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ABSTRACT
There is a growing need for methods that can help to ex-
plain machine learning models. Feature importance anal-
ysis is often used to determine the relationship between a
feature and the target of the model. However, this analysis
does not take into account the dependencies between fea-
tures. This research defines three model-agnostic methods
to visualize feature importance dependencies. The defined
methods are evaluated using synthetic data. The proposed
methods are a feature importance dependency bar chart,
holding out on correlation pie-charts, and a feature im-
portance dependency tree. All three methods were able to
effectively visualize feature importance dependencies when
the number of features was six or lower. When the number
of features was eight, the tree method became less effec-
tive. However, we conclude that all three methods were
able to visualize feature importance dependencies. So, the
contribution of this paper is that we define and evaluate
three approaches to visualize feature importance depen-
dencies, which can help us in showing how dependencies
affect feature importances, in order to improve the ex-
plainability of machine learning.

Keywords
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1. INTRODUCTION
Today, machine learning is being used everywhere to make
predictions and aid in decision-making in various indus-
tries. Recommendations of a machine learning algorithm
can be critical in making decisions and so, inaccurate pre-
dictions can have detrimental effects. Hence, complex ma-
chine learning models are being adopted to increase accu-
racy. The increase in accuracy often comes at the cost
of interpretability, because the complexity of the model
causes it to be more like a black box. This makes it hard
to interpret the results and to reason why the model gives
a certain outcome. Hence, the call for explainable machine
learning has grown.

To have a better understanding of the relation between a
feature and the target of a machine learning model, fea-
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ture importance analysis is often performed. This analysis
aims to lead to a score for each feature as to how important
they are for the predictions of the model. The importance
of a feature can, as originally described by Breiman[1],
be determined by randomly permuting the value of the
feature to see what the effect is on the accuracy of the
model. Although the method is based on random forest
[1], and has different variations that are specific for ran-
dom forests[8], the simple concept allows the method to be
applied to basically any machine learning model. It has
for example been used to estimate feature importance for
deep learning models [2], logistic regression and support-
vector machines [3]. Another often-used approach is the
hold-out method: instead of permuting it, the value is
completely withheld. However, these methods do not take
into account the dependencies between features. If two
features are highly correlated, permuting or holding out
one of the two features will not necessarily decrease the
performance of the model, because the other feature has a
similar predictive value. However, this does not mean that
the feature is not important, it could simply be as impor-
tant as the related feature. The contribution of this paper
is that we define and evaluate three methods for visualiz-
ing feature importance dependencies, which can help us in
showing how dependencies affect feature importances, in
order to improve the explainability of machine learning.

2. PROBLEM STATEMENT
Feature importance analysis is often used to determine the
feature importances of machine learning models. However,
this analysis does not directly take into account dependen-
cies between the features. So, an associated effective visu-
alization is desirable, such that feature importance anal-
ysis becomes less misleading in order to improve decision
making.

So this problem leads to the following research question:

How can we visualize feature dependencies when perform-
ing feature importance analysis for the purpose of improv-
ing the explainability of machine learning models?

The following sub-questions will be used to answer the
main research question:

SQ1: What are possible methods for visualizing feature
importance dependencies?

SQ2: Which of the visualizations defined for SQ1 are the
most effective in visualizing feature importance dependen-
cies?

3. RELATED WORK
Here we will go through some related work in feature im-
portance analysis, interpretable machine learning, and vi-
sualization of feature dependencies.
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In 2008 Xu et al. [10] developed an approach where they
decoupled correlated and uncorrelated contributions of a
feature to the output of a linear model. Later Xu [9] pro-
posed a more general method that can be applied to var-
ious different models where the dependence between the
features also does not have to be linear. Feature impor-
tance measures based on this decoupling are also recom-
mended by Wei et al. [8] when dealing with correlated
input features.

Ribeiro et al. [7] defined the Local Interpretable Model-
Agnostic Explanations (LIME) algorithm. LIME aims to
explain the predictions of any machine learning model.
So, for a given prediction, it shows how much a certain
feature contributed to that prediction. It tries to achieve
this by approximating the neighborhood of the feature val-
ues of a certain prediction with an interpretable model,
for example, a linear model. They also defined a proce-
dure that picks individual predictions that will cover most
of the different explanations that LIME produces. This
method looks at the interpretability of individual predic-
tions, rather than the importance of certain features for
the model predictions as a whole.

Furthermore, there are tools that have been developed to
observe relationships between features. Nason et al. [5]
proposed CARTscans as a tool to visualize complex mod-
els. It builds on the concepts of CT scans and aims to
display the relationships between features. It can visual-
ize up to four dimensions. So in order to determine which
features to visualize, they actually perform permutation
importance[1] and pick the most important features ac-
cording to that measure.

There are algorithms that try to select features to reduce
the number of needed features while keeping the accuracy
of a model high. Some examples are [4][6]. However, these
algorithms are more aimed towards removing redundant
variables while keeping accuracy high and do not neces-
sarily care about the relations between features and what
effect those dependencies have.

4. VISUALIZATION METHODS
In this section, we propose three methods for visualizing
feature importance dependencies.

4.1 Importance dependency bar-chart
This method is a bar-chart that, for every feature, aims
to visualize how the importance of that feature changes
when the other features are excluded. For every feature,
the feature importance is determined if one of the other
features is excluded from training. This is repeated for ev-
ery feature. An example of a resulting visualization with
five features could look like the chart in figure 1. An obvi-
ous drawback of this method is the fact that it only takes
into account dependencies between two features at a time.
However, the number of possible combinations of features
to be excluded keeps growing when the amount of features
grows, so excluding combinations of features becomes too
complex.

4.2 Holding out on correlation pie-charts
For this visualization method, we first calculate the ini-
tial feature importances. These importance scores are dis-
played in the initial pie-chart that becomes the central top
pie-chart. The correlation coefficients are then calculated
between all features. For the two features with the high-
est correlation coefficient, we repeat the calculation of the
feature importances when these two features are excluded
both individually and as a pair. For the individual ex-

Figure 1: Visualization of the concept of the importance
dependency bar-chart. Initial is the feature importance
measured when no feature is excluded. For all other en-
tries the feature mentioned in the legend is the one that
is excluded.

clusion, the calculated scores are displayed as a pie-chart
underneath and to the left and right of the central top pie-
chart. For the exclusion as a pair, the scores are displayed
centrally and below the top pie chart. For this new central
pie chart, the two features with the highest correlation co-
efficients are determined again and the previous steps are
repeated until there are no features left. An example of
what this can look like is depicted in figure 2. The top pie
chart displays the importance scores of all features when
none is excluded. The correlation coefficient of all features
is determined and A and B have the highest coefficient.
Then three pie charts are created underneath the top one.
For the left one, A is excluded and the importance scores
are recalculated. For the right one, B is excluded and the
importance scores are recalculated. For the middle one,
both A and B are excluded and the importance scores are
recalculated. For the features that are left for the middle
pie-chart, C and D have the highest correlation coefficient
and are thus excluded in the pie-charts that are created
underneath.

4.3 Feature importance dependency tree
One of the visualization methods that we propose, is that
of a feature importance dependency tree. The tree is built
up as follows:

• The root node of the tree is the most important fea-
ture according to regular feature permutation impor-
tance.

• For all other nodes that branch off to the left from
its parent, it holds that the node will be the most
important feature excluding all of the nodes that are
above it in the tree.

• For all other nodes that branch off to the right from
its parent, it holds that the node will be the most
important feature excluding all of the nodes that are
above it in the tree while those nodes are in fact in
the training set.

One example of what this can look like for a tree with 4
features, is shown in figure 3. In this example, we assume
that feature A is the most important feature and A and
B are highly dependent. This means that if feature A is
present in training, feature B does not have a high pre-
dictive value and so the first green node coming from the
root node is another feature than B. However, if feature A
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Figure 2: Pie charts visualization of feature importances
for different subsets of features. The top pie-chart displays
feature importance scores if no feature is excluded. For
each central pie-chart, the two features with the highest
correlation coefficient are excluded both individually and
as a a pair for the pie-charts that come underneath it. The
exclusion is individual for the right and left one and paired
for the central one.
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Figure 3: Visual example of feature importance tree con-
cept. The grey root node is the most important feature
according to initial feature importance analysis. A yellow
node is the most important feature if all nodes above it are
excluded completely. A green node is the most important
feature if all nodes above it are excluded although those
are present during training.

is not present at all, node B has a higher predictive value
and hence it will be the most important feature when A
is excluded completely. And so it is the first yellow node
branched off from the root node. A thing to note is that
the area that only contains the root node and green nodes,
as shown with a dashed area in figure 3, is in fact the im-
portance order that would be the result of regular feature
importance analysis. This is because for all of these nodes
they are the most important feature if the other nodes are
excluded while those are present in training.

5. EVALUATION OF VISUALIZATIONS
The goal of the visualizations is to add the dimension of
dependencies to feature importance analysis in order to
display the effect that these dependencies have on the fea-
ture importances. With this evaluation, we aim to de-
termine how efficient and effective the proposed visualiza-
tion methods are in achieving this goal. The visualization
methods are evaluated based on four questions. We will
go over these questions below.

Q1: To what extent can we determine the order of feature
importance if no feature is excluded?

With this question, we aim to determine whether the visu-
alizations show the order of feature importances that con-
ventional feature importance analysis would return. This
allows us to compare that order to orders that are shown
when certain features are excluded, which is essential if
we want to determine the effect of dependencies on the
importance orders.

Q2: To what extent can we determine the feature impor-
tance scores of all features if no feature is excluded?

This question provides us with information that is sup-
plementary to the importance order of Q1. It shows how
large differences in importance there are between the fea-
tures. This is important since it allows us to see how much
the importance scores change when features are excluded.

Q3: How many alternative orders of feature importance
can be observed (compared to the order if no feature is
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excluded)?

The purpose of this question is to determine whether the
three methods differ in the number of importance orders
that they display. This could be an indication of how much
information the methods are able to display.

Q4: How well can we determine which features are highly
dependent?

With this question, we aim to compare how well we are
able to extract information about dependencies from the
different visualization methods.

These questions are evaluated on synthetic data. This syn-
thetic data will consist of artificially generated importance
scores and correlation coefficients. There are several pros
to generating feature importances and correlations. First
of all, we can evaluate how our methods perform in differ-
ent situations because we can control input variables that
determine what is generated. For example, we can gener-
ate the values such that there are no correlations so that we
can see how this is visualized with our methods. Secondly,
we do not have to (re)train machine learning models. This
makes it easy to generate many visualizations in a short
amount of time because the required computing power is
lower.

An obvious con of these artificial methods is that depen-
dencies between features in real data sets can be more
subtle and complex. And so the visualization methods
may be less effective for those data sets compared to our
generated values.

5.1 Methods for evaluation
5.1.1 Generating visualizations

The approach for generating the visualization is as follows:

• N is the set of features

• IA is the importance score of feature A, I is a random
number between 0.00 - 0.50 for each feature.

• P is the number of distinct feature pairs, P = N(N−
1)/2

• CCab is the correlation coefficient between feature A
and B

• X is the number of feature pairs with a high CC
randomly generated between 0.80 - 1.00

• P −X is the number of feature pairs with a low CC
randomly generated between 0.00 - 0.20

• If at any point a feature D is dropped for every fea-
ture F out of N −D, IF = IF + CCFD ∗ ID

• The size of N is varied between 4 and 8

• X is varied between 0 and P, with steps of 1

• For each combination of the size of N and X, 10 vi-
sualizations are generated.

.

This approach for generating visualizations is obviously
a simplified concept of how feature dependencies impact
feature importances, but this gives us the opportunity to
evaluate our methods in a controlled setting. The combi-
nations of size N and P that we use as described above
can also be seen in table 1.

Table 1: Combinations of number of features and number
of highly correlated pairs of features that are used for the
generation of visualizations.

no. features no. highly correlated feature pairs
4 0 - 6
5 0 - 10
6 0 - 15
7 0 - 21
8 0 - 28

5.1.2 Method for evaluating Q1/Q2
To evaluate Q1 and Q2, we randomly pick visualizations
from the pool of visualizations from each number of fea-
tures. Then we check if the defined questions Q1 and Q2
can be answered. This is done qualitatively for 5 visual-
izations of each feature size, since determining the original
feature importance order and the score is done in the same
way for each repetition and this process is not influenced
by the feature correlations.

5.1.3 Method for evaluating Q3
For Q3 we define a measure for each of the three methods
that are used to evaluate how many different orders of
importance are visualized.

For the bar charts method, the measure is defined as fol-
lows. Let Oi be the initial importance order when no
feature has been excluded yet. According to the defined
method each feature, f out of N features is removed once
from the original pool of features and the importances are
recalculated for the remaining features. This leads to an
order O−f . Then if Oi − f 6= O−f there has been a shift
in order when feature f got excluded. We then count how
many different orders there are. Note that this means that
a bar chart visualization can at most have N + 1 different
orders. One for the initial order and orders for each of the
exclusion of N features.

The following order measure has been defined for the pie-
charts method. Let us again have an initial order Oi,
which is represented by the central top pie-chart. For all
the other charts the order is compared with the closest
central pie-chart above it. So, let us say that we have a
certain chart where feature f is excluded which has an
order O−f and the closest central chart above it has got
an order Oc, then we say that there is a different order if
the order O−f 6= Oc− f .

Finally, the measure for the tree method is defined as fol-
lows. For each end node, there is a path from the root
node to that end node. For each path the order of fea-
tures is determined. The amount of different orders that
are found, is taken as the measure.

5.1.4 Method for evaluating Q4
For each feature size between 4 and 8, we at random choose
X between 0 and P (see section 5.1.1 for the definition of
X and P). For each visualization method, a visualization
that was generated in section 5.1.1 and that corresponds
to that feature size and randomly chosen X, is opened.
A timer is started and we note down which features we
think are highly correlated. The time is stopped when
we think we have noted all of them. After each run, it
is calculated how many pairs of features we have wrongly
identified as highly correlated and also how many we have
missed. However, these numbers are not shown during
the experiment. This is repeated 5 times for each size of
N and each visualization method. We use the same X for
each visualization method because this number affects how
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Figure 4: One of the visualizations that was generated
for the bar charts method with 4 features and 0 pairs of
features with a high correlation coefficient. Initial are the
importances when no feature is excluded.

easy it is to determine which features are highly correlated.
However, we shuffle the order in which they are evaluated
for each method to minimize learning from previous runs.

5.2 Results
Here, we go over the results of the artificial evaluation of
the visualization methods.

5.2.1 Results Q1 and Q2
For the bar charts method, it is straightforward to deter-
mine the feature importance if no feature is excluded. An
example of one of the visualizations that were generated
is shown in figure 4. To get the importance order when no
features are excluded we simply take the importance order
of the bars from the initial group (blue bars in figure 4).
When the amount of features increases it becomes some-
what harder to determine the order, but it still remains
straightforward. With regards to Q2, it is still possible to
get the feature importance values if no feature is excluded.
We are not able to see the exact importance scores, but it
is possible to make a precise estimation using the y-axis.

One example of a generated visualization for the pie-charts
method is shown in figure 5. The figure shows that deter-
mining the initial importance order can be done using the
top pie chart. However, we can already see that if the
amount of features increases, the number of wedges in the
pie chart will become so high that it becomes harder to
distinguish between them. The importance scores can also
be read from the charts, but this also becomes harder when
the amount of features increases.

Finally, a generated visualization for the tree method is
depicted in figure 6. The most right nodes on, each level
of the tree, together form the initial feature importance
order and so this is still visible in this method. The fea-
ture importances are also depicted for each node. As the
tree grows, it becomes more complex to fit the importance
scores in the visualization.

Overall, we see that the initial importance orders and
scores can be extracted from all three visualization meth-
ods. However, when the number of features increases, this
becomes more complex. At some point, the number of fea-
tures will be too large for them to be effectively displayed.

5.2.2 Results Q3
Figure 7 shows the results coming from the defined mea-
sures for the number of different orders for each method
with 4 and 6 features. In general, we see that first, the

Figure 5: Visualization generated for the pie-charts
method with 6 features and 0 highly dependent pairs of
features. The top pie-chart shows importances when no
feature is excluded. For the others the features depicted
above the visualizations are excluded.
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Figure 6: Example of a visualization generated for the tree method with 4 features and 0 highly dependent pairs of
features.

number of different orders increases when the number of
highly correlated features increases. This is something we
want from our visualizations because if there are no fea-
tures that highly depend on each other, excluding features
does not often change the order of importance. However,
when the fraction of highly correlated features becomes
larger than 0.5, the number of orders decreases again. This
follows from the fact that less high correlated features lead
to fewer shifts in importances and hence also fewer shifts
in order. When the fraction approaches 1, almost all of
the features will have shifts in importance which means
that their order becomes less likely to shift as well. We
also see that the number of orders increases with the num-
ber of features, which logically follows from the fact that
the amount of possible orders increases as the number of
features grows. Finally, there are no clear differences be-
tween the methods with regards to the number of different
orders.

Figure 8 shows the results coming from the defined mea-
sures for the number of different orders for each method
with 8 features. Here we see that, compared to figure 7,
there is now a difference between the tree method and
the other two methods. The tree method shows a higher
number of orders. This has to do with the way we de-
fined the measure, but also with the structure of the tree
itself. As the number of features grows, the number of
end nodes grows exponentially. Since we have defined the
number of orders as the number of different paths from the
root node to an end node, the number of possible paths
increases when there are many highly correlated features.

In general, we see that the three visualizations are simi-
lar with regard to the number of order measures that we
defined when the number of features is six or lower. At
a higher number of features, the tree method has more
different orders. So the tree method may be able to show
more information when the number of features is higher.
However, this extra information may not be that useful
and may even make it harder to interpret the visualiza-
tion.

5.3 Results Q4
Figure 9 shows the meantime that was taken to determine
which features were highly correlated for the different vi-
sualization methods. We see that the time taken in general
increases as the number of features increases. This is no
surprise since more information is displayed in the visual-
izations if there are more features. We also see that for a
lower amount of features it took more time with the tree
method, but a higher number of features this time was
similar compared to the other methods.

Figure 9: Time taken to determine which features were
highly correlated in visualizations with different amounts
of features. n = 5 with the number of highly correlated
features randomly chosen.

Finally, figure 10 shows the number of mistakes that were
made when identifying highly correlated features with the
different visualization methods. We see that, especially
when the number of features increases, most mistakes are
made with the tree method, followed by the pie-chart
method. So, even though we saw in figure 9 that the
time it took did not increase with the number of features
for the tree method, the amount of mistakes increases a
lot. So the tree method was not able to display all of the
interactions between the features or it was too complex
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Figure 7: Number of different orders found, with the defined measures, for each method for 4 features and 6 features.
Fraction highly correlated feature pairs is the amount of highly correlated feature pairs divided by the maximum possible
amount of highly correlated pairs. n=10 for the mean number of different orders.

Figure 8: Number of different orders found, with the defined measures, for each method for 8 features. Fraction highly
correlated feature pairs is the amount of highly correlated feature pairs divided by the maximum possible amount of highly
correlated pairs. n=10 for the mean number of different orders.
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of a task to identify them. For the bar and pie charts
method, not many mistakes were made. Also, missing a
highly correlated pair does not always have to be a bad
thing. If two highly correlated features have a really low
importance score, removing one of them will not heavily
increase the importance of the other feature because in our
setup the increase in importance is based on the impor-
tance of the feature that is excluded. Furthermore, we do
have to note here that in our approach the importance of
each feature is increased if a correlated feature is dropped,
even though there could be another highly correlated fea-
ture that still holds the same information. So in these
situations where interactions between features are more
complex, more mistakes would be made since the changes
in importance scores would be less apparent than in our
artificial situation.

Figure 10: Amount of mistakes made when trying to figure
out which of the features were highly correlated using the
different visualization methods. n = 5 with the number of
highly correlated features randomly chosen.

6. CONCLUSIONS
Here we have defined three different methods for visual-
izing feature importance dependencies. The first is a bar
chart method that excludes every feature once and dis-
plays what the effect is on the other features. Secondly, a
method that displays feature importances in pie charts and
decides which features to exclude first based on the correla-
tion coefficients between features. Thirdly, a method that
constructs a tree where the root node is the most impor-
tant feature without exclusion. Each node that branches
off to the right shows the most important feature if the fea-
tures above it are excluded and each node that branches
off to the left shows the most important feature if all fea-
tures above it are also excluded from training.

For a number of features ranging from four to six, these
three methods were able to effectively visualize the impor-
tance order and scores that one would get from performing
feature importance analysis if no feature is excluded. For a
higher number of features, the visualizations may become
too crowded, and/or the size of the visualization would
become so large that it becomes impractical to effectively
analyze the visualizations.

The three visualizations showed a higher number of impor-
tance orders when the fraction of highly correlated features
increased from 0 until 0.5 and decreased again from 0.5 to
1. This shows that visualizations are able to display de-
pendencies in relation to feature importance. When the
number of features was eight, the tree method displays
more feature orders than the other methods. However, for
this tree method, it is harder to identify which features
are dependent based on these different feature orders that

are displayed by the method.

To conclude, at a number of features of six and below, all
three visualization methods were able to effectively display
feature importance dependencies in our artificial setup.
When the number of features was eight, the tree method
was not effective for determining which features were de-
pendent by looking at the changes in feature importance
orders and scores. The bar- and pie-chart methods were
similar in effectiveness according to our evaluation, but
we would argue that the pie-charts method may be able
to display more information since, in contrast to the bar
chart method, it displays cases where multiple features are
excluded at the same time. So, the visualizations are able
to show feature importance dependencies in an artificial
setting, and hence can be an effective associated visual-
ization for feature importance analysis, which can help us
in showing how dependencies affect feature importances.

7. FUTURE WORK
The visualizations have only been evaluated on synthetic
data, so we want to also evaluate them on real data sets to
see how effective they are there. Furthermore, we took a
naive approach when increasing feature importances when
removing a correlated feature. We want to evaluate how
effective the visualizations would be if we take into ac-
count all interactions between other features if we remove
a feature. For example, if three features are highly corre-
lated, excluding one of them would lead to less increase in
importance for the other two features than if only two fea-
tures are highly correlated. Also, we want to investigate
how we can improve the visualization methods so that they
are easy to analyze when the feature size increases further.
Finally, we would like to evaluate another variant of the
tree method. In this variant, a certain node would not be
the most important if all features above it are excluded.
Instead, it would be the most important feature if all fea-
tures above it that branched off to the same side as their
parent, are excluded.
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