
Functional and non-functional requirements for a player
performance dashboard in CS:GO

Nikola Martino
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

n.martino@student.utwente.nl

ABSTRACT
This paper lays the foundation for a dashboard that vi-
sualizes information and statistics for player improvement
in CS:GO. Using state of the art literature and data anal-
ysis, the functional and non-functional requirements were
extracted. Based on these requirements, a prototype dash-
board was created.
The dashboard was tested and validated by professional
CS:GO players, who provided feedback on the functional
and non-functional requirements portrayed in the proto-
type dashboard.
The dashboard fulfilled the posed needs of professional
CS:GO players for a performance feedback tool.
Based on the findings of this paper, further research on
the usefulness of performance dashboards and data-driven
feedback & improvement systems for CS:GO, could be
conducted.

Keywords
Counter Strike, esports, Player Performance, Post-game
Review, Real-time Review, Game Data Visualization.

1. INTRODUCTION
The competitive scene of computer games, form what is
known as eSports, or also known as electronic sports. eS-
ports have greatly grown in popularity [23] in the past
decade, with hundreds of tournament games organized and
millions of dollars in prize pools. It is a growing industry
that only attracts more viewers and attention each year
[23].

eSports most often consist of a group of players, forming
a team and playing together to reach a common goal [7].
eSport teams are similar to traditional sports teams and
require teamwork, communication, and coordination [7].

As in regular physical sports, a team’s overall performance
greatly depends on its members’ individual and collective
performance; how well they perform when playing alone
and together [17]. Similar to traditional sports teams,
there exist coaches that evaluates the teams’ overall per-
formance, motivate players, promote team spirit and coop-
eration [9]. Coaches have the responsibility to collect com-
mon strategies and performance statistics from opposing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

teams, by reviewing video replays of matches and individ-
ual performance of opposing players [15].

This paper will be mostly focused on one specific eSports
game, namely Counter Strike Global Offensive (also known
as CS:GO), a First Person Shooter game. CS:GO is the
most popular (with the highest number of concurrent users)
First Person Shooter game at the time of this paper, ac-
cording to the Steam listing [20]. This allows the research
to, at points, relate to other FPS games, which use CS:GO
as a role model [18]. CS:GO provides data per played
match, in the form of replays. Counter-Strike Global Of-
fensive replays are match recordings, stored after the game
has ended and that contain all the information per second
of the game. The replay stores player positioning on the
map throughout the lasting of the match, player statistics
(kills, average headshot rate, and so on) per round [2].

CS:GO heavily relies on teamwork. Each member has a
specific role within the team. We consider two main cate-
gories, informal roles [5] and formal roles [19]. The latter
roles are universal and apply to all CS:GO teams. As in
any other team, roles are important and directly affect
team performance [3]. However, as CS:GO relies on team-
work, team performance is also affected by each member
individually and collectively. Individual player’s perfor-
mance and match replays are what coaches look at and
work with to build strategies and maximize team cooper-
ation and coordination [9].

A player’s game experience is not the only performance at-
tribute that affects match outcome, but so do the player’s
team effectiveness, personality and skills [6].

Automation that makes possible the combination of player’s
individual attributes with the game data stored in a match
replay, allows for a more compact overview of all game
parameters and player attributes. This would ease the
process of manually searching through this data, which is
more time-consuming [22].

2. PROBLEM
This paper aims to answer the following question: ”What
are the functional and non-functional requirements for a
post-game review dashboard of player performance?”.

We focus on post-game as there are little possibilities for
real-time data processing, and it is not quite feasible by
players to focus on anything but the match they are play-
ing. Major eSports leagues do not allow use of any exter-
nal type of software that affects player performance in any
way, as it will most likely result in a game ban [13].

Most of the existing dashboards are of commercial use
and do not provide any self-improvement statistics to the
user, or offer only overall match statistics. In order to
tackle self improvement, we want to create a system that

1



provides feedback to the user, based on the matches they
have played.

“We all need people who give us feedback. That’s how we
improve.” - Bill Gates.

With such a system in mind, we split the main research
question into three sub-questions:

• Question 1: What are the functional requirements
for a player performance dashboard?

• Question 2: What are the non-functional require-
ments for a player performance dashboard?

• Question 3: To what extent can the use of the player
performance dashboard, theoretically, improve gen-
eral player performance?

3. RELATED WORK
Related papers were found using the following keywords:
”fps game player performance; esports player performance;
cs:go gameplay; eSport roles; eSport data analysis; coach
importance in teams; team players; team efficiency” and
by digging through references.

Currently, there are tools and websites that provide real-
time match updates, such as HUDStats and GameScore-
Keeper. Both sites allow API (application programming
interface, that allows the communication between two plat-
forms) connectivity, for a fee, that ease the creation of a
dashboard, as data will no longer have to be processed by
the dashboard creators, but can be fed from these sites.
Usage of API, however, offers less manageability, as one
can only use data made available from these sites. Relia-
bility is also another issue that may appear, as the hosting
of these providers may not be available around the clock,
may experience technical issues, or the data itself may not
be entirely accurate [24].

Research has also been done on player reaction speed and
how it applies to in-game performance. A setup that
allows such testing opportunities is possible [21], with a
small delay in data collection that can be adjusted post-
analysis. One setup involved examining eye movement and
on-screen positioning, along with the most commonly used
keys, making a distinguishment in player knowledge and
experience [12]. However, such data would not be bene-
ficial when comparing players of the same league, as the
outcome would be similar in almost all cases [12].

4. METHODOLOGY & APPROACH
This paper is based on Mader’s & Eggink’s development
framework, based on three iterative phases:

• Ideation: Writing on paper of the basic dashboard
requirements, both functional and non-functional.

• Specification: Writing on paper of the user cases and
must have’s of the dashboard (answering RQ 1 & 2).

• Relization: The creation of the dashboard prototype
with the requirements from the specification.

• Evaluation: Running a quantitative and qualitative
user testing, to evaluate the usefulness of the dash-
board (answering RQ 3).

To begin with the ideation process, we must initially ex-
tract all possible data from a CS:GO match. These pro-
cedures are further explained in the following sections.

4.1 Data Collection & Processing
CS:GO calls 64 updates per second, which means, all the
data, is stored at least 64 times per second. A match
usually lasts longer than 30 minutes (1’800 seconds), thus,
we have a minimum of 115’200 data entries to look at (30
minutes * 60 seconds * 64 calls per second). This is only
for a single match. Due to such an insane amount of data,
it is not possible to store it in a database, without wasting
multiple megabytes of space.

CS:GO, however, makes it possible for users to down-
load the demo file of a match. Demo files are the post-
recordings of a match, containing all information about
the match itself.

To process the data, we parse the demo file content. To
achieve this, CSGO Demos Manager [10] was used and
made it possible to have an in-depth view of the content
of a replay.

From the extracted demo content data, two data cate-
gories stood out:

• Directly compiled data: consisting of player and over-
all match data at the end of the match (kills, deaths,
assists, average damage per round (ADR), kill/death
ratio (KD), kills per round (kpr), enemies flashed
(ef), utility damage (damage you cause with utili-
ties, UD), aces (killing all 5 enemies), clutches (be-
ing the last player alive of your team, and killing
all enemies, winning the round), MVPs (most valu-
able player of the round), quad-kills, bullet accuracy
(how accurate one’s shooting is), first bullet accuracy
(how accurate one’s first bullet is)). This data can
be directly retrieved off the demo without having to
use any processing, thus why ”compiled”.

• Raw data: consisting of a mass of information, not
compiled and with lack of documentation. The need
to make use of such data, along with the need to
provide feedback to the users, made for such data
be manually processed and categorized into ”wrong-
doings” and ”well-doings”, based on how they af-
fected round outcome. Wrong-doings and well-doings
are further explained below.

4.2 Design Ideation
The dashboard has to have an interface that the user can
easily navigate around and find all the necessary statistics
to create a personal performance overview. To create a
final product that better approaches the needs of the user
and makes the product more suitable for its intended use
[4], we used a user-centered design.

CS:GO is composed of three elements: users, teams and
matches. Thus, the dashboard should include information
about these elements:

• User data: Data specifically oriented for the user,
such as user statistics (kills, deaths, assists, enemies
flashed, weapon spray pattern, flashes duration).

• Team data: Data oriented for the team the user has
played with.

• Overall match data: General data, providing overall
game statistics such as duration, the overall number
of kills, and player’s statistic boards (that contain
user-oriented statistics).

The dashboard will display data gathered, which during
the initial evaluation phase, proved to be the most re-
sourceful for self and team improvement. The data for

2



both the prototype and end production dashboards will
be collected from parsed demo files. The end production
dashboard will also follow the basic design principles that
the users who tested the prototype, felt most comfortable
with.

4.3 Design Specifications
This section contains the main functional requirements
and non-functional requirements planned for the dash-
board. The prototype will be based off these requirements.

The functional requirements are written below as scrum
user stories. As the dashboard focuses only on users, the
functional requirements only have users as a role.

• As a user, I want to be able to create a team, add
members to my team, remove members from my
team, so I may view statistics of the players I play
with as a group.

• As a user, I want to be able to load match statistics,
so I may look at the overall and player statistics of
that match.

• As a user, I want to be able to view the overall match
statistics, or statistics per round.

• As a user, I want to be able to be able to view the
match preview for a selected match, within the dash-
board.

• As a user, I want to view the statistics of any player
that played in a match.

The above requirements, make the initial set of functional
requirements for a player performance dashboard, as these
requirements proved to be useful for self-improvement af-
ter user evaluation. We consider these as functional re-
quirements as the analysis and display of such data should
be the primary goal of the dashboard.

The dashboard also implements a set of design choices that
have proven to make browsing and interaction easier [1]:

• Clear and intuitive user interface: users should be
able to easily and quickly find their way around the
interface, without spending more time than needed
to get accustomed to the design. Colors have a great
impact [1], especially red and green, since they rep-
resent a positive and negative action. Such colors
can be used for one to understand that green drives
more in-depth into the interface, while red, rolls the
user back.

• Clear and direct titles: titles should be self intuitive
and explanatory. The user should be able to under-
stand what a button does by reading its title; where
not possible, on-screen and easily accessible assis-
tance should be provided in the form of tool tips.
Information should be easily accessible, so that any
user can find themselves around the dashboard with-
out wasting too much time to get used to the inter-
face.

• Positive feedback on input: in case of errors, the
feedback should be helpful and understandable from
anyone, to make it possible for the dashboard to be
used by anyone, regardless of their technical back-
ground.

These non-functional requirements are derived from liter-
ature review around direct manipulation interfaces1 [11].
These design choices are recommended, but not manda-
tory for a dashboard to fulfill its performance role.

4.4 Prototype Realization
Taking the functional and non-functional requirements from
the specification section, we created the initial dashboard
prototype design using Figma [8].

4.4.1 Team Creation & Statistics
Amongst the dashboard features, included was the possi-
bility for users to create a new team, add or remove mem-
bers on this team and view overall team statistics. The
interface was meant to be direct, without redundant and
over extensive information (Pic. 4.4.1.1).

Pic. 4.4.1.1: Team Statistics Prototype Page

Following specification phase, the prototype consisted of
two statistic categories, team and players.

Team statistics consisted of:

• The overall matches statistics: Directly compiled data.
We wanted to display all the data possible to be re-
trieved from the demo file to the user, thus why these
overall statistics were shown.

• The overall wrong-doings of the team. We analyze
the match data and extract statistics that the player
may not notice in-game and that can later iden-
tify through the dashboard. For team statistics, we
group the data by rounds where this behavior is most
commonly detected. When grouping by rounds, we
identify these four primary round patterns:

– Eco-round (economy-round): When the team
buys light equipment due to lack of money [14].

– Half-buy: When the team spends only half of
the money (usually follows an eco-round [14]).

– Variation: When the AI cannot find a specific
round pattern, it will tag the wrong-doing with
”Varies”.

– Specific round numbers: When the AI detects a
specific round pattern, but not any of the above,
then it will say the exact round number (i.e.
round 3, 6, 12).

1”Direct manipulation is a human–computer interaction
style which involves continuous representation of objects
of interest and rapid, reversible, and incremental actions
and feedback” - Wikipedia.

3



The wrong-doings of a player are grouped as:

– Flashing self: When the player throws a flash
that blinds the player himself.

– Flashing allies: When the player throws a flash
that blinds their ally.

– Throwing a smoke or incendiary outside of map
bounds.

– Throwing an incendiary on top of smoke: this
causes the incendiary to not catch fire and thus,
rendered useless.

– Incendiary exploding mid-air: if an incendiary
travels for a long time, it explodes mid-air, ren-
dering it useless.

To provide some feedback on what the team does
right, we again analyzed the data and determined
a set of actions that can be considered as positive
achievements. The occurrence probability is also in-
cluded per achievement, based on the total number
of matches played as a team.

Current positive actions are:

– Saving an ally from dying: when a player saves
an ally, who is being targeted by an enemy, from
dying.

– Getting the first kill of the round, and winning
the round.

– Successfully clutching a round: when a player
is the last man standing versus one or more en-
emies and manages to win the round.

– Winning an eco-round [14] against a full-buy
[14] enemy team.

4.4.2 Match Statistics
The landing page, first displayed to the user when the
dashboard is accessed, will present the latest user matches,
in descending order by date, making it easier to access the
latest match on record.

When opening a match, the overall statistics and score-
board will be displayed. Round selection buttons will be
positioned on top, a small information box will be dis-
played on the top right and a 2D match preview will be
displayed on the bottom right (Pic. 4.4.2.1). The match
preview will display all game events [2] but from a 2D
perspective.

Pic. 4.4.2.1: Match Statistics Prototype Page

The statistics displayed in the scoreboard are general game
statistics: kills, deaths, assists, average damage per round
(ADR), kill/death ratio (K/D), kills per round (KPR),
enemies flashed (EF), utility damage (UD), clutches, aces,
MVPs, quad kills and total score.

When a round is selected, the above statistics are displayed
for all the rounds, up to the selected one, i.e. if a player
had 7 kills in the first 5 rounds, then on selecting round
5, the kill count will be 7.

4.4.3 Player Statistics
When clicking a user on the scoreboard, the user’s statis-
tics for that specific match will open. In the user statistics,
we give an overall of the match statistics and based on the
analyzed data, wrong-doings, highlights (positive actions),
and possible mistakes (Pic. 4.4.3.1).

Pic. 4.4.3.1: Player Statistics Prototype Page

When a player is constantly shooting with their weapon,
the action is called spraying (as in, spraying bullets). In
CS:GO, there is a specific pattern to follow for each weapon,
so the bullets are always directed at the target. Analyzing
the data from the demo, we were able to retrieve the direc-
tion of the bullets and portray a spray. Utilising some arti-
ficial intelligence techniques, we can compare the in-game
spray pattern with the game spray pattern and determine
accuracy. This data provides improvement feedback to the
user, as one can compare their spray pattern with what
it should actually be, and as a result, improve shooting
accuracy in matches to come.

The mistakes are the same as for team statistic mistakes
in section 7.1. However, in this case, the mistakes are
round-specific. Each mistake will be indexed by the round
it took place in. Clicking on the mistake will fast-forward
the match preview to that exact time and position of the
selected mistake taking place.

Based on the matches the dashboard will have access to,
it collects data on the most commonly used areas (hot
spots), based on processed matches. Such data consists
of the most common areas for smokes, flashes, or incen-
diary landings. If the player’s smoke, flash, or incendiary
is outside of those hot spots, then it will be considered
as a possible mistake. However, a throw outside of hot

4



spots could also be strategic, thus, why it is tagged as a
”possible” mistake. Possible mistakes are to be perceived
as warnings of possible incorrect behavior.

4.4.4 Prototype Evaluation
We conducted quantitative and qualitative user testing of
the dashboard prototype to determine the usefulness of
the functional requirement, as well as the quality of the
interface (and non-functional requirements as a result).

To test the prototype, we selected a number of people that
were playing on an averagely high level, making up the
total 14% of CS:GO players, according to TotalCSGO2.

Participants were given 1 minute to navigate the prototype
and learn as much as possible about it. Time was limited
to only 1 minute, to simulate a realistic environment. The
longer it takes a user to get used to a website, the more
chances there are for the user to leave the website [16].
Giving the user only a minute to learn and understand
the interface, gave us more feedback to work with for the
interface difficulty.

Once the 1-minute time frame ended, participants were
requested to follow a set of tasks. We measured the time
it took to complete each task, to later identify tasks which
took longer than average and adjust the interface accord-
ingly. Results are displayed in the results section of this
paper.

The tasks asked to be fulfilled were limited to all the fea-
tures of the prototype:

1. Manage the players of one of the teams.

2. Open the statistics of one of the team.

3. Return to the main page.

4. Open the last match on record, by date.

5. Open the round 1 statistics.

6. Open Player 1 statistics.

7. Open Player 1, Round 1 statistics.

8. Return to the main page (where all matches are
shown).

Once the tasks were completed, two questions about the
quality of the user interface were asked.

1. How hard did you find the tasks to execute from 1
to 10?

2. How hard did you find the interface to get used to
from 1 to 10?

We then explained the content to the participants. As
the prototype did not include all the statistics described
above, we have to manually explain it to them. After
explaining the data and statistics, both displayed and to
be displayed, we asked a few questions about the prototype
content and participant’s CS:GO experience.

1. Do you play in a semi-pro/pro level?

2. How seriously do you play CS:GO on a scale from 1
to 10?

2TotalCSGO is a site dedicated to CS:GO and that con-
tains technical and practical information about the game.

3. What is the highest rank you have achieved in CS:GO?

4. Do you play in a standard team?

5. Do you find the provided statistics useful from a scale
of 1 to 10, for self-improvement?

6. If you were to play 10 CS:GO matches, how often
would you use the dashboard?

(a) Every 1-2 (90%-100% percent of the times)

(b) Every 2-3 games (70%-80% percent of the times)

(c) Every 4-6 games (40%-60% percent of the times)

(d) Every 7-9 games (10%-30% percent of the times)

(e) Never

7. IF IN A TEAM: Would you use the dashboard for
team improvement (yes-no)

8. IF IN A TEAM: Do you find the statistics provided
useful for team improvement?

5. RESULTS
In this thesis, we aimed to discover the necessary func-
tional and non-functional requirements for the creation of
a performance dashboard, that would help players in self-
improvement. Through prototyping and testing, using a
user-centered approach, we managed to gather a set of
results, from which, we derived the functional and non-
functional requirements.

5.1 Prototype Testing Results
User testing and post-testing survey had a total of 11 par-
ticipants. Participants varied in age, being between 20 to
25. All participants were ranked in the top 14% of CS:GO
ranks. 73% of the participants played CS:GO on a serious
level, 45% was part of a team, and 18% play or had played
CS:GO on a semi and professional level.

5.1.1 Task Execution Times
From the prototype testing, we recorded an average total
task completion time of 31.68 seconds.

Slower times were initially detected in the execution of the
first task (management of the players of the team). This
was a result of bad titling of the team’s section, which
initially, was ”Teams”. This section was later re-titled to
”Team Management” and dropped action fulfillment time
by an average of 2 seconds.

Even slower times were recorded for task seven (opening
round one statistics for player one). As a result of previ-
ously being in round one, participants intuitively believed
that opening player statistics in that round would open
that player’s statistics for round one. This was later fixed
and the question changed to opening round two instead.

Task 1 2 3 4
Time 5.23s 3.24s 1.57s 3.64s

Task 5 6 7 8
Time 3.67s 3.62s 6.69s 3.97s

Table 1: Average task completion times in seconds

5.2 Non-functional Requirements
27% of the participants rated their user experience with a
1 out of 10 in terms of difficulty, with 1 being very easy
and 10 being very difficult, 54% gave a score of 2 and
19%, a score of 3. The overall user experience and task-
performing ability were considered easy by all participants.

5



The non-functional requirements, as a result of the pos-
itive feedback given about the difficulty of the interface,
remained mostly unchanged.

On-screen tips were implemented to make it easier for the
users to guide themselves through the interface, as a result
of the two tasks that took longer than expected to execute.

5.3 Functional Requirements
Asked about the personal player data, statistics displayed,
and their usefulness for self-improvement, 54.5% of the
participants, of which 18% had played on a semi or pro-
fessional level, rated with a score of 8 out of 10. 45.5% of
the participants gave a score of 9 out of 10. All partici-
pants considered the data useful for self-improvement.

45% of the participants, who were part of a team, consid-
ered the processed data displayed in the team management
section, as useful for training foundation.

Given the overall positive feedback, no changes were made
to the functional requirements listed in section 4.3 of this
paper. No additions, possible to be implemented with the
data on-hand, were recommended by the participants.

6. CONCLUSION
To conclude, a player performance dashboard does, theo-
retically, improve player performance. Insight on CS:GO
data processing possibilities was gained as a result of ex-
tracting data off a replay file. We categorized and pro-
cessed this data, splitting it into compiled data and raw
data. Using Mader’s & Eggink’s development framework,
we idealized, specified, realized and evaluated a player
performance dashboard. During ideation, we wrote the
basic requirements for a player performance dashboard.
Making use of the categorized data and literature review,
we laid down the design specifications, functional require-
ments and non-functional requirements. These require-
ments were used for the realization of the initial player
performance dashboard prototype. We conducted a qual-
itative and quantitative user testing, along with a survey,
to validate the usefulness of functional requirements and
the difficulty of the interface. Interface testing participants
were given a set of timed tasks to complete and answer a
set of questions post-testing. Tasks completed above aver-
age time, were reviewed again and changes were made to
both the non-functional requirements and interface. Af-
ter completing the tasks, participants were explained the
purpose of the dashboard, all the data processed and dis-
played. Participants were then asked to evaluate the use-
fulness of such data for self-improvement. After multi-
ple evaluations, the final functional and non-functional re-
quirements were concluded.

When deriving the functional requirements, we made sure
to make use of all the data possible to be extracted from
the match replays. The non-functional requirements, or
the design specifications, were based on the direct manip-
ulation interfaces principle, where the interface should be
direct, simple to use and intuitive.

Main research question and sub-questions were answered
as a result. Most of the participants rated the interface as
very simple to use and also saw the processed data as use-
ful for self-improvement. All of the participants saw the
potential of such a dashboard for self-improvement, given
the functional and non-functional requirements described
in this paper. This paper results are based on specific pop-
ulation and remain accurate for this specific population’s
attributes.

7. DISCUSSION
We believe that given time limitations, we were able to
achieve significant results. Functional and non-functional
requirements were initially drawn as a result of data pro-
cessing and literature review and were not meant to be
final. User testing results saw participants satisfied with
both the functional and non-functional requirements, leav-
ing them unchanged.

In comparison to other existing dashboards, that are mostly
focused on only providing overall statistics, we implement
action feedback for the user to improve on. We had quite
some data to initially extract and then process and orga-
nize.

7.1 Limitations
Due time restrictions, we were limited to a small popu-
lation size for user testing. However, a larger population
would not make a difference, for as long as the same pop-
ulation characteristics are used.

Dashboard creation was limited to a prototype, whereas
functional requirements were limited to manual data pro-
cessing possibilities. Future work, as described below,
could see the creation of an automated system for data
processing, as well as a functional dashboard.

7.2 Future Work
Different testing possibilities, practical and close-up in-
terviews, have been left for future work, due to lack of
time. Future developments could further expand the data
used in this paper, process more data and further increase
amount of feedback the user receives.

There are a few ideas that, if time allowed, we would
have desired to implement and further collect information
about.

Two continuation possibilities would be:

• Creating an actual, working, production dashboard
and running a more suitable testing method. Presen-
tation of actual, existing, and applicable data would
be more helpful than dummy data that was used in
this paper’s prototype. Testing could be done via a
field experiment: letting participants play Counter-
Strike as they would normally do and have them use
the production dashboard to learn more about their
mistakes after every gaming session. At the end of
the experiment, one would have actual practical feed-
back on whether such a dashboard improves perfor-
mance or not.

• Contacting and working with a professional team for
the creation of a production dashboard, using these
same principles and requirements, but extending to
fit the team’s needs. Working with professionals
would guarantee more functional requirements and
ideas to extend this paper. Given that most teams
have their own data analysts, one would be able to
focus more on the creation of the dashboard, instead
of the data interpretation.

This paper lays the fundamental functional and non-functional
requirements for a performance dashboard, which can then
be expanded in many different directions, on researcher’s
discretion.

8. REFERENCES
6



[1] Adream Blair-Early, M. Z. User Interface
Design Principles for Interaction Design. 2008.

[2] Alliedmods.net. Counter Strike Global Offensive:
Game Events; Wiki. June 2021.

[3] Barbara, S. Team roles and team performance: Is
there ‘really’ a link?, vol. 70. The British
Psychological Society, 1997.

[4] Chadia Abras, Diane Maloney-Krichmar,
J. P. User-Centered Design. 2004.

[5] Drenthe, R. Informal roles within two professional
Counter-Strike: Global Offensive eSport teams. PhD
thesis, May 2016.

[6] Driskell, J. E., G.-G. F. S. E. . O. What makes
a good team player? Personality and team
effectiveness., vol. 10. 2006.

[7] Edwawrds, L. What is Esports and How Does it
Work in Education?

[8] Figma. May 2021.

[9] Hedstrom, R. Making Your Team Work: How
Coaches Can Transform Groups into Teams. 2012.

[10] https://csgo-demo manager.com/. CSGO Demo
Manager - tool to parse CS:GO Demo files. June
2021.

[11] Hutchins, E. L., Hollan, J. D., and Norman,
D. A. Direct Manipulation Interfaces, vol. 1. Taylor
Francis, 1985.

[12] Khromov, N., Korotin, A., Lange, A.,
Stepanov, A., Burnaev, E., and Somov, A.
Esports Athletes and Players: A Comparative Study,
vol. 18. 2019.

[13] Liquipedia. forsaken. MAY.

[14] Lopez, J. Understanding Economy in CS:GO.
March 2020.

[15] Martin, S. Scout Reports: How to effectively scout
your opposition. June 2020.

[16] Nielsen, J. How Long Do Users Stay on Web
Pages? September 2011.

[17] Parker, G. M. What Makes a Team Effective or
Ineffective? 2008.

[18] ProGameTalk. 15 Top Games Similar To CS:GO.

[19] Rambusch, J., Jakobsson, P., and Pargman, D.
Exploring E-sports: A case study of game play in
Counter-strike, vol. 4. Digital Games Research
Association (DiGRA), 2007. [ed] B. Akira.

[20] SteamPowered. Steam FPS games listed by
popoularity. May 2021.

[21] Stepanov, A., Lange, A., Khromov, N.,
Korotin, A., Burnaev, E., and Somov, A.
Sensors and Game Synchronization for Data
Analysis in eSports, vol. 1. 2019.

[22] Thomas, L. GGPredict is looking to revolutionise
CS:GO coaching with AI. October 2020.

[23] Witkowski, E., Hutchins, B., and Carter, M.
E-Sports on the Rise? Critical Considerations on the
Growth and Erosion of Organized Digital Gaming
Competitions. IE ’13. 2013.

[24] Wynings, D. Why Don’t All Websites Have an
API? And What Can You Do About It? September
2017.

7


