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ABSTRACT

The coronavirus pandemic has forced the Dutch govern-
ment to put indoor activities to a hold. Therefore, many
people seek alternatives outdoors. Especially, natural en-
vironments such as parks have become a popular place
to visit. This left municipalities, park owners and nature
conservers to wonder whether they could get concrete in-
sight in the actual usage of the area. Based on this yet
unknown data, parties responsible for the park’s manage-
ment, would be able to optimise how an area is being
utilised. This paper evaluates a sound-based approach for
human activity recognition in nature by using a convolu-
tional neural network (CNN) with spectral image input.
The current model is able to recognise four activities with
85% accuracy: walking, running, cycling and null (envi-
ronmental noise only). Three phenomena that could affect
the perceived acoustic data were investigated: sound at-
tenuation, overlapping sounds and noise interference.
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1. INTRODUCTION

Since the emergence of COVID-19, most people seek for al-
ternative ways to spend time. Because of the government
imposed regulations, these can only be performed indi-
vidually or in a small group outdoors. Consequently, un-
organised activities, which naturally enforce inter-person
distance and maximum group size, have rapidly become
more popular[19, 28, 11, 30]. Moreover, a recent sur-
vey[29], conducted by KRO-NCRV among 158 foresters
across the Netherlands, suggests an increased amount of
visitors in natural environments. Half of the surveyees
even think that the areas reach their limits.

Although local organisations are aware of the change in
popularity, there is no concrete data on the specific us-
age of outdoor environments. Municipalities, as well as
park owners and nature conservers, are responsible for
managing their natural environments and thus came to
wonder whether their areas were optimally managed and
utilised. By having an overview of the specific usage of
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parks, statistics derived from the measured data can be
taken into account when decisions have to be made that
affect the park. Statistics such as the most popular walk-
ing route or mountain bike trail, could be of great value
to the responsible parties.

Various technologies including (infrared) camera systems[4]
and wearables[33, 12] have already shown different ap-
proaches for recognising human activities with artificial
intelligence (AI). Although many methods achieve high ac-
curacies, most of them suffer from limitations concerning
cost and privacy[20, 31]. To overcome these limitations,
the acoustic method seems promising. It does not nec-
essarily need to be positioned in line-of-sight, allowing it
to be pervasive. Additionally, it is relatively low-cost[31]
compared to other techniques. Its potential lies on as-
pects such as non-intrusiveness, unobtrusiveness and cost
efficiency[31].

This research focuses on the performance of a monophonic
(one activity recognised at a time) sound-based human
activity classifier in nature with the use of deep-learning.
Figure 1 shows a sketch of how such system would possibly
be deployed in the future. The main research question is
as follows:

How can a sound-based human activity classifier be used
to monitor the usage of outdoor environments?

The challenge for the acoustic method will lie on aspects
regarding the quality of the perceived data. The lower
the quality of sound, the harder it will be to recognise
the activity. Phenomena that possibly affect the quality
of sound include sound attenuation, overlapping sounds
and noise interference. In order to answer the main re-
search question, the following three sub-questions can be
formulated:

1. Sound attenuation: How do different distances be-
tween the system and the sound source affect the
classification accuracy?

2. Overlapping sounds: How is the accuracy of a mono-
phonic classifier affected by overlapping sounds from
the same activity?

3. Noise interference: How does environmental noise
affect the classification accuracy of the system?

First, this paper begins with the discussion of other liter-
ature related environmental sound classification (Section
2). Section 3 is about the methodology and starts off with
the prototype setup. In contrast to the possible future
deployment as illustrated in Figure 1, this prototype is
solely used for data collection, because the evaluation of
the AIl’s performance is not required to be done real-time
on the prototype itself. The collected data is used to train



a convolutional neural network (CNN) and to compose the
test sets. The evaluation of the classifier is done with the
prepared test sets from which the results should answer
the three aforementioned research sub-questions. Details
about the measurement environment are offered in Section
4. The results of the test sets are presented in Section 5.
Section 6 provides possible explanations for the results.
Finally, the findings of this research are summarised in
Section 7.

Figure 1. The system is embedded in a birdhouse unobtru-
sively observing sounds and recognising human activity

2. RELATED WORK

Wang et al.[31] performed a relevant comparative study
surrounding environmental human activity recognition. De-
spite the fact that this study focuses on indoor environ-
ments rather than outdoor environments, there is still a
lot of valuable information to acquire. As the study states,
there are numerous technologies already existing that are
able to automatically detect human presences and activi-
ties. For example, passive infrared sensors which are very
cheap, but only detect the presence of stationary people.
Also, the use of camera systems is mentioned. Despite
these systems being very accurate, they make people feel
spied upon[20]. This might even be more the case when it
is used for actual surveillance in order to detect suspicious
situations[6, 5].

Mushtaq et al.[15] and Piczak[17] used the CNN-spectrogram

approach for environmental sound classification. Their
methodology is very similar to the one in this paper. The
main difference is that the datasets they used consist of
various other types of environmental sounds relating to
nature, animals and urban noises. It is not necessarily
focused on identifying the activity a human is performing.

Another research presents an approach to accurately iden-
tify human activity based on the generated sounds of foot-
steps[32]. Even though this is very related, it only focuses
on bipedal activities such as walking and running. This
excludes the possibility of recognising cyclists.

Lastly, other studies show that human activity can be
recognised using sensor-based wearables[12]. Especially
the study making use of environmental background sounds
for this purpose seems promising[33]. However, this re-
search investigates the classification process while wear-
ing the system. In contrast, the prototype will be in-
stalled at a fixed location. It also mainly focuses on power-
consumption. This influenced the decision of the chosen
classifier model.

3. METHODOLOGY

This section will elaborate upon the methods employed
needed to conduct this research.

3.1 Setup

Ideally, recording sounds outdoors should be done in the
same way as it would for future deployment. Therefore, a
prototype was assembled mimicking the same conditions.
Figure 2 shows the prototype inside a casing. The casing
functions as a water-proof protective outer layer that pre-
vents the system from being damaged by the environment.
This will be especially useful when the system is deployed
in nature for a longer period of time.

Figure 2. A Raspberry Pi 4 connected to a powerbank

An overview of the hardware used can be found in Table
1. The ReSpeaker 2-Mics Pi HAT is a dual-microphone
expansion board for the Raspberry Pi. It is designed for
AT and voice applications, which makes it very suitable for
this research.

Table 1. Hardware overview
Hardware Task

Raspberry Pi 4 Controlling microphones
and storing recordings
Recording audio (2 chan-
nels)

Storing power
Transferring power

ReSpeaker 2-Mics Pi HAT

Powerbank
Micro USB cable

The microphones are located on top of the Pi HAT expan-
sion board. In practice, the prototype is rotated in such
a way that the microphones face downwards. Figure 3 re-
veals how the microphones are able to access the outside
of the casing by two small holes. Two straws are inserted
into these and perfectly fit around the small microphone
units on top of the expansion board. In this way, the hard-
ware is safe inside, while sounds can still be observed from
the outside.

Figure 3. Straws sticking out of the bottom of the prototype



3.2 Data Collection

Datasets created with the purpose of environmental sound
classification (ESC) exist and are used for experiments
surrounding ESC. Examples of these include the Urban-
Sound8k[21] and the ESC-50[18] dataset. However, both
do not fully cover the activity classes this research re-
quires (see the activity column in Table 3). In contrast,
the AudioSet[10] ontology contains 527 classes including
the classes needed for this research. Although this seems
perfect for this research, it should be noted that the Au-
dioSet dataset is acquired from manually labeled YouTube
video fragments. This means that the dataset has been
generated with audio fragments from other environments,
such as gameplay videos and indoor environments, as well.
Therefore, it became evident that an own dataset had
to be created, satisfying the conditions this research de-
mands.

The data must be collected in the same way as the sys-
tem will be eventually deployed. Meaning that the same
microphones must be used and that the system must be
positioned and oriented similarly while embedded in the
casing. Using the same microphones as recorded with, is
believed to improve accuracy as compared to using dif-
ferent microphones. The recording environment has been
kept consistent during the data collection. Section 4 elab-
orates on this further. An overview of the audio output
format can be seen in Table 2.

Table 2. Output format of the recordings

File type WAVE

Format 16 bit little endian
Sampling rate 44100 Hz

Channels 2

Furthermore, all of the data has been collected in a clus-

tered way. For example, the walking class has been recorded
for a couple of minutes straight, recording multiple pas-

sages in one go. Figure 4 illustrates what this looked like

in practice. The advantage of this is that all of the desired

fragments in one recording are labelled naturally. The

original column in Table 3 provides an overview of the

amount of audio fragments that were extracted from the

recordings (Section 3.3 will explain how).

Figure 4. Attached with an orange strip to the left tree,
the prototype records the walking activity.

In order to capture ground truth, a camera was positioned
in such a way that it could capture the entire path on

which the data collection was conducted. The camera
recorded audio as well, which opened the possibility of
synchronising the video recording with the audio record-
ings made on the prototype. This was achieved by simply
clapping at the start and end of an audio recording.

The mountain biking activity in Table 3 is displayed as
a separate class, but is actually merged with the cycling
class in order to increase the variation of data. As it is
not the case that everyone owns the same bicycle, four
different bikes used by four different people were involved
to make the dataset more general. The same has been done
with the other classes by involving four different people to
perform all activities.

Table 3. Composition of the dataset in terms of the amount

of samples

Activity Original | Augmented | Total

Walking 47 53 100

Running 36 64 100

Mountain biking 28 29 57

Cycling 21 22 43

Null 72 28 100

Total 205 195 400

Additional recordings have been made that function as
test sets. These test sets will be evaluated by the final
deep-learning model in order to answer the research sub-
questions. Section 3.6 will elaborate on the evaluation of
these sets.

3.3 Segmentation

Audio recordings of different activities have a different du-
ration in which they are audible. For instance, the record-
ings of walking take longer than cycling, because walking
the same distance takes longer than cycling it. Because of
this difference, all audio fragments have been segmented
into a fixed amount of seconds. A segmentation size of
4 seconds was chosen. It was thought that this length
would capture the required information that was needed,
because it proved to be sufficient for human ears to iden-
tify the activity during this short period. The number of
recordings in Table 3 represent these 4 second fragments,
not the entire event.

Audacity[23] was used to segment the raw recordings into
4 second fragments, while automatically labelling them.
As the raw recordings could not always be evenly divided
in fragments of 4 seconds, the ones shorter were omitted.
It is important to maintain the same audio length for all
fragments, because the deep-learning model (Section 3.5)
expects a specific type of shape.

3.4 Data Augmentation

The original column in Table 3 shows that the initial
dataset was quite small and imbalanced. Both of these
factors have impact on the reliability of the results, be-
cause of a modeling error called ‘overfitting’. The conse-
quence of overfitting is that the model will be too biased
for the given dataset by failing to predict in the same way
for other datasets. Imbalanced datasets typically cause
the model to have low error rates for the majority class
(the class with the most samples) and a high error rates
for the minority class (the class with the least samples)[3].
However, this is mainly true for severe imbalances (minor-
ity class < 1% of the total samples). Slight imbalances,
like in the dataset used for this research, are not particu-
larly problematic[9]. Although, this statement only holds



for big datasets. Therefore, 400 samples (Table 3) might
not be enough to ignore this imbalance.

For this purpose, a data analysis technique called data
augmentation was applied, which reduces[14, 7, 22] over-
fitting by increasing the size of the dataset, while adding
more variation to it, and removes the imbalance by adding
a set amount of augmented samples that even the total
amount for all classes. Numerous methods can be used to
achieve this. For this research, a time shift was applied
to the original dataset. Multiple audio fragments were
shifted with a random amount of time, while preserving
their labels. Table 3 reveals the total effect of this on the
dataset. The dataset was doubled (from 205 to 400 sam-
ples) and the classes were balanced to 100 samples per
class.

3.5 Classification

A CNN is a deep-learning algorithm that is typically used
for image classification[27]. Although not immediately
obvious, the CNN can also be used for sound classifica-
tion[13]. Other literature[26, 16, 2, 17, 15] demonstrate
that CNNs are able to address audio-related tasks with
high accuracies by converting audio clips to spectrogram
images.

A spectrogram is an image in which the strength or inten-
sity of different frequencies over time are represented. It
can be acquired by applying the short-time Fourier Trans-
form (STFT) on an audio clip. The spectrogram images of
this research were fed to the CNN model displayed in Fig-
ure 5. The first two layers are preprocessing layers, which
downsample the input to enable the model to train faster.
After that follow two 2D convolutional layers. Vafeiadis et
al.[25] showed that 2D CNNs outperform 1D CNNs with
sound-based spectrogram input. All of the layers were pro-
vided by the Keras[8] library. Furthermore, a batch size
of 32 was used.

Input shape: (1377, 129, 1)
Model: "sequential_4"

Layer (type) Output Shape Param #
resizing_4 (Resizing) (None, 32, 32, 1) 8
normalization_4 (Normalizati (None, 32, 32, 1) 3
conv2d_8 (Conv2D) (MNone, 38, 3@, 32) 328
conv2d_2 (Conv2D) (None, 28, 28, 64) 18496
max_pooling2d_4 (MaxPooling2 (None, 14, 14, &4) 8
dropout_8 (Dropout) (MNone, 14, 14, &4) a
flatten_4 (Flatten) (None, 12544) a
dense_8 (Dense) (None, 128) 1685768
dropout_9 (Dropout) (Mone, 128) a
dense_9 (Dense) (None, 4) 516

Total params: 1,625,895
Trainable params: 1,625,892
MNon-trainable params: 3

Figure 5. The CNN model

The model shown in Figure 5 originates from Tensorflow’s[1]
simple audio recognition implementation[24]. Their exam-
ple focuses on detecting keywords from speech. As their
CNN model was designed for audio recognition, it was
found to be suitable for this research. Their code func-
tioned as the basis for preprocessing and classifying the

data. However, modifications had still to be made to make
it work for the self-created dataset.

As the recorded audio consists of two channels (stereo),
two spectrograms were created per audio fragment. One
for the left microphone and one for the right. Basically,
this means that 800 spectrograms were created (2 times
the total amount of 400 in Table 3) and used for the
training, validation and test set. It was observed from
the dataset that both microphones were still able to cap-
ture the activity separately, while differing slightly on the
waveforms. In total, this could add more variation to the
dataset, which potentially reduces overfitting.

Dataset has been split into an 80:10:10 ratio (train, test
and validation respectively). Other ratios such as 70:15:15
and 60:20:20 have been experimented with as well. Yet for
these, higher accuracies could not be attained. For repro-
ducibility, different seeds for splitting the data were inves-
tigated. The results varied enormously depending on the
seed. Eventually, the combination of reached accuracies
by the test sets and the model’s loss and validation loss
during the training phase determined the seed continued
with.

3.6 Evaluation

Approaching the research sub-questions will be done by
evaluating additional test sets with the model. For each
research sub-question, two test sets are compared. All test
sets contain data that the CNN model is not familiar with,
because it was not included in the training and validation
set.

3.6.1 Sound Attenuation

The first research sub-question was concerned about the
impact of different distances to the microphones on the
classification accuracy. This can be examined by creat-
ing two additional test sets with different distances. The
main dataset in Table 3 consists of audio recordings made
from approximately the center of the path. While the ad-
ditional recordings include distances from the closest and
the farthest side of the path (see Figure 6 for the exact
path dimensions). The difference in accuracies should il-
luminate the impact of sound attenuation.

3.6.2  Overlapping Sounds

The main dataset consists of monophonic activity data,
which means that there are no overlapping sounds from
the same activity. To study the effect, an additional test
set that does contain overlapping sounds for all activities
is composed. For this purpose, the activities walking, run-
ning and cycling were recorded for two people as well.
There were two different pairs involved in this. The ac-
curacy returned by the test set can be compared to the
overall accuracy of the monophonic test set. In this way,
the impact of overlapping sounds will be exposed.

3.6.3 Noise Interference

The impact of environmental noise on the classification ac-
curacy can be studied by comparing two categories. One
with severe environmental noise in the background (cars,
trucks, wind) and one with almost nothing. The test sets
were composed by listening to the recordings in the dataset
and dividing them between the categories. The difference
in accuracy should inform how well the classifier performs
under the presence and absence of severe noise interfer-
ence. Additionally, it could indicate to which category the
model leans the most to.



4. MEASUREMENT ENVIRONMENT

The environment in which the data has been collected
could have a great impact on the classification results.
The type of surface or the weather conditions will have
influence on how sounds will be generated and perceived.

All of the data has been recorded on one day under the
same circumstances. It could therefore be very possible
that the system’s accuracy will decrease under different
circumstances. For example, as all of the data has been
recorded on a sunny day, a rainy day will yield different
data. Consequently, making it harder for the CNN to
make a correct prediction. An overview of the metadata
stored can be seen in Table 4.

Table 4. Metadata

Date 1st of June 2021
Ground type Dirt/Gravel
Orientation Microphones facing downwards

Location University of Twente campus
GPS coordinates | 52.241634, 6.857067
Obtrusions None

Weather Sunny, no clouds

Wind Little to nothing

The system was installed at a height of 3 metres. The
reason for this is that during the eventual deployment,
it prevents people from touching and possibly sabotaging
the system. The tree on which the prototype had been
attached is located 1.30 metre from the path. The width
of the path is 2.50 metres. A sketch of the dimensions can
be seen in Figure 6.

3.00m

1.30m 2.50 m

& >¢ S

Figure 6. A side view displaying the dimensions of the
measurement environment

The path on which the recordings have been made, lo-
cates at the University of Twente’s campus (see Table 4
for GPS coordinates). Unfortunately, a lot of additional
urban noise coming from cars and trucks has been ob-
served in the dataset. This is because of a road block
nearby, which caused all the traffic to use the road close
to the recording spot. As for the type of surface the data
was generated on, it was mostly dirt with a slight gravel
texture. This is fortunate, because the additional gravel
texture allows someone passing by to be standing out more
clearly in the audio recording than for example a path
made of concrete.

Very rarely, the recordings were disturbed by wind. The
activity was inaudible during these events and was there-
fore omitted from the dataset. However, when the activity
was actually audible during the severe interference of wind,
it was included nevertheless. This would increase the vari-
ety of data. A continuous element of the background noise

was the sound of singing birds. It would be very possible
that the model behaves differently without the same con-
tinuous background noise. The recordings were taken at
the 1st of June with many actively singing birds. This will
probably not be the case in December.

5. RESULTS

The results that followed from the various test sets dis-
cussed in Section 3.6 will answer the formulated research
sub-questions in Section 1. How do sound attenuation,
overlapping sounds and environmental noise affect the clas-
sification accuracy?

Firstly, the overall test set returned an accuracy of 85%.
Generally speaking for all test sets, walking and running
scored the worst, while cycling and null scored the best.
The corresponding confusion matrix of the overall test set
is provided in Appendix A.1. Table 5 provides an overview
of the prediction accuracy per activity for all sets.

Secondly, the close and far test sets concerned about the
difference in distance returned a poor 17% and 47% accu-
racy respectively. The latter test set performed relatively
better with a 30% difference, but the difference is still sig-
nificant compared to walking of the overall test set (70%).
The close test set predicted rumning instead of walking
50% of the times. For the far test set, the wrong pre-
dictions were equally spread over running (17%), cycling
(17%) and null (20%). The confusion matrices are dis-
played in Appendix A.2.

Next, the test set containing overlapping sounds returned
a 70% accuracy. Compared to the overall test set con-
taining non-overlapping sounds, this is 15% less. Roughly
speaking, the test set returned similar results as the over-
all test set. Except for the walking activity, which was
misclassified for running 67% of the times. The confusion
matrix is located in Appendix A.3.

Table 5. Summary of the resulting accuracies

Test Null | Walking | Running | Cycling | Average
set

Overall| 100% 70% 80% 90% 85%
Close - 17% - - 17%
Far - 47% - - 47%
Over- | 80% 27% 73% 100% 70%
lapping

Normal| 87% 47™% 53% 93% 70%
Noisy | 80% 67% 67% 93% 7%

Lastly, the test sets with and without severe environmen-
tal noise returned a 77% and 70% accuracy respectively.
The test set with environmental noise performed 7% bet-
ter. Especially, the walking and running activities seemed
mostly affected for both sets. For the normal test set, this
was even worse. Their confusion matrices can be found in
Appendix A.4.

The aforementioned accuracies are the result of combined
predictions. One prediction comes from the left micro-
phone channel, the other one from the right. The ex-
periments showed that the combined predictions achieved
higher accuracies than when judged separately (i.e. classi-
fication per audio channel). A difference that reached up
to 9% in accuracy was observed.

Figure 7 illustrates the model’s loss (blue line) and vali-
dation loss (orange line). A callback function was set to
stop the training phase once no improvements were de-
tected for 2 epochs (also called patience). As Figure 7



displays, the training stopped at 5 epochs, meaning the
function was triggered at that time. Signs of overfitting
were observed when the model was trained for more iter-
ations (25 epochs) without the callback function. In this
case, the validation loss continued to increase, while the
model’s loss did the opposite.

12 — loss
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Figure 7. Epochs on the x-axis and loss values on the y-axis

6. DISCUSSION

The overall accuracy of 85% was higher than expected. In
earlier stages of experimenting, it became clear that the
dataset was too small due to low accuracies. After the
data augmentation, these numbers increased substantially
along with better (validation) loss values. This reduced
the observed overfitting as well.

However, the model might still be slightly overfitted, be-
cause the dataset is still quite small, despite the data aug-
mentation, and too specific. Figure 7 shows a gap between
the two curves at the fifth epoch. This indicates that the
current model has learned relationships that did not apply
to the validation set. Consequently, the current model is
probably more likely to perform worse on other test sets.

As is the case for all test sets, walking performs the worst
(refer to Table 5). This could be explained by the fact
that walking does not stand out in the dataset as much as
the other activities. It is the slowest type of movement,
meaning that less information of the movement itself can
be captured in a 4 second audio fragment, and it generates
the softest sounds, meaning that the environmental noise
is relatively more dominant.

The bipedal gait cycle occurs for both walking and run-
ning. Both activities are a movements by foot. The only
difference is the length of their cycles. Because these activ-
ities resemble each other the most, compared to other ac-
tivities, this could explain why walking and running scored
the worst. Furthermore, running performed better than
walking, because it is less affected by the aforementioned
factors. The movement is faster, so relatively more activ-
ity data is captured, and the generated sounds are louder,
because of a greater impact with the surface.

The remaining two activities null and cycling performed
best. These activities greatly differ from the others and
each other. The cycling activity creates a very continuous
grinding type of sound, because the wheels are in constant
contact with the ground unlike walking and running. The
null activity is actually present in all of the other activi-
ties, but still seemed easily distinguishable because it lacks
any additional type of activity sound.

6.1 Sound Attenuation

The close and far test set yielded very poor accuracies.
Especially the close test set, which unexpectedly returned

a 17% accuracy and misclassified 50% of the files as run-
ning. Observations showed that the files in the close test
set are generally louder than the ones in the far test set.
Intuitively, one could think that the closer the recordings
are taken, the clearer the recordings are and therefore the
easier the classification is. However, this seems not to be
the case.

A possible explanation why walking is confused so much
with running can be reasoned with the following. As men-
tioned before, the difference between walking and running,
besides a difference in movement speed, is that running
generates louder sounds than walking. If one of these dis-
tinguishable aspects disappears (i.e. the difference in vol-
ume disappears), then it would be more difficult for the
classifier to distinguish the two.

However, this theory only holds for the close test set. In a
way, the close test set resembled the running activity the
most. The same does not apply for the far test set, be-
cause the volume levels do not match the running activity
like for the close test set. This possibly explains why the
wrong predictions were equally spread over the incorrect
classes. When the classifier incorrectly predicts, there is
no class particularly close to it. In this case, the classifier
seems not as convinced as for the close test set.

Lastly, both test sets only contained the walking activ-
ity. It can therefore not be concluded whether far record-
ings perform better than close recordings, because running
and cycling might have returned totally different results.
Though, what can be said is that both sets were severely
affected by the change in distance for the walking activity.
Especially if it is compared to the walking accuracy (70%)
of the overall test set.

6.2 Overlapping Sounds

An average accuracy of 70% for the overlapping test set is
quite adequate, considering that the model has not been
trained with overlapping sounds. However, looking at the
accuracies per activity, the walking activity stands out the
most with a poor 27% accuracy. In 67% of the cases,
walking was confused with running. A possible reason for
this, could be that the sound of multiple people walking at
the same time really resembles the running activity. The
model perceives multiple footsteps in a short period of
time, which from the model’s point of view would indicate
a faster bipedal movement like running.

Moreover, the other activities did not really seem affected
by multiple people performing the same activity. They
roughly returned the same accuracies as the overall test
set. This can be explained by observing that the over-
lapping sound fragments of running and cycling did not
really deviate from their single person activity recordings.
Two people cycling still creates the same grinding type of
sound as with one person cycling.

The null class was included in the test set to be able to
compare it to the overall test set such that they have the
same compositions. However, there is no such thing as
overlapping environmental noise. So, assuming that the
null class remained consistent for both the overall and
overlapping test set, it could be argued that the accuracy
is actually 75% instead of 70%. That is, when the accuracy
for null is 100% instead of 80%, just like for the overall
test set to which it is compared. Nevertheless, this does
not change anything for the discussion held in this sub-
section.



6.3 Noise Interference

Unexpectedly, the noisy test set performed better (77%)
than the one with barely any noise (70%). Intuitively, it
could be reasoned that the important audio information
would be masked by the noise and therefore reduce the
classification accuracy. Apparently, the features extracted
by the model are not heavily affected by this. Observations
from various spectrograms revealed that most of the envi-
ronmental noise lays in the lower frequency ranges (bot-
tom of the spectrogram), while the actual activities are
mostly represented in higher frequency ranges. This could
suggest that the environmental noise does not interfere as
much with the relevant range in the spectrogram as ini-
tially thought of.

As was the case with the previously discussed test sets, null
and cycling do not seem affected. The presence and ab-
sence of severe noise interference is noticeable when looked
at the walking and running activities. A theory could be
that the training, validation and/or test set for the classi-
fier might have been biased towards noisy data. After all,
the data for these sets was divided without any regard for
‘noisyness’. If more noisy data was present in the train-
ing set, then chances are higher that such imbalance has
caused the model to perform better for these.

7. CONCLUSIONS

The prototype demonstrated that a sound-based human
activity recognition approach for monitoring the usage of
outdoor environments can be promising. It cannot be con-
cluded whether this approach would work under different
conditions than specified in this research. An overall pre-
diction accuracy of 85% was achieved with the monophonic
CNN-spectrogram model for four classes (null, walking,
running and cycling). The activities walking and running
were the most difficult to recognise for all test sets.

A difference in distance severely affected the classifica-
tion accuracy for the walking activity. For the test set
recorded more closely to the prototype, this was an un-
expected 17%, and for the test set recorded farther away,
this was a poor 47%. The closer test set misclassified 50%
of the cases as running. Compared to the overall accuracy
of walking (70%), these are massive drops.

Overlapping sounds were not found to be extremely prob-
lematic except for walking. Overall, the overlapping sounds
test set scored a 70% in accuracy. Again, walking per-
formed poorly with 27% and proved to be troublesome by
being mislabeled as running 67% of the times. The rest
of the activities scored similar to the overall test set.

Environmental noise did not seem to interfere with the
classification accuracy in a negative way. The experiments
showed that the test set containing noisy data scored bet-
ter (77%) than the test set without (70%). The difference
between both sets was that walking and running dropped
in accuracy for the test set without severe noise.

Lastly, further work is still required to increase the reli-
ability of the results by expanding the dataset both with
the amount and variation. Moreover, it should be veri-
fied whether different distances for other activities besides
walking affect the classification accuracy as well. Addi-
tionally, it should be investigated whether the dataset was
biased towards noisy data, which would validate the re-
sults for noise interference. Finally, the influence of differ-
ent segmentation lengths could be explored by examining
the differences in the results.
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A.3 Overlapping Sounds
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Figure 11. Confusion matrix of the overlapping sounds test
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A.4 Noise Interference
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Figure 13. Confusion matrix of the noisy test set



