
Creating a solver for Kwirk (Puzzle Boy)
Ellen Wittingen

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
e.m.wittingen@student.utwente.nl

ABSTRACT
Kwirk, or Puzzle Boy in Japan, is a video game contain-
ing a planning problem where characters need to be moved
to the exit through a room with obstacles such as blocks,
turnstiles, and holes in the floor. At the time of writing,
only one Kwirk solver exists which makes use of exter-
nal memory, which might be slow and not very memory-
efficient. Therefore, the aim of this study is to investigate
whether an algorithmic solver can be created which does
not require external memory. Further objectives are to
find out what features make a Kwirk solver more efficient
and find the shortest solutions. For this investigation mul-
tiple solvers were explored. 16 out of 30 puzzles from the
game-mode Going up? could be solved. Most solvers ran
out of memory on the remaining puzzles. The shortest so-
lutions out of all solvers were found by a simple A* solver
and a multi-layered A* solver that only generates sub-
goals for holes. None of the solvers stood out with regards
to solving a puzzle most efficiently.

Keywords
Kwirk, Puzzle Boy, solver, planning problem, puzzle, sub-
goals, multi-layered

1. INTRODUCTION
Planning problems are problems for which a sequence of
tasks needs to be determined to accomplish a certain goal
[11]. The video game Kwirk, or Puzzle Boy in Japan, is
such a problem. It is a puzzle game from 1989 by Atlus
Co., Ltd. for the Game Boy. Each puzzle represents a
maze containing one or more characters, obstacles, and
an exit, where the goal is to navigate all characters to
the exit. Only one character can be controlled at a time,
but the player can switch between them. The obstacles
consist of walls, blocks, turnstiles, and holes in the floor.
Walls cannot be interacted with and nothing can penetrate
them. Blocks vary in shape and can be pushed by char-
acters if the space behind the block is empty or a hole.
When a block is pushed into a hole, that section of the
hole is turned into normal floor tiles and the block dis-
appears. Turnstiles have one to four arms attached to a
central pivot. When one of the arms is pushed the turn-
stile turns 90 degrees in the direction it is being pushed in.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

However, this is not possible when an obstacle or character
is blocking an arm from turning. [15, 16]

At the time of writing, no published research could be
found on solving Kwirk puzzles. There does exist a Kwirk
solver by Vladimir Panteleev which uses external memory
to manage its large state-space [13]. This technique might
not be very memory-efficient, as the use of external mem-
ory is required. It might be slow as well, if it explores such
a large state-space.

This raises the following questions: Can Kwirk puzzles be
solved algorithmically without using external memory? If
this is the case, what is the most efficient method to solve
Kwirk puzzles? And what kind of solvers can find the
shortest solutions?

To answer these questions, this paper discusses the fol-
lowing: First, the modelling of the puzzles and the inner
workings of various solvers are described. After that, ex-
periments on the solvers are discussed and the results are
analysed. Lastly, some possible improvements upon the
solvers are described.

2. REQUIREMENTS
A valid solver should conform to the following require-
ments: If a puzzle is solvable, the solver should return a
sequence of tasks (e.g. pushing a block or the arm of a
turnstile) that results in all characters reaching the exit.
The returned solution should not violate any of the rules
of Kwirk. Furthermore, for each character-obstacle inter-
action, the character should be able to reach the obstacle
from its current position without any other interactions
with obstacles. Lastly, if a puzzle is not solvable, the solver
should inform the user of that.

3. EXISTING SOLUTIONS
At the time of writing, no published research could be
found on solving Kwirk puzzles. However, there does ex-
ist a solver by Vladimir Panteleev [13]. This solver uses a
technique called External Memory Delayed Duplicate De-
tection, which temporarily stores part of the state-space
in external memory. When new states are added, it is not
immediately checked whether the state is a duplicate. In-
stead, an entire set of new states is checked for duplicates
at a later time, as that is more efficient when the external
memory is slow [4].

Requiring external memory to manage the large state-
space might be a sign that the solver in [13] is not very
memory-efficient. Solving the puzzles might be slow as
well, if such a large state-space is explored. However, due
to time constraints it was not possible to confirm these
inferences. In any case, there might be a more memory-
efficient or faster method to solve Kwirk puzzles, or at
least a method that does not require external memory.

1



4. ARCHITECTURE
A game related to Kwirk is Sokoban, where the goal is
to push several blocks to marked positions in a maze [10].
In both games blocks can be pushed around so some ideas
from Sokoban solvers have been incorporated into the Kwirk
solver. However, there are also differences between Sokoban
and Kwirk. The most notable difference is that in Sokoban
blocks must be moved to goal positions instead of charac-
ters. Another difference is that Sokoban puzzles always
have one character, whereas Kwirk puzzles can contain
more than one. Furthermore, Kwirk puzzles additionally
contain turnstiles and holes. Finally, in Sokoban all blocks
take up exactly one tile whereas in Kwirk the sizes vary.
All these differences mean that solving Kwirk is still quite
different from Sokoban. Because Kwirk puzzles involve
more kinds of obstacles and possibly multiple characters,
it can arguably be more complicated to solve them.

In this section the model used to represent Kwirk puzzles
and two kinds of solvers are discussed. The entire archi-
tecture was implemented in Java 11.

4.1 Model
A model of the Kwirk puzzles is required to solve them,
which will be described in next few sub-sections.

4.1.1 State representation
Each state represents the current configuration of the maze.
In a state the positions each obstacle occupies and what
positions each character can reach are stored. A position
is considered reachable if it is not occupied by any obstacle
and the character can walk to it without interacting with
any obstacles along the way.

Two states are considered different if the occupied po-
sitions of at least one of the obstacles differs, or if one
of the sets of reachable positions is different. These sets
of reachable positions are not linked to the characters it-
self when comparing states, so if two characters swapped
places and nothing else changed, it is considered the same
state. This is possible because every character has the
exact same abilities and goal. This state equality should
reduce the number of states generated.

4.1.2 State-transitions
When generating state-transitions, the Sokoban solver by
Hernandez-Belmonte et al. [6] only looks at which direc-
tions each box can be pushed in. Then, for each box-
direction pair, a path from the robot to the position from
which to push the box is calculated. This avoids generat-
ing states in which only the robot is moved, but no boxes.

The generation of state-transitions for the solvers in this
study works in a similar fashion. The solvers only con-
sider in which directions each block and turnstile arm can
be pushed. An obstacle-direction pair is only considered
valid if the following holds: First of all, the new positions
that the pushed obstacle will occupy should not blocked
by some other obstacle. Secondly, at least one character
should be able to reach a position from which they can
push the obstacle. Lastly, the position the character will
occupy after pushing the obstacle should not be occupied
already.

One major difference with the Sokoban solver, is that the
solvers in this study do not calculate paths from the char-
acter to the obstacle. Instead, the set of reachable po-
sitions stored in the state is used to check whether an
obstacle is reachable. This technique most likely reduces
the number of calculations for each obstacle-direction pair.
This means that most tasks in the solution only specify

from what position which character should push which
obstacle in what direction. The solution can also contain
tasks to move a character to a different position (see Sec-
tion 4.1.3), but those do not specify a path either.

4.1.3 Multi-character puzzles
Some puzzles contain multiple characters, which can co-
operate with each other or block moves from others.

Cooperation.
Sometimes the cooperation of multiple characters is re-
quired to solve a puzzle. Figure 1 shows an example of
such a puzzle. The block at position (2,2) must be moved
north at some point to fill the hole at (1,0). This is only
possible by pushing the block to (1,2) so it can then be
pushed north from (1,3). However, after the block has
been pushed to (1,2), position (1,3) is no longer reachable.
This means that a character needs to move to (1,3) before
the block is pushed.

Figure 1: A two-character combo move. The light grey
circle is the original position of character 2 and the black
circle marked 2 is its new position.

For these situations so-called combo-pushes were imple-
mented. When a block can be pushed, such as pushing
the block at (2,2) west in Figure 1, it is checked whether
the positions perpendicular to the push direction will still
be reachable after the block is pushed (positions (1,1) and
(1,3)). The position in push direction itself (position (0,2))
is ignored, as a character there will push the block back to
its original position. If such a position is unreachable af-
ter the block’s move, it is checked whether the block could
be pushed if a character were there. If this is the case,
a new state-transition is generated where first a charac-
ter is moved to that position, then the original push is
performed, and then the block is pushed by the moved
character. This means that the block moved two posi-
tions in a single state-transition. Similar checking is done
on the new state-transition to determine whether a triple
combo-push is possible. Quadruple combo-pushes are not
calculated, as that would push the block around in a circle
back to its original position.

Characters blocking moves.
When an obstacle is pushed, it could be a case that a
character is blocking the obstacle from moving. Therefore,
each character that is blocking the push is moved to a
position they can reach before the obstacle is pushed.

There is a slight complication with this, as the chosen po-
sition can influence what the character can reach in the
future. For example, when looking at Figure 2, if a char-
acter is moved to area 1, then after the block has been
moved west, it cannot reach the 1x1 block near the south-
west corner. Whereas if the character is moved to area 3, it
could reach that block after the push. Therefore, for every
combination of characters and areas a new state-transition
is created.

2



Figure 2: Multiple areas (marked with numbers and cir-
cled with black) are created when the block is moved west.

In the puzzle in Figure 2, there are three separate areas
characters can move to before the block is pushed west.
The possible character-area combinations are: two char-
acters in area 1, two characters in area 3, one character in
area 1 and one in area 2, one character in area 1 and one
in area 3, and one character in area 2 and one in area 3.

4.2 Simple solvers
Some simple solvers were explored first. These solvers re-
peatedly explore state-transitions to new states until the
goal state is found, which is when all characters can reach
the exit. Solvers with the following search algorithms have
been investigated: Breadth First Search (BFS), Depth
First Search (DFS), A* and Fringe. These specific algo-
rithms were chosen because they are diverse in terms of
the order in which states are opened, which could help to
find out what kind of search algorithm is the best.

4.2.1 BFS and DFS
BFS opens first all the siblings of a node prior to opening
its children. DFS does the opposite, and opens all the
node’s children before opening any of its siblings.

4.2.2 A* search
A* is a best-first algorithm which always opens the node
with the lowest cost [5]. To accomplished this, the algo-
rithm keeps the nodes in its frontier sorted by cost. This
cost is calculated by the cost function in Section 4.2.4.

4.2.3 Fringe search
Fringe search [1] is a variation upon Iterative Deepening
A* (IDA*), which only opens nodes with a cost below a
certain threshold. When there are no more nodes with a
low enough cost, the threshold is raised and the search is
restarted with a completely new search tree [9].

Fringe search differentiates itself from IDA* by not
rebuilding the search tree when the search is restarted.
Björnsson, Enzenberger, Holte and Schaeffer argue that
this is an improvement upon IDA* because it causes fewer
states to be opened. The downside is that it still has to
revisit nodes and keep them in the frontier as long as they
are above the current threshold. However, the frontier
does not have to be fully sorted (which is a requirement
for A*), which saves time [1].

Fringe keeps track of two lists, the now and the later list.
The nodes in the now list are inspected during the cur-
rent iteration. If the cost of the node exceeds the current
threshold, the node is added to the end of the later list.
Otherwise, the node’s children are added to the front of
the now list. When the now list is empty, the threshold is
set to the minimum cost of the nodes in the later list and
the later list becomes the new now list.

The simple Kwirk solvers conform to the pseudo-code in
[1], and, as suggested in the paper, a single doubly-linked
list was used to represent the now and later list. The
nodes are opened in the same order as IDA*.

4.2.4 Cost function
The simple A* and Fringe solvers both use a cost func-
tion to calculate the cost of each node. This cost function,
f(n), is calculated as follows: f(n) = g(n) + h(n), where
n represents the current node, and g(n) the cost of the
path from the start-node to the current node. h(n) is a
heuristic function which returns an estimated cost of the
cheapest path from the current node to the goal. The ex-
act definitions of g(n) and h(n) are problem-dependent,
so the following were chosen for Kwirk: g(n) is simply the
number of predecessors of the current node. This makes
sure that if there are two solutions with the same h(n), the
shortest solution is chosen. h(n) is defined as follows: For
the character whose obstacle-interaction caused the tran-
sition to the current state, the set of reachable positions
are compared with those of an x number of the state’s
predecessors. The more positions that are only reachable
in the current state and not in any of the predecessors,
the lower the result of h(n) will be. This choice of h(n)
encourages characters to explore areas that they have not
visited in a while. For the solvers x = 10 was chosen, as
after some prior testing on small puzzles, it seemed the
best choice.

4.3 Multi-layer solvers
A Sokoban solver by Botea, Müller and Schaeffer [2] con-
sists of two layers: a global and a local solving layer. On
the global layer, a Sokoban puzzle is split up into rooms
and tunnels and each state-transition on this layer repre-
sents moving a box from one room or tunnel to another.
The local solving layer then tries to find a path of state-
transitions that achieves a single state-transition on the
global layer. This idea seemed promising, so two Kwirk
solvers using this technique were explored. In the next
sub-sections, the details of these solvers are explained.

4.3.1 Global layer
The global layer in the Kwirk solvers somewhat differs
from the Sokoban solver in [2]. Instead of rooms and tun-
nels, a Kwirk puzzle is split up into rooms and connectors,
where connectors are obstacles separating any two rooms.
A room is a set of positions which is closed off from other
areas because it is surrounded by a combination of walls
and obstacles. For example, in Figure 3, four rooms can
be distinguished. When an obstacle in the surrounding of
a room is also part of the surrounding of another room, it
is considered a connector, as removing the obstacle would
connect the two rooms. In the puzzle in Figure 3, there are
four connectors, the other obstacles are part of the rooms.

Figure 3: Interpreted rooms and connectors by the global
layer. The rooms are numbered and circled with black and
the connectors are lettered and circled with white.

The global layer calculates a sequence of sub-goals, using
BFS, which move a character from its start-room to the
room that holds the exit. When there are multiple char-
acters, the room of an arbitrary character is chosen as the
start-room. A sub-goal represents getting rid of a connec-
tor in such a way that a character can walk from one room

3



to the next. Each sub-goal also holds goal-positions, which
are positions in the next room. So when any of the goal-
positions are reachable, the sub-goal is considered solved.

When looking at Figure 3, there are two possible sequences:
going through hole B and turnstile D, or going through hole
A, block C and turnstile D.

A different kind of sub-goal is generated for each kind of
connector, so one sub-goal for blocks, one for turnstiles and
one for holes. After generating these, sub-goals involving
turnstiles and holes are first, recursively, split into multiple
sub-goals before the sequence is returned.

As can be seen in Figure 4, when the global layer has
determined the sub-goal sequence to solve, each sub-goal
is solved individually by the local layer. The local layer
uses the goal-state of the last sub-goal in the sequence as
its start-state. When a sub-goal cannot be solved, the
global search layer tries to find a new sub-goal sequence
and solve it. This keeps going till a sub-goal sequence is
found of which all sub-goals can be solved or when there
are no more new sub-goal sequences. If all sub-goals in
the sequence were solved it means that a solution has been
found. If not, all discovered sequences that have not been
fully explored yet are attempted again. This is required to
ensure completeness because some sub-goals can be solved
multiple ways. This means that the local solver can gen-
erate multiple goal-states for each sub-goal, which could
each be used as a start-state for the next sub-goal. The
solver finally stops when all possible ways to solve each
sub-goal sequence have been exhausted.

Figure 4: The general flow through the global and local
layer of the multi-layer solvers when solving a puzzle.

Turnstile sub-goals.
For a sub-goal for a turnstile, the turnstile needs to be
rotated to let characters reach the next room. However,
the arms of the turnstile could be blocked from turning
by other obstacles. Therefore, a sub-goal is generated for
every obstacle that is blocking the turnstile from turning in
both directions. No sub-goals are generated for obstacles
that only block the turnstile from turning in one direction,
unless the turnstile can only turn in that direction because
walls are blocking the rotation in the other direction. To
give an example, in Figure 3 the block west of turnstile D

needs to be moved out of the way before it can be rotated,
so a sub-goal is generated for it.

Hole sub-goals.
To solve a sub-goal for a hole, the hole needs be filled with
blocks in a certain order. This sub-problem seems similar
to a Sokoban puzzle, and is arguably the most complicated
part of the multi-layered solvers.

First, a sequence of blocks is calculated that can fill the
hole in such a way that a character can walk from one

room to the next. This is done by putting blocks in the
hole such that the new block touches the previous block,
or in case there is no previous block the edge of the hole.
This means that in the local solving layer the block can
be pushed over the previous blocks to the correct position.
To give an example, in the puzzle in Figure 3 there are
multiple possibilities to fill hole B. For instance, the block
in room 1 could be used, or a combination of block C and
the block in room 3.

For each chosen block a sequence of sub-goals is generated.
Each sequence contains a set of sub-goals which navigate
a character from the room bordering the hole to the room
containing the block, and one sub-goal with the goal to
move the block to the hole.

Only one sub-goal is generated to move the block to the
hole to avoid too much complexity. It can make solving
the sub-goal more difficult for the local layer. However,
this disadvantage is somewhat countered by the fact that
the same path as from the hole to the block might be
taken in reverse. In that case, some connections between
the rooms might already be open or gone, as characters
already interacted with those when traversing to the block.

When searching for a sub-goal sequence from the hole to
a block, the solver could come across another hole. Since
a block can only fill one hole, any of the blocks that are
reserved for the current hole are not considered when cal-
culating sub-goals for those holes.

4.3.2 Local layer
The local layer is quite simple as it mostly uses the same
implementation as the simple solvers. However, there are
a few additions such as only opening a limited number of
states, deadlock detection and move ordering. To guide
the local layer in solving a sub-goal, cost functions are
used. Therefore, only the A* and the Fringe solvers in
Section 4.2 could be used as a base, as BFS and DFS do
not make use of cost functions.

Cost functions.
The local layer solves three kinds of sub-goals: moving a
block out the way, rotating a turnstile out of the way, and
moving a block towards a hole (which replaces the hole-
sub-goals). For each of these sub-goals a different h(n) is
used for the cost function.

For moving a block out of the way, states which are gener-
ated by moving the target block are favoured most. Mov-
ing any obstacle further away from the goal-positions is
also favoured, as that clears space around the target block.

When the sub-goal is to rotate a turnstile out of the way,
turning the target turnstile is favoured most. If another
obstacle is pushed, obstacles closer to the target room are
favoured, as that might aid in freeing space around the
target turnstile in order to rotate it.

For moving a block towards a hole, moving the target block
towards the goal is highly favoured. For any other obstacle
interaction, the closer to the hole, the better, as that could
mean an obstacle in the front of the hole is being moved
out of the way.

Opening a limited number of states.
The first addition to the local layer is that it stops trying
to solve a sub-goal after opening x states. x depends on
the Manhattan distance between the goal-position of the
current sub-goal and the position of the character used to
transition to end-state of the last sub-goal. The further

4



the distance, the higher x will be. The position of the
character was chosen because the transition to the end-
state is always an interaction with the target obstacle of
the last sub-goal. This means that the position of the
character is somewhere near that obstacle.

When filling a hole, blocks often need to be moved through
multiple rooms to reach it, as mentioned in Section 4.3.1.
This means more states need to be visited than normal.
Therefore, when the sub-goal is to move a block to a hole,
x is multiplied by 3.

Deadlock detection.
Some basic deadlock detection is performed for sub-goals
that move a block towards a hole. If the hole is north
of the block, the block needs to be pushed northwards at
some point. This is only possible if there is no wall south
of the block or if the block cannot be moved west or east
towards such a position. Figure 5a shows a situation which
is not considered a deadlock, as the block can be moved
west to create an empty space south of the block. Figure
5b, however, is considered a deadlock state so no children
will be generated for it.

(a) No deadlock. (b) Deadlock.

Figure 5: A puzzle without and with a deadlock.

The Sokoban solvers in [2, 7, 8] also make use of deadlock
detection. A pre-computed deadlock table is used which
holds all combinations of walls and blocks in a 5x4 area
that are a known deadlock. In contrast, the Kwirk solvers
calculate whether there is a deadlock when the state is
opened, as only one kind of deadlock is detected.

Move ordering.
When generating children for a state, the children are gen-
erated in a certain order. Because the frontier is mostly
unordered in Fringe search, the first child generated is also
the first child that is opened (if its cost is below the cur-
rent threshold). Therefore, the order of the children can
have influence on how fast a solution is found with Fringe
search. So, the choice was made to implement a simple
move ordering. The first children are always generated by
state-transitions using the same obstacle as the obstacle
defined in the sub-goal it is solving. After those, all other
children are generated (without any specific ordering).

5. EXPERIMENTATION
Some experiments were performed to see what puzzles can
be solved. The solvers were tested on the 30 puzzles from
the game-mode Going up?. Each solver was given a max-
imum of 15 minutes solving time for every puzzle. The
experiments were run on an Intel® Core™ i5-8250U CPU
(at 1.60GHz). For each puzzle a new instance of Java was
started which was given 2GB RAM (at 2400MHz) initially
and was allowed to use up to 4GB of RAM.

First, the simple and the multi-layer solvers from Section
4 were tested. After that, some variations upon these were
tested as well. There are many more variations that could
be have tested than the ones mentioned in the next sub-

sections, but due to time constraints this was not possible.

During prior testing, most solvers could solve 13 puzzles
within a minute. This means that 17 puzzles could poten-
tially not be solved within the time limit. Since six solvers
plus variations had to be tested, testing could take up a lot
of time if the time limit is too high. With the choice of 15
minutes, testing a single solver could take 17∗15/60 = 4.25
hours at maximum, which seemed reasonable.

Each puzzle-solver combination was only tested once due
to time constraints. However, the solvers were imple-
mented in such a way that states are always opened in
the same order, so there is no randomness involved. This
means that the results of all the solved puzzles are accu-
rate. For unsolved puzzles there can be some inaccuracy as
it depends on when the solver ran out of time or memory.

5.1 Heuristics for the simple solvers
As discussed in Section 4.2.4, the simple A* and Fringe
solvers use a cost function that favours states which let
characters explore positions that have not been explored in
the last x moves. These heuristics were tested for x = 10,
x = 20, and x = 30 to see what value for x is best.

A different cost function was also tested, which calculates
the average Manhattan distance between the characters
and the exit. The lower this average exit-distance, the
more the state is favoured. The Manhattan distance was
chosen instead of the actual minimal path distance, as it
is less complicated to compute.

5.2 Only sub-goals for holes
After prior testing, it seemed that the simple solvers out-
performed the multi-layer solvers. Therefore, a variation
on the multi-layer solvers was tested which only generates
sub-goals for holes and not for other obstacles. Sub-goals
for holes were chosen as some guidance for filling holes is
probably useful. This means less sub-goals will be gener-
ated, so the local layer will have less guidance, which could
bring its behaviour closer to that of the simple solvers.
This variation is based on the A* multi-layer solver.

5.3 No deadlock detection
To see the influence of the deadlock detection in Section
4.3.2 on the multi-layer solvers, a variation on the multi-
layer A* solver without deadlock detection was tested.

5.4 Fewer new sequences and start-states
In Section 4.3.1 it was discussed that when a sequence of
sub-goals cannot be solved, the solver tries to find a new
sequence to solve. However, it might take multiple visits
to solve a sequence, so a variation was tested where each
sequence is tried 10 times before a new sequence is tried.

It can also take several tries before a solution for a sub-goal
is found. Therefore, another variation was tested which
tries to solve a sub-goal with the same start-state 10 times
before trying a new start-state.

The last variation in this category is simply a combination
of the two aforementioned variations. All these variations
were based on the multi-layer A* solver.

6. RESULTS
In Table 2, 3, and 4, results that are better than the base
solver are coloured light grey and results that are worse
are coloured dark grey. ∆s is the number of states opened
by the variation divided by the number of states opened by
the base solver. Only puzzles where the number of moves
or sequences are different, or where ∆s is greater than 1.1
or less than 0.9 are shown.

5



Table 1: Results of every base solver for every puzzle that could be solved by at least one solver.
m is the number of moves in the solution, s number of opened states, and seq the number of different sub-goal sequences
explored. In the solved column, MEM means the solver ran out of memory and SLOW means the puzzle was not solved
within 15 minutes. The best m and s for each puzzle are coloured light grey, and the worst are coloured dark grey.

BFS DFS A* Fringe Multi-layer A* Multi-layer Fringe
puzzle solved m s solved m s solved m s solved m s solved m s seq solved m s seq
easy-1 X 4 24 X 15 40 X 4 8 X 4 5 X 4 8 1 X 4 18 1
easy-2 X 4 39 X 5 33 X 4 18 X 4 16 X 4 16 1 X 4 26 1
easy-3 X 4 15 X 6 11 X 4 7 X 6 10 X 4 8 1 X 4 17 1
easy-4 X 5 22 X 5 7 X 5 19 X 5 20 X 5 20 1 X 5 8 1
easy-5 X 8 374 X 34 262 X 8 217 X 8 174 X 8 119 1 X 8 124 1
easy-6 X 9 46 X 86 275 X 9 26 X 9 33 X 9 28 1 X 9 10 1
easy-7 X 8 597 X 51 96 X 8 284 X 8 175 X 10 587 2 X 10 437 2
easy-8 X 9 374 X 26 210252 X 9 144 X 9 158 X 9 2931 5 X 9 89 1
easy-9 X 10 9633 X 22 2607 X 10 513 X 10 458 X 10 68 1 X 11 384 3
easy-10 X 7 263 X 44 113 X 7 70 X 7 55 X 9 73 1 X 14 581 7
average-1 X 10 7333 X 165 4303 X 10 3743 X 11 2892 X 10 14140 8 X 11 17013 8
average-4 X 109 3218 X 181 1016 X 109 2573 X 109 2299 X 109 1724 1 X 109 1106 1
average-5 X 30 346583 X 2599 193692 X 30 360502 SLOW - 84684 X 38 308747 1 X 163 514944 1
hard-1 X 25 15203 X 59 11315 X 25 14100 X 25 7106 X 25 7685 1 X 27 4859 1
hard-3 X 34 135064 X 58 136681 X 34 122213 X 36 65592 X 34 212599 4 X 66 775553 4
hard-5 MEM - 212170 X 699 17379 X 12 24644 SLOW - 13196 MEM - 85845 1000 MEM - 106780 908

6.1 Base solvers
The results of the base solvers are shown in Table 1. The
simple DFS and A* solvers solved the most puzzles, but all
solutions of A* are shorter. BFS finds almost all solutions,
but opened more states on average than A*, Fringe and
multi-layer A*. Fringe and multi-layer A* are on par over-
all, though Fringe can solve one fewer puzzle. Multi-layer
Fringe has worse results compared to the other solvers,
but it does find shorter solutions than DFS.

14 puzzles from the game-mode Going up? could not be
solved by any solver. BFS, DFS, A* and multi-layer A*
run out of memory on these puzzles before the 15-minute
mark, whereas Fringe exceeds the time limit instead. With
multi-layer Fringe it differs per puzzle whether it runs out
of memory or time. Fringe only opens a fraction of the
states of the other solvers on these 14 puzzles. On these
puzzles together Fringe opened 387.967 states, whereas A*
opened 1.643.491 states and BFS and DFS even more.

6.2 Heuristics for the simple solvers
Changing x from 10 to 20 or 30 in the cost function that
favours exploring new positions had almost no effects on
the results of the simple A* and Fringe solvers.

Table 2: Results of using the average exit-distance as the
cost function.

Simple A* Simple Fringe
puzzle solved m s ∆s solved m s ∆s
easy-1 X 4 10 1.250 X 7 12 2.400
easy-2 X 4 67 3.722 X 4 29 1.813
easy-3 X 4 7 1.000 X 4 8 0.800
easy-4 X 5 15 0.789 X 5 14 0.700
easy-6 X 9 21 0.808 X 9 26 0.788
easy-7 X 8 402 1.415 X 8 242 1.383
easy-8 X 9 91 0.632 X 11 68 0.430
easy-9 X 10 2684 5.232 X 10 1737 3.793
easy-10 X 7 42 0.600 X 8 55 1.000
average-1 X 10 2598 0.694 X 11 1649 0.570
average-4 X 109 2677 1.040 X 111 2479 1.078
average-5 X 30 257066 0.713 SLOW 0 78699 0.929
hard-3 X 34 118515 0.970 X 34 62981 0.960
hard-5 MEM 0 180630 7.330 SLOW 0 21277 1.612

As can be seen in Table 2, using the exit-distance as the
cost function results in fluctuations in the number of opened
states. However, this evens out when considering all puz-

zles together. It performs worse solution-wise, as hard-5
can no longer be solved by simple A* and the simple Fringe
solver finds more longer than shorter solutions.

6.3 Only sub-goals for holes
Only generating sub-goals for holes results in opening fewer
states on average, as can be seen in Table 3. Every solu-
tion now has the same number of moves as the simple A*
solver. Another observation is that all of the puzzles with
changed results contain more obstacles than holes. Fur-
thermore, less sequences were explored.

Table 3: Results of only generating sub-goals for holes.
puzzle solved m s ∆s seq
easy-2 X 4 18 1.125 1
easy-3 X 4 7 0.875 1
easy-7 X 8 282 0.480 1
easy-8 X 9 141 0.048 1
easy-9 X 10 508 7.471 1
easy-10 X 7 70 0.959 1
average-1 X 10 3674 0.260 1
average-5 X 30 351744 1.139 1
hard-3 X 34 173635 0.817 2
hard-5 X 12 24371 0.284 1

6.4 No deadlock detection
The variation without deadlock detection only affected
three puzzles (easy-5, hard-1, and hard-3), where the num-
ber of opened states nearly doubled.

6.5 Fewer new sequences and start-states
As can be seen in Table 4a, exploring fewer new sequences
can solve one puzzle extra for which only one sequence was
explored instead of 1000. It does open more states for one
puzzle.

Table 4b shows the results of exploring fewer new start-
states. The number of states opened is different for four
puzzles, but those results even out when considering them
together. One puzzle has fewer moves in the solution and
one puzzle more, so that evens out as well.

The solver that combines both variations can solve one
puzzle more, as can be seen in Table 4c. Overall, slightly
fewer sequences were explored compared to both varia-
tions. This combination solved two puzzles with more
moves and one puzzle with less.

6



Table 4: Results of variations regarding the frequency with
which new sequences or start-states are tried.

(a) Fewer new sequences

puzzle solved m s ∆s seq
average-1 X 10 18539 1.311 8
hard-5 X 13 144 0.002 1

(b) Fewer new start-states

puzzle solved m s ∆s seq
easy-7 X 8 486 0.828 2
easy-8 X 9 24500 8.359 5
average-1 X 10 10304 0.729 8
average-5 X 43 384795 1.246 1
hard-5 MEM - 79179 0.922 801

(c) Combination of both variations

puzzle solved m s ∆s seq
easy-7 X 8 263 0.448 1
easy-8 X 9 26117 8.911 5
average-1 X 14 3116 0.220 5
average-5 X 43 384795 1.246 1
hard-5 X 13 72 0.001 1

7. DISCUSSION
Some remarks can be made about the results and about
which solvers are the best for what situations.

7.1 Not enough memory
First of all, most solvers run out of memory on more dif-
ficult puzzles. None of the variations seemed to solve this
problem, so it is probably caused by the fact that the
state-space simply takes up too much space. For the 30
puzzles, the minimum size of a state was approximately
6kB and the maximum 31kB. This size heavily depends on
the size of the room and the number of characters and ob-
stacles. The fact that the Fringe solver does not run out of
memory but opened a lot less states before the 15-minute
mark, is probably caused by the problem mentioned in
Section 4.2.3, where all nodes below the current threshold
are checked every single time the threshold is raised. So,
the Fringe solver probably spends a portion of its time on
that, instead of on exploring states.

7.2 Base solvers
The fact that hard-5 could only be solved by two base
solvers could be explained by the fact that it contains a
lot of obstacles. This means a lot of states are possible,
and BFS and Fringe just do not find the ”correct” states
soon enough. Also, this makes a lot of different sub-goal
sequences are possible, which is why the multi-layer solvers
could not solve the puzzle either, as most sequences are not
solved on the first try. And with many sequences it takes
quite long before the same sequence is tried again.

7.3 Heuristics for simple solvers
No direct explanation could be found why changing x from
10 to 20 or 30 had almost no effects, so more research is
required to find out.

Variations with the exit-distance cost function probably
find longer solutions for some puzzles because characters
sometimes need to move further away from the exit tem-
porarily, to move obstacles out of the way or to move to-
wards blocks that will be pushed into a hole. Those actions
are less favoured by the exit-distance cost function than
by the cost function which favours exploring new areas.

7.4 Only sub-goals for holes
That the variation which only generates sub-goals for holes
performs the same as the simple A* solver with regards to
the solution size can be explained by the fact that less
sub-goals are generated. This means that the local layer
does more heavy lifting than usual, and the local layer, as
mentioned in Section 4.3.2, is an adapted version of the
simple A* solver. Why this variation only affected puz-
zles that mostly contain more obstacles than holes, can
be explained by the fact that for these puzzles the num-
ber of possible sequences and sub-goals in a sequence are
significantly reduced.

7.5 No deadlock detection
It makes sense that not using deadlock detection increased
the number of states visited, as that means that deadlock
states can generate children, which are also deadlocked,
and thus more useless states are generated. However, it is
peculiar that this only affected three puzzles. A possible
explanation could be that for most puzzles a solution is
found before any deadlock state is opened, but this cannot
be said with any certainty.

7.6 Fewer new sequences and start-states

Opening fewer sequences.
The variation that sticks with the same sub-goal sequence
for longer did not have a large effect on the results. This
makes perfect sense for puzzles that already only found
one sequence in the base solver. For the other puzzles this
result could possibly be explained by the following: The
first sub-goal sequence that is tried might need to open
significantly more states to reach the goal-state than later
sequences. The default multi-layer solver goes through
multiple sequences and might find the solution in one of
the later sequences, but not that many states are opened
per sequence. Whereas in this variation the solution is
found with the first sequence, but more states were ex-
plored for that one sequence. Therefore, the overall num-
ber of opened states could be comparable.

Exploring fewer start-states.
The same reasoning can be applied to the variation that
explores the same start-states for longer. A lot of states
might have to be opened to get from the first start-state to
a solution for the sub-goal, whilst a later start-state might
need to open less states to find the goal-state.

Combination of both variations.
The result of the combination of both variations showed a
mix of the results of both variations, which makes sense.

7.7 Best solvers

Finding the shortest solution.
For finding the shortest solutions either the simple A*
solver or the multi-layer A* solver that only generates sub-
goals for holes could be used. They both found the short-
est solutions out of all solvers, though there is a chance
that even shorter solutions exist that no solver could find.
The simple A* solver is much less complex than its multi-
layered counterpart, so the simple A* solver is more ad-
vantageous. However, this claim is based on the results of
16 puzzles, so more testing is required to be more certain.

7



Finding a solution efficiently.
The number of states opened can be used as a measure of
efficiency. For opening as few states as possible, no solver
can be suggested with confidence. Each solver seems to
optimise for different puzzles and there seems to be little
to no pattern to it. However, it can be said with some
certainty that multi-layered solvers should use deadlock
detection, as it reduced the number of states visited for at
least a few puzzles.

8. FUTURE WORK
The solvers in this paper could solve 16 out the 30 puzzles
from the Going up? game-mode of Kwirk. This means
that further improvements are required to solve the re-
maining 14 puzzles. This section highlights a few of those.

8.1 Memory used
As seen in Section 6.1, the solvers tend to run out of mem-
ory on larger puzzles. There are several potential solutions
to this problem.

8.1.1 Efficient state-space representation
First of all, the state-space could be encoded in such a
way that it takes up less space in memory. Using binary
decision diagrams (BDDs) [3] to represent the state-space
is one such technique.

8.1.2 Space efficient search algorithms
Another solution is to create a solver using a search algo-
rithm that does not store the state-space or only a portion
of it, such as the IDA* algorithm [9].

8.1.3 Pruning
Lastly, the number of states in the state-space could be
reduced by pruning states that are not considered useful.

More deadlock detection.
Some minor pruning is already incorporated in the multi-
layer solvers in the form of deadlock detection (see Section
4.3.2). However, due to time constraints, only one form
of deadlock detection was incorporated. This means that
more deadlock detection is possible. For example, when
a 1x1 block is pushed into the corner between two arms
of a turnstile, that turnstile will never be able to turn, as
that 1x1 block cannot be pushed away. So, this would be a
deadlock state for a sub-goal which involves that turnstile.

Relevance cuts.
Junghanns and Schaeffer [8] consider only exploring state-
transitions that are ”relevant”, though a few exceptions are
permitted. A relevant state-transition is a transition which
is influenced by the last m transitions, where the definition
of ”influence” is domain dependent. This means that the
search stays more local. It could be a useful addition to
the local layer of the multi-layer solvers, which currently
only use a cost function to encourage this behaviour.

8.2 Multi-character sub-goals
As mentioned in Section 4.3.1, the multi-layer solvers
choose an arbitrary character to base the sub-goal se-
quence on. This has the drawback that the character clos-
est to the exit could be chosen, which would mean that no
sub-goals are generated that aid characters further away.
However, sub-goals could be generated in such a way that
the start-positions of all characters are taken into consid-
eration. This might might make solving multi-character
puzzles more efficient.

8.3 More testing
It is hard to conclude from the results what solvers opti-
mise for what kind of puzzles, as the game-mode Going
up? contains many different puzzles. The current solvers
could be tested more extensively to find out what features
are good for what kind of Kwirk puzzles. For example,
puzzles only containing blocks could be tested with in-
creasingly more blocks to see what solvers perform best
on puzzles that only contain blocks. Also, more variations
upon the solvers could be tested, such as different cost
functions for the sub-goals.

8.4 FESS
A completely different approach to solving Kwirk puzzles
could be taken as well. Shoham and Schaeffer created
a solver for Sokoban called FESS [14] and claim that it
is the first solver to solve all the Sokoban instances of a
set of puzzles used in XSokoban [12]. This solver uses a
so-called feature space to decide what state in the state-
space to evaluate next. This technique could potentially
be applied to solving Kwirk puzzles too.

9. CONCLUSION
In this study, multiple solvers for Kwirk were explored.
The most a single solver could solve was 16 out of 30 puz-
zles of the game-mode Going up?. Most solvers ran out
of memory when trying to solve the remaining puzzles. It
could be concluded from the results in Table 1 and 3 that
the A* solver and the multi-layer A* solver which only
generates sub-goals for holes found the shortest solutions
out of all solvers. Each solver seemed to optimise the num-
ber of opened states for different puzzles with little to no
pattern as to which kind of puzzles. This means that there
is no conclusive answer to what solver is the most efficient
with regards to opening as few states as possible. How-
ever, deadlock detection, though only on three puzzles, did
increase the efficiency.

Improvements could be made to solve more puzzles. To
use less memory, a more efficient state representation, a
space-efficient search algorithm, or pruning could be used.
The generation of sub-goal sequences for multi-character
puzzles could be improved. More experiments could be
performed to find out what features are best for what
kinds of puzzles. A solving technique called FESS could
potentially be used as well.

10. REFERENCES
[1] Y. Björnsson, M. Enzenberger, R. C. Holte, and

J. Schaeffer. Fringe Search: Beating A* at
Pathfinding on Game Maps. CIG, 5:125–132, 2005.

[2] A. Botea, M. Müller, and J. Schaeffer. Using
Abstraction for Planning in Sokoban. In
J. Schaeffer, M. Müller, and Y. Björnsson, editors,
Computers and Games, pages 360–375, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[3] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, Aug. 1986.

[4] S. Edelkamp and D. Sulewski. External Memory
Breadth-First Search with Delayed Duplicate
Detection on the GPU. In R. van der Meyden and
J.-G. Smaus, editors, Model Checking and Artificial
Intelligence, pages 12–31, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal
Basis for the Heuristic Determination of Minimum

8



Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[6] U. H. Hernandez-Belmonte, V. Ayala-Ramirez, and
R. E. Sanchez-Yanez. Pushing boxes with a mobile
robot in Sokoban-like scenarios. In CONIELECOMP
2011, 21st International Conference on Electrical
Communications and Computers, pages 147–151,
2011.

[7] A. Junghanns and J. Schaeffer. Sokoban: Enhancing
general single-agent search methods using domain
knowledge. Artificial Intelligence, 129(1):219–251,
2001.

[8] A. Junghanns and J. Schaeffer. Sokoban: Improving
the search with relevance cuts. Theoretical Computer
Science, 252(1-2):151–175, 2001.

[9] R. E. Korf. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

[10] R. R. Leme, A. G. Pereira, M. Ritt, and L. S. Buriol.
Solving Sokoban Optimally with Domain-Dependent
Move Pruning. In 2015 Brazilian Conference on

Intelligent Systems (BRACIS), pages 264–269, 2015.

[11] D. McDermott. Automated Planning. In
Encyclopedia of Computer Science, page 117–119.
John Wiley and Sons Ltd., GBR, 2003.

[12] A. Myers. XSokoban. https:
//www.cs.cornell.edu/andru/xsokoban.html, July
1997.

[13] V. Panteleev (CyberShadow). DDD-Kwirk. GitHub,
Feb. 2010.
https://github.com/CyberShadow/DDD-Kwirk.

[14] Y. Shoham and J. Schaeffer. The FESS Algorithm:
A Feature Based Approach to Single-Agent Search.
In 2020 IEEE Conference on Games (CoG), pages
96–103, 2020.

[15] A. Vark. Puzzle Boy / Kwirk. Hardcore Gaming 101,
Aug. 2016.
http://www.hardcoregaming101.net/puzzle-boy-

kwirk/.

[16] Video Games. Tomate auf Trab: Kwirk. pages
68–68, 1991. German magazine. Issue 1. https:
//www.kultboy.com/index.php?site=t&id=2965.

9

https://www.cs.cornell.edu/andru/xsokoban.html
https://www.cs.cornell.edu/andru/xsokoban.html
https://github.com/CyberShadow/DDD-Kwirk
http://www.hardcoregaming101.net/puzzle-boy-kwirk/
http://www.hardcoregaming101.net/puzzle-boy-kwirk/
https://www.kultboy.com/index.php?site=t&id=2965
https://www.kultboy.com/index.php?site=t&id=2965

	Introduction
	Requirements
	Existing solutions
	Architecture
	Model
	State representation
	State-transitions
	Multi-character puzzles

	Simple solvers
	BFS and DFS
	A* search
	Fringe search
	Cost function

	Multi-layer solvers
	Global layer
	Local layer


	Experimentation
	Heuristics for the simple solvers
	Only sub-goals for holes
	No deadlock detection
	Fewer new sequences and start-states

	Results
	Base solvers
	Heuristics for the simple solvers
	Only sub-goals for holes
	No deadlock detection
	Fewer new sequences and start-states

	Discussion
	Not enough memory
	Base solvers
	Heuristics for simple solvers
	Only sub-goals for holes
	No deadlock detection
	Fewer new sequences and start-states
	Best solvers

	Future work
	Memory used
	Efficient state-space representation
	Space efficient search algorithms
	Pruning

	Multi-character sub-goals
	More testing
	FESS

	Conclusion
	References

