-routing variations
and their performance. In Figure 8 the Y-axis contains the
average vehicle route length in steps. If a vehicle had to
travel 60 roads to get to their destination 60 will be added
to the total and the average will be measured over time.
This gives an indication as to how fast an variation guides
the vehicle to its destination. The LESARW performed
better than the standard Q-routing algorithm. However,
not by a significant margin. DRQ-Routing learns about
the network twice as fast and is therefore quick to minimise
route lengths, however, loops are still being made resulting
in extra routing time. The LESARW with DRQ-Routing
demonstrated a small insignificant performance increase in
respect to DRQ-Routing. The Negative Reward Function
variations performed better than the LESARW variations.
This can be explained by the fact that loop causing roads
are punished until they are not viable anymore fast in the
beginning of the algorithm. The N-learning variations per-
formed the best as it is able to converge the fastest out of
all variations. Figure 9 shows a simple moving average
where the vertical axis holds a value that combines 10000
route lengths to the left and right of a point and averages
these 20000 values, this averages out the graph and makes
it easy to understand. It reveals that all algorithms end up

with about the same routing performance, the most sig-
nificant differences are in the early part of the exploration
phase.

Figure 8. Average Route Lengths made by vehicles over
simulation steps

Figure 9. Simple Moving Average Vehicle Route Lengths
that better displays the route lengths achieved by every
variation over time.

6. CONCLUSION
N-Learning together with DRQ-Routing and the Negative
Reward Function demonstrated to have the best perfor-
mance in minimizing loops and routing lengths. This vari-
ation was therefore the best at VeRP. The importance of
the rate of exploration with respect to the amount of loops
being made is highlighted. Algorithms that are able to
converge faster will experience significant decreases in the
amount of loops being made. N-Learning allows the Q-
tables to converge N times faster by updating N Q-values
instead of 1. DRQ-Routing improved every variation by
allowing algorithms to converge around twice as fast. The
LESARW reduced loops significantly. However, it did not
provide significant improvements in routing lengths as its
Self-Avoiding property can lengthen routes significantly
when it is in a position where it will eventually be forced to
make a loop. The Negative Reward Function also proved
to be a loop-breaking algorithm with comparable results
to LESARW in terms of loops being made. However, the
Negative Reward Function did perform superior in terms
of the routing lengths when compared to the LESARW.

6

6.1 Answering Research Question 1
There are still many different unexplored variations of the
Q-routing algorithm that can lessen the looping problem.
However, the variations tested in this paper did all re-
duce the amount of loops. N-Learning provided the most
significant improvement in breaking loops, combining N-
Learning with DRQ-Routing and the Negative Reward
Function was tested to be the best combination of vari-
ations. Small changed could possibly be made to the
LESARW and Negative Reward Function variation to im-
prove their loop-breaking properties.

6.2 Answering Research Question 2
N-Learning combined with DRQ-Routing and the Nega-
tive Reward Function was best at VeRP. This variation
produced the least amount of loops and provided vehicles
with the shortest routes out of the different variations.

6.2.1 Answering Research Question 2a
N-Learning combined with DRQ-Routing and the Nega-
tive Reward Function reduced the amount of vehicle route
loops the most. N-Learning on its own provided the most
significant decrease in loops.

6.2.2 Answering Research Question 2b
N-Learning combined with DRQ-Routing and the Neg-
ative Reward Function produced the best vehicle route
loops. N-learning on its own provided the most significant
decrease in vehicle route lengths. All variations tested
reduced the route lengths in the exploration phase. DRQ-
Routing can be combined with any variation to improve
route lengths under a low network load. It was also gath-
ered that the more a variation reduces loops the better the
route lengths were.

6.3 Future Work
There are still many other variations to think of that could
improve the loop avoiding properties found in this paper.
The variations tested could also provide better results with
small alterations. The LESARW could for example be
tested without the Self-Avoiding property. Future work
could look into algorithms that look forward enough to
always create a loop-less route by assuring that the vehi-
cle can reach the destination without making a loop with
every possible move. Different punish factors could be ex-
perimented with in the Negative Reward Function. The
algorithms were solely tested on a low road network load,
performance can differ on high network loads. Especially
with DRQ-Routing as the Q-tables might not be updated
with correct Q-values when one road is more congested
than its reverse. The network tested upon could also be
altered, more sophisticated realistic networks could be re-
trieved from the OSMmx library. This library can be used
to extract real road networks from OpenStreetMap [3, 4,
5]. However, these simulations do require a significant
amount of computing power to simulate in SUMO. An-
other small change that should be tested is to first update
the Q-values and then request a new route instead of doing
it the other way around. This could have a big impact on
DRQ-Routing and the Negative Reward Function. Vehi-
cles will expectantly move less backwards the road behind
a vehicle has also been updated via backwards exploration
or punishments from the Negative Reward Function.

7. REFERENCES

[1] H. Bast, D. Delling, A. Goldberg,
M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route Planning in
Transportation Networks, pages 19–80. Springer
International Publishing, Cham, 2016.

[2] A. Bitaillou, B. Parrein, and G. Andrieux.
Q-routing: From the algorithm to the routing
protocol. In S. Boumerdassi, É. Renault, and
P. Mühlethaler, editors, Machine Learning for
Networking, pages 58–69, Cham, 2020. Springer
International Publishing.

[3] G. Boeing. Osmnx: New methods for acquiring,
constructing, analyzing, and visualizing complex
street networks. Computers, Environment and
Urban Systems, 65:126–139, 2017.

[4] G. Boeing. The morphology and circuity of walkable
and drivable street networks. In The mathematics of
urban morphology, pages 271–287. Springer, 2019.

[5] G. Boeing. Planarity and street network
representation in urban form analysis. Environment
and Planning B: Urban Analytics and City Science,
47(5):855–869, 2020.

[6] J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement
learning approach. In Proceedings of the 6th
International Conference on Neural Information
Processing Systems, NIPS’93, page 671–678, San
Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[7] B. Duplantier. Loop-erased self-avoiding walks in
two dimensions: exact critical exponents and
winding numbers. Physica A: Statistical Mechanics
and its Applications, 191(1):516–522, 1992.

[8] A. Garcia-Robledo. Research progress report: An
event-streaming platform for self-adaptive
distributed vehicle route guidance in urban
networks. 2019.

[9] O. B. Ido Tishby and E. Katzav. The distribution of
path lengths of self avoiding walks on erdős–rényi
networks. Journal of Physics A: Mathematical and
Theoretical, 49, 2016.

[10] S. Q. Jalil, M. Husain Rehmani, and S. Chalup.
Dqr: Deep q-routing in software defined networks.
In 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2020.

[11] M. Kiadi, Q. Tan, and J. R. Villar. Optimized path
planning in reinforcement learning by backtracking.
2019.

[12] S. Kumar and R. Miikkulainen. Dual reinforcement
q-routing: An on-line adaptive routing algorithm.
1997.

[13] G. Laporte. The vehicle routing problem: An
overview of exact and approximate algorithms.
European Journal of Operational Research,
59(3):345–358, 1992.

[14] O. Schramm. Scaling limits of loop-erased random
walks and uniform spanning trees. Israel Journal of
Mathematics, 118(1):221–288, 2000.

[15] C. J. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

7

