
inSQeLto: a Query Language for Probabilistic Databases
Jochem Groot Roessink

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
j.grootroessink@student.utwente.nl

ABSTRACT
A Database Management System (DBMS) is a useful tool
to store, manipulate and query data. However, it is al-
ways possible that the database contains incorrect data.
In most DBMSs, there is no direct way to indicate which
data might be incorrect. For this reason, probabilistic
databases exist, which have the ability to express how cor-
rect data is. An example of such a database is DuBio,
currently under development at the University of Twente.
DuBio has functionality that can keep track of the proba-
bility of correctness for its data and this probability can be
presented to users when they query some data. This will
help in identifying incorrect data which can then be rec-
tified. The current way of querying data in DuBio is only
meant to be a temporary solution and some queries can be
quite lengthy and complicated. The goal of this research
is to design the query language inSQeLto that can be used
for probabilistic databases, and DuBio specifically. While
the resulting language looks the same as standard SQL, it
works differently under the hood. Namely, the inSQeLto
queries are mapped onto DuBio queries, and these can
perform the probabilistic functionality. Because of this
existing SQL queries can now be used to interact with
DuBio in a probabilistic way. This language could help
spread the use of probabilistic databases. This could lead
to a decrease in the amount of incorrect data that is being
used, which will have a positive impact on an increasingly
digital world.

Keywords
Database Management System, Probabilistic/Uncertain Data,
Structured Query Language, Domain-Specific Language

1. INTRODUCTION
A Database Management System (DBMS) is a tool where
one is able to store, manipulate and query data. Unfor-
tunately, incorrect data might arise in such a database.
Most DBMSs in use right now are deterministic and have
no direct way of indicating what data might be incorrect or
what the probability of correctness is for certain data. An
example of a process where incorrect data may originate
is data integration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT Jul. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Data integration is the process of joining multiple database
tables together to form just one. When one real-world
object is represented in multiple of those source tables
it should be represented in the new table just once. To
achieve this the system needs to identify which entries in
the source tables refer to the same object. This could
be done by checking which entries use the same name.
However, these names are usually manually filled in by
multiple users. This could lead to data for one object being
spread over multiple columns or one column containing
heterogeneous data [7]. If a user now queries this table
they might receive an incorrect answer because of that.
Finding out such mistakes after the table is already created
can be a difficult and time-consuming job, especially if
large tables are used.

A probabilistic database is a DMBS that manages proba-
bilistic (uncertain) data [11]. This type of DBMS can be
used to mitigate some of the problems that are present in
deterministic databases, like those described above. Be-
sides all the functionality that deterministic DBMSs use,
they can also store some extra information for every en-
try. This information describes in what possible world the
corresponding entry may exist. This can then be used to
calculate a probability of correctness for that entry. When
a user queries a probabilistic database, they can also re-
quest the probability of correctness for every entry. This
will let them know if some data might be incorrect, after
which they could confirm or deny whether multiple entries
reference the same object and, if so, which one is correct.
This user feedback can help in improving the database
[12].

At the University of Twente a new probabilistic database,
called DuBio, is currently being developed [10]. DuBio
is an extension of PostgreSQL[9], a deterministic DBMS,
and adds probabilistic functionality. One goal of DuBio
is to be scalable so that the performance of the system
does not get drastically worse when it is used on larger
databases.

For this research, a Domain-Specific Language (DSL) is
designed for probabilistic databases and DuBio [8] specif-
ically. This language is based on Structured Query Lan-
guage (SQL) [2] and can be used to query and alter a
DuBio database, while also allowing for probabilistic be-
haviour. The name for this language is inSQeLto, a com-
bination of the Italian word ‘incerto’, which translates as
uncertain, and SQL.

2. PROBLEM STATEMENT
Currently, since DuBio is an extension of PostgreSQL it
can already be queried and altered with regular SQL. How-
ever, this is only meant as a temporary solution and most
of these queries are lengthy and therefore not user-friendly.

1

Table 2 shows that queries for relatively simple function-
ality can be quite complex and long. This is why this
project is in place, to design inSQeLto as a new DSL for
DuBio. Queries in inSQeLto are mapped onto the current
SQL solution in order to be executed by DuBio. There-
fore, the goal for this project is to design a language that
can be used for interacting with probabilistic databases,
and DuBio specifically.

2.1 Research Questions
From the problem statement the following research ques-
tion arises:

How to design a query language for probabilistic databases,
and DuBio specifically, that is intuitive to use for people
that have experience in working with SQL or probabilistic
databases?

To help answer this research question the following sub-
questions are created, which will have to be answered be-
fore the main question:

• SQ1: How are existing SQL constructs1 interpreted
so that they work for both probabilistic and deter-
ministic tables in DuBio?

• SQ2: What new constructs are desired and how are
they added to inSQeLto?

• SQ3: Does the inSQeLto compiler require a connec-
tion to a database or can it run without such a con-
nection, and why?

3. REQUIREMENTS
These are the functional requirements for the design of
inSQeLto.

• R1: The language should be based on SQL since this
will be intuitive to people that have experience in
working with DuBio, other probabilistic databases
that also use an SQL-based language, or standard
databases that use SQL.

• R2: Existing SQL commands that do not involve
probabilistic behaviour should not be converted.

• R3: The language should be able to be extended so
that if not all desired functionality is realized for this
project, it could still be completed later on.

And the following non-functional requirement is estab-
lished as well:

• R4: Compile time should not be longer than 0.2 sec-
onds. This is because one of the goals of DuBio is
to operate fast, even on large databases. A compile
time that would take longer than this would hinder
that goal. Since the implementation for this project
is not intended as a final product, failing this require-
ment is not a major problem but might expose some
problems with the system. These problems can then
be taken into account during implementation of the
next version.

1“Syntactically allowable part of a program that may be
formed from one or more lexical tokens in accordance with
the rules of a programming language” [4].

4. RELATED WORK
This section discusses several existing probabilistic database
systems. All of the systems discussed have their own
way of being queried, these are investigated and used for
inspiration during the development of inSQeLto. These
DBMSs are the following: Trio [13], MCDB [5], MayBMS
[3] and MystiQ [1].

Trio.
Trio is developed at Stanford University. Trio has its
own query language, the Trio Query Language (TriQL).
TriQL inherits most of the existing SQL constructs, to-
gether with some extra constructs for specific functional-
ity. While most of the constructs are the same as SQL
they are interpreted differently, so that they can be used
for probabilistic behaviour. [13].

MCDB.
MCDB is created at the University of Florida together
with the IBM Almaden Research Center. MCDB does not
have its own query language but uses SQL to interact with
the probabilistic data. To achieve this, some functions
have been created that allow for probabilistic behaviour
[5]. This is also how DuBio works (without inSQeLto).

MayBMS.
MayBMS is jointly developed at Oxford University and
Cornell University. Its query language is the aptly named
MayBMS Query Language. This query language extends
SQL (although the aggregate functions from SQL are dis-
abled) with some additional constructs. The standard
SQL constructs can still be used normally and the addi-
tional constructs provide the language with probabilistic
functionality [3].

MystiQ.
MystiQ is developed at the University of Washington and
the American University of Beirut. There are two lan-
guages that are used to interact with MystiQ: the MystiQ
data modeling language (mDML) and the MystiQ data
definition language (mDDL). Just like MayBMS these ex-
tend SQL with new constructs that allow for probabilistic
behaviour [1].

The one thing these query languages have in common is
that they are based on SQL. This already makes all of
them valuable for this research since one of the require-
ments for inSQeLto is that it is based on SQL as well.
However, different methods are used: TriQL mostly uses
existing SQL constructs but interprets them differently;
MCDB still uses SQL with some extra functions; and
the MayBMS Query Language, mDML and mDDL ex-
tend SQL but perform most probabilistic behaviour with
new constructs. These different methods of creating an
SQL-based language are all interesting for inSQeLto and
are therefore explored during the development.

5. METHODOLOGY
This section explains what methodologies are necessary in
order to answer all the sub-questions and, subsequently,
the main research question. This methodology is about
design science, where a problem is defined and a treatment
for the problem is designed, implemented, and finally val-
idated [14].

5.1 Language Design

2

There are several possible methods for performing cer-
tain desired functionality in inSQeLto. Such a method
can either be an entirely new construct; an existing SQL
construct that is interpreted differently; or an existing
SQL construct with calls to probabilistic functions. These
methods are compared with each other during user testing.

Two steps are taken to use and test the language with
DuBio. First, a parser is created to parse the language
into a parse tree, which can then be converted into SQL
queries that DuBio can execute. Parsec is used to create
this parser, mainly because it is designed to be fast and
simple to use [6]. Since it is fast, it can help in passing
R4. Second, a DuBio test environment is created where
test scenarios can be created in order to test the generated
SQL queries.

5.2 User Testing for Design Choices
During language design, three different methods for query-
ing probabilistic data are designed. User testing is used
to decide which is of these methods stays in the final lan-
guage. There are two groups of users: group 1 consist of
people that have experience in working with probabilistic
databases; and group 2 consist of people that only have
experience in working with SQL.

The three methods that are designed are the following:
method 1 uses the standard SQL SELECT command where
the probability is automatically added to the results; method
2 also uses the standard SQL SELECT command but
when the probability is desired it has to be called explicitly
in the same way one would call a column; method 3 uses a
new command that is meant specifically for probabilistic
data. The documentation for these methods can be found
in Appendix B.

During user testing, a user is faced with a task where they
have to query some data from a probabilistic table to-
gether with the corresponding probability. They are pro-
vided with the documentation for each method and then
have to try to complete the task using each method. Af-
ter they have done this they are asked to give feedback
for each method, pick their favourite one and explain why.
This feedback helps in deciding what method is best fit
for querying probabilistic data. Other questions that the
participants were asked were related to minor characteris-
tics of the language like whether the probability should be
presented as a percentage or a number between 0 and 1. If
one option for these questions is overwhelmingly preferred
it is incorporated into the language.

5.3 SQ1
To see to what part of the system the sub-questions are
related see Figure 1.

How are existing SQL constructs interpreted?

During implementation of the system and the testing of
queries in the DuBio test environment, it becomes clear
how each construct should be converted. They should be
converted so that when the output is executed, the desired
functionality of the original input is performed, and it now
works for both probabilistic and deterministic tables.

5.4 SQ2
What new constructs are desired and how are they added
to inSQeLto?

When there is no logical existing construct to use for some
desired functionality a new construct is created. Just like
the method for SQ1 it becomes clear during implemen-

Observation Yes No

User has experience in working with
SQL

8 0

User has experience in working with
probabilistic databases

3 5

User was able to complete the task with
every method

8 0

User prefers method 1 4 4
User prefers method 2 4 4
User prefers method 3 0 8
User prefers probability represented as
a number between 0 and 1 over a per-
centage

5 2

Table 1. Summarized results of the user testing for the
design choices, which was done with eight participants. The
‘Yes’ column counts the participants that were observed
to choose or do what is described in the first column, the
‘No’ column counts those who did not. If the sum of these
columns is less than eight in a row it means the rest of the
participants were neutral.

tation of the system and testing in the test environment
how these constructs should be converted. While existing
constructs are mostly just altered, new ones are in their
entirety replaced by existing constructs during conversion.
This is done so that they can be executed by DuBio.

5.5 SQ3
Does the inSQeLto compiler require a connection to a
database?

First, queries with probabilistic functionality are tested
in the DuBio test environment. After that, it is known
whether such queries can be generated without the com-
piler knowing anything about the database they are used
on. If that is not the case the compiler requires a connec-
tion with the database.

5.6 Research Question
How to design a query language for probabilistic databases?

When the sub-questions are answered by using their cor-
responding methodology, they result in the design of a
system that is able to compile inSQeLto queries and con-
vert them to SQL queries that can be executed by DuBio.
This system together with the methodology for language
design creates several options for what the query language
can look like. The user testing with people experienced
with SQL or probabilistic databases is used to find out
which of these options is the most intuitive to them. All
of this together results in an answer to the main research
question.

6. USER TESTING RESULTS
Table 1 provides a summary of the results of the user test-
ing for design choices. It is apparent that there are eight
participants in total, three of which are considered to be
from group 1 and five from group 2. All of these partic-
ipants were able to complete the task with all methods
correctly (disregarding some irrelevant mistakes like using
a number between 0 and 1 where they were asked to use a
percentage). The paragraphs below provide some insight
into some of the results.

First of all, none of the participants thought that method
3 was the best. This makes sense since using this method
would require users to know which tables are probabilistic
in order to know what command to use. So, a command

3

Figure 1. Global description of the system. The gray areas
show to which processes the sub-questions are related.

that can be used for both non-probabilistic and probabilis-
tic data was preferred by all.

Furthermore, the initial expectation was that participants
from group 1 would prefer method 1, while participants
from group 2 would not have a preference. This was ex-
pected because it would mean that users would always
get the probability of their query results and incorrect
data would be recognized more often. The idea was that
participants from group 1 would view that as important
while participants from group 2 would not know about
this. While two out of these three participants from this
group indeed preferred this option, the reason for their
choice was different. Also, too few participants were used
to confirm such an expectation. Overall, the participant’s
choices for the first two methods were evenly divided.

Finally, most participants preferred using a number be-
tween 0 and 1 over a percentage for the probability. Over-
all, there was no significant difference between the answers
of group 1 and the answers of group 2.

7. TECHNICAL CONTRIBUTION
By analyzing what is possible during implementation the
following design is created. The first step of the system
is to parse the inSQeLto input. After it is parsed the
parse tree is scanned for anything that can be parsed but
that is not allowed, like more than one FROM clause in
a command or a wrong order in a command. If nothing
illegal is detected, the next step is to convert the parse
tree to a new one. This new parse tree is printed in the
final step in order to generate an SQL query that performs
the desired functionality. This system is also described in

Figure 1.

The resulting language is still very similar to SQL. In fact,
constructs that are not (yet) recognized by the inSQeLto
compiler are parsed as a string. These strings are not con-
verted in any way and printed again in the result. This
makes it possible to run normal SQL queries as well. The
compiler is created with the idea in mind, that it can be
extended, see section 8.3. When a new construct is added
to the compiler, it will be parsed and converted as in-
tended. The implementation can be found at the GitHub
page of DuBio [10].

7.1 Grammar
The simplified grammar for inSQeLto is displayed below.
Here, text is either a single word consisting of letters and
numbers or any string as long as it is between double
quotes. If text is displayed between the single quotes in the
grammar it can also be any string. Second, name is one or
more occurrences of text, separated by dots. Furthermore,
number is any number, op is an arithmetic operator (+,
-, *, etc.) and comp is a comparison operator (>, =, <>,
etc.). Finally, other can be any string, it is used to parse
SQL commands that are not yet recognized by inSQeLto
and are not converted.

program → command ";" program

program → command

command → "SELECT" values clauses

command → other

values → value "," values

values → value

value → expr

value → cond

value → "(" values ")"

value → "‘" text "’"

expr → "(" expr ")"

expr → expr op expr

expr → number

expr → name

expr → text "(" values ")"

cond → "(" cond ")"

cond → "TRUE"

cond → "FALSE"

cond → cond "AND" cond

cond → cond "OR" cond

cond → "NOT" cond

cond → expr comp expr

clauses → clause clauses

clauses → clause | ""

clause → "FROM" tables

clause → "WHERE" cond

clause → "GROUP BY" name

clause → "ORDER BY" name ord

clause → "LIMIT" number

clause → "INTO" name

tables → name "," tables

tables → name

ord → "DESC" | "ASC" | ""

4

7.2 Query Mapping
By analyzing the results of the user testing for the design
choices the following query mapping is created. The con-
struct that is already implemented is the SELECT com-
mand. During the language design, several possibilities
for this command were created. All user testing partic-
ipants preferred to use a command that can be used for
both deterministic and probabilistic behaviour, but it was
not made clear whether the probability should be called
or not. Eventually, explicitly calling the probability was
chosen, mainly because of the computation time for this
probability. If a user does not desire the probability they
can request the results without adding a call to it and it
is not calculated. It was also decided to use a number
between 0 and 1 as the probability as opposed to using a
percentage.

There are two requirements for a SELECT query to be
converted: the probability has to be called and at least
one of the tables used has to be probabilistic. If a call to
the probability is made but only deterministic tables are
used, the call is replaced by the number 1. If both these
requirements are passed, two changes happen. First, the
table that stores the probability dictionaries is added, as
well as a condition that ensures the correct dictionary is
used. Second, the probability call is changed by a call to
a function that can calculate the probability, taking the
selected dictionary and the sentences of the probabilistic
tables as arguments. These sentences describe for each
entry of a table in what case the entry is correct [10].
If more than one probabilistic table is used the sentences
have to be combined with the AND-operator (all sentences
have to be true for the combined sentence to be true). If
a GROUP BY clause is used in the query, the sentence
has to be wrapped in the agg or function. The agg or
function combines the sentences of entries belonging to a
group with the OR-operator (only one sentence has to be
true for the combined sentence to be true).

Table 2 shows some queries before and after they are con-
verted. The first query does not call the probability (prob)
so is not converted. The second query does call the prob-
ability and this call is replaced by a function call that
calculates the probability. The dictionary that stores the
probabilities is added to the tables of the query and a
condition is added which ensures the correct dictionary
is used. Query three also calls the probability but on a
deterministic table so this call is replaced by the number
1. The fourth query uses two probabilistic tables, so their
sentence attributes have to be combined in the argument
for the probability function (so that the entries that are
connected both have to be correct). The final query uses
the GROUP BY clause so the sentence has to be wrapped
in the agg or function.

8. VERIFICATION
This section checks for all the set requirements whether
they have been met by the system described in section 7.

8.1 R1
The language should be based on SQL.

As of now, only querying is implemented. The existing
SQL SELECT construct is used for this, and the calculated
probability can be called as one would call a column. So,
at this moment inSQeLto qualifies as SQL-based. Func-
tionality that is added in the future could use entirely new
constructs. These new constructs should use the same way
of calling columns and tables and a similar structure to
SQL to keep the language SQL-based. This can also be

Input (inSQeLto) Output (DuBio SQL)

select id, lname from per-
son

SELECT id, lname
FROM person

select id, lname, prob
from person

SELECT id, lname,
round(prob(dict.dict,
person. sentence) ::nu-
meric,3) AS probability
FROM person, dict
WHERE dict.name =
’mydict’

select id, lname, prob
from person det

SELECT id, lname, 1 AS
probability FROM per-
son det

select order.oid, cus-
tomer.name from order
join customer on order.pid
= customer.pid

SELECT order.oid,
customer.name,
round(prob(dict.dict,
order. sentence & cus-
tomer. sentence) ::nu-
meric,3) AS probability
FROM order JOIN cus-
tomer ON order.pid
= customer.pid, dict
WHERE dict.name =
’mydict’

select lname, prob from
person group by lname

SELECT lname,
round(prob(sum(dict
.dict),
agg or(person. sentence))
::numeric,3) AS probabil-
ity FROM person, dict
WHERE dict.name =
’mydict’ GROUP BY
lname

Table 2. Input and output of some inSQeLto queries.

verified by user testing with people that have experience
with SQL.

8.2 R2
Existing SQL commands without probabilistic behaviour
should not be converted.

If none of the tables in the SELECT command is proba-
bilistic the command is not converted. One exception to
this is that if the probability is called, it is replaced by the
number 1 so that the query can still be executed. Other
SQL commands are parsed as a string and then printed
again without being converted. Therefore, this require-
ment is passed.

8.3 R3
The language should be able to be extended.

Every part of the system is designed to be extensible. A
new construct can be added to the grammar and the parser
can be extended to parse that construct. Furthermore, the
error scanner can call errors if needed and the converter
can make changes to the parsed construct if desired. Fi-
nally, the printer can print it to generate the output SQL
queries. This ensures that new constructs can be added
and that the requirement is passed.

8.4 R4
Compile time should not be longer than 0.2 seconds.

See Table 3 for the compile time measurements for dif-
ferent types of queries. The different parts of the system
were tested by measuring the compilation time of differ-

5

ent queries. While most of these queries easily passed
the requirement, some took a lot longer than was deemed
acceptable. These queries were the ones that contained
a call to a function (“select concat(fname, ‘ ’, lname) from
person”). It was quickly found that the parser was the lim-
iting factor for the compile time for these queries. It was
also noticed that whether typecasting (“select id::numeric,
fname from person”) was enabled in the parser had a sig-
nificant influence on the compile time.

For queries without function calls that are tested, the com-
pile time always passes the requirement. However, with
the current implementation, the compile time grows al-
most linearly with the number of queries in a command.
Luckily, this can be attributed to the fact that internet
speed is the limiting factor for these queries and requests
to the database are sent one by one for each query. This is
confirmed by the fact that a query without tables, which
requires no database request, compiles much faster than
the same query with tables (see Table 3). It can easily
be altered so that only one request has to be sent at the
beginning of the compilation. Conversion of the queries
does not seem to have a significant effect on the compile
time.

The reason that the parser is a lot slower when function
calls are made is that it parses values (see section 7.1).
A function call is in an expression, but an expression can
also be at the beginning of a condition. Since the value is
parsed from left to right it first has to check if the expres-
sion is a part of a condition before it can be parsed as an
expression. This will not take very long for most queries,
but the arguments of a function call are values as well.
Parsing when there are nested values takes an unaccept-
able amount of time. When typecasting is added to the
parser the compile time gets even slower since the parser
now first tries to parse a value with a typecast before it
can parse value without one.

Because of these reasons this requirement has been failed.
However, the goal for this project was to design the lan-
guage and the implementation was mostly intended to find
out how to convert queries. The requirement was mainly
set to find which parts of the system could hinder the
performance of the system and how to improve on those
in later versions. Sections 9.5.3 and 9.5.4 describe future
work that could ensure that a newer version of the system
passes the requirement.

9. CONCLUSION
This research has put in the groundwork for a query lan-
guage that is designed for probabilistic databases and can
be used for DuBio specifically. The conclusions to the re-
search question and its sub-questions answer why some
design decisions have been made and to what resulting
design these have led. Since inSQeLto is not a finished
product yet some further work has to be done, which is
described in section 9.5. Overall, this language could help
spread the use of probabilistic databases. This could lead
to a decrease in the amount of incorrect data that is being
used, which will have a positive impact on an increasingly
digital world.

9.1 SQ1
How are existing SQL constructs interpreted?

During compilation, the input is parsed into a parse tree.
This parse tree can then be converted so that columns,
tables, conditions, etc. can be changed, deleted or added.
For example, during conversion of the SELECT command,
the table of dictionaries is added to the tables, a condition

ID Description
Compile
time
(ms)
A B

1 query no tables 9 13
2 query with table 37 41
3 query with probability 40 59
4 query and update command (not

parsed)
41 59

5 two queries 72 81
6 three queries and two update com-

mands (not parsed)
104 121

7 same as above but no tables 22 46
8 group by 41 38
9 order by 37 47
10 query with function call 144 718
11 two queries with function calls 460 3799

Table 3. Compile time for different sorts of queries. The
A and B columns for the compilation time refer to running
with parsing for typecasting disabled and enabled respec-
tively. These values are the average of five runs. The exact
query used for each row can be found in Appendix A by
their id.

is added so that the correct dictionary is used, and the call
to the probability is changed by a call to the probability
function that takes a sentence and dictionary as input.
After this conversion, the parse tree is printed again and
presented to the user.

9.2 SQ2
What new constructs are desired and how are they added
to inSQeLto?

New constructs are created for desired functionality for
which there is no existing SQL construct that would be
logical to use. There are already several ideas for func-
tionality that could have their own constructs, see section
9.5.1. New constructs should be designed to be similar
to existing SQL constructs so that R1 is still passed (see
section 8.1). Furthermore, the grammar and parser of in-
SQeLto are both designed to be extendable. This makes it
possible to add these new constructs to the inSQeLto com-
piler. Just like how existing SQL constructs are converted
(section 9.1), the new constructs can also be converted.
However, the difference is that while existing constructs
are only altered to include the probability for example,
new constructs have to be converted to an existing SQL
construct. After this conversion the parse tree is printed
to SQL. This now only consists of existing SQL constructs
that can be executed by DuBio and perform the desired
functionality of the new construct.

9.3 SQ3
Does the inSQeLto compiler require a connection to a
database?

It is possible to check if a table contains a certain col-
umn in SQL. This can be used to see which tables contain
a sentence attribute, and are therefore probabilistic [10].
In order to calculate the combined probability of all the
tables used in a query, all probabilistic tables could use
this sentence column to calculate their probability and the
non-probabilistic tables could just use a probability of 1.
Unfortunately, all the columns used in an SQL query have
to exist, even if they are never called because of the checks
that happen. A possible solution could have been to add
a command that adds the sentence column to all non-

6

probabilistic tables before the query and one that deletes
them afterwards. But this would be quite cumbersome
and might hinder performance as well. Therefore, send-
ing a query to determine which of the tables in a query
are probabilistic before the input is converted is a bet-
ter solution. Knowing this, a connection to the database
on compile time might not be necessarily required but is
the best solution. This is also supported by the goal that
eventually the compiler will run on the same server as the
database anyway (see section 9.5.2).

9.4 Research Question
How to design a query language for probabilistic databases?

This conclusion is established by combining the conclu-
sions of the sub-questions. The final design for inSQeLto
is a query language that includes all SQL constructs, some
of which are converted so that they automatically work
for both deterministic and probabilistic functionality and
some are left untouched. It can also be extended with new
constructs for specific functionality, these new constructs
should be similar in format to existing SQL constructs to
still consider the language SQL-based. The compiler for
inSQeLto does require a connection to a database so that
it knows which tables in the database are probabilistic.

9.5 Future Work
This section explains what future work has to be done in
order to make inSQeLto a success.

9.5.1 Extension
At this moment, only querying is implemented. It is also
possible to use standard SQL commands to achieve other
probabilistic behaviour. However, for the language to be
complete more probabilistic functionality has to be de-
signed and implemented. Examples of such functionality
are:

• A command that can be used to merge multiple ta-
bles, while automatically creating sentences for the
entries.

• A command that updates the probabilities for a vari-
able in a dictionary.

• Extension of the SELECT command to improve ex-
pressiveness.

9.5.2 Integration with DuBio
As of now, the compiler is a loose system that can be in-
stalled on the client-side with its own user interface. While
this is fine for demonstrating that everything works as a
proof of concept, it is only a temporary solution. In the
future, it should be running on the server-side together
with the rest of DuBio. Just like how SQL commands can
be sent to the server on a specific port, this subsystem for
inSQeLto should have its own port. When receiving input
on this port it should compile and convert it to SQL and
send the result to the existing system.

9.5.3 Optimisations
Sometimes parsing can take a long time, mainly because
the parser parses the input stream from left to right with-
out any extra information. This input stream can some-
times be parsed as multiple nodes in the grammar, and
all of these have to be checked. A possible solution might
be to rebuild the grammar so that the parser never needs
to look ahead far into the input stream, but this will hin-
der R1. Another solution could be to use a parser that
has extra information, like what the input types are for

certain functions, this could improve the performance of
the parser. An even better solution might be the future
work in section 9.5.4 since this uses a parser that is already
optimized for SQL.

9.5.4 Use of the PostGreSQL Parser
SQL that is used for PostGreSQL supports quite complex
commands. So extending the current system to support
all these commands as well can be a time-consuming and
complex operation. A better solution might be to use the
already existing parser stage from PostGreSQL to parse
an input, possibly with some modifications so that newly
added constructs can be parsed as well. This should fix the
shortcomings of the current system described in section
8.4 as well. Another advantage of doing this is that it
can increase performance even more. This is because now
the input is parsed, the converted parse tree is printed,
and this result is parsed again. By using the PostGreSQL
parser, the input only has to be parsed once, which will
most likely be a quicker process.

10. REFERENCES
[1] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re,

and D. Suciu. Mystiq: a system for finding more
answers by using probabilities. In Proceedings of the
2005 ACM SIGMOD international conference on
Management of data, pages 891–893, 2005.

[2] J. L. Harrington. SQL clearly explained. Morgan
Kaufmann, Burlington, Massachusetts, 2010.

[3] J. Huang, L. Antova, C. Koch, and D. Olteanu.
Maybms: A probabilistic database management
system. In ACM SIGMOD 2009, June 2009.

[4] International Organization for Standardization.
Information technology — Vocabulary.
https://www.iso.org/obp/ui/iso:std:iso-iec:2382.
Accessed: 25-06-2021.

[5] R. Jampani, F. Xu, M. Wu, L. L. Perez,
C. Jermaine, and P. J. Haas. Mcdb: a monte carlo
approach to managing uncertain data. In Proceedings
of the 2008 ACM SIGMOD international conference
on Management of data, pages 687–700, 2008.

[6] D. Leijen. Parsec, a fast combinator parser. October
2001.

[7] M. Magnani and D. Montesi. A survey on
uncertainty management in data integration. J.
Data and Information Quality, 2(1), July 2010.

[8] I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen,
and J. Bettin. Domain Engineering. Springer,
Berlin, Heidelberg, 2013.

[9] The PostgreSQL Global Development Group.
PostgreSQL. https://www.postgresql.org/about/.
Accessed: 28-04-2021.

[10] M. van Keulen. DuBio Wiki.
https://github.com/utwente-db/DuBio/wiki.
Accessed: 28-04-2021.

[11] M. van Keulen. Probabilistic Data Integration.
Springer, Netherlands, Feb. 2018.

[12] M. van Keulen and A. de Keijzer. Qualitative effects
of knowledge rules and user feedback in probabilistic
data integration. VLDB Journal, 18(5):1191–1217,
October 2009.

[13] J. Widom. Trio: A system for data, uncertainty, and
lineage. In Managing and Mining Uncertain Data.
Springer, 2008.

[14] R. Wieringa. Design Science Methodology for
Information Systems and Software Engineering.
Springer, Heidelberg, 2014.

7

APPENDIX
A. QUERIES

ID Query

1 select 3
2 select lname from people
3 select id, lname prob from people
4 select id, lname, prob from people
5 select fname, prob from people; select

lname from people where id < 3
6 select fname from people; update people set

lname = ’doe’ where id = 0; update peo-
ple set fname = ’john’ where id = 0; se-
lect fname from people; select fname, lname,
prob from people

7 select fname; update people set lname =
’doe’ where id = 0; update people set fname
= ’john’ where id = 0; select fname; select
fname, lname, prob

8 select lname from people group by lname
9 select lname from people order by id asc
10 select lname from people group by lname

having sum(id) > 5
11 select fname, round(prob*100) from people;

select lname from people group by lname
having sum(id) > 5

B. METHOD DOCUMENTATION
B.1 Method 1
SELECT column1 [, column2 , etc.]

FROM table1 [, table2 , etc.]

[WHERE column [=|>|<|<=|>=] value]

[ORDER BY column [ASC|DESC]]

For this method the existing SQL SELECT query is used.
If one or more of the tables that are used are probabilistic
it will automatically calculate the probability of correct-
ness (as a percentage) for every entry and display it as
the last column in the results. This probability can also
be called as a column in the WHERE and ORDER BY
clauses by the name “ prob”.

B.2 Method 2
SELECT column1 [, column2 , etc.]

FROM table1 [, table2 , etc.]

[WHERE column [=|>|<|<=|>=] value]

[ORDER BY column [ASC|DESC]]

For this method the existing SQL SELECT query is used.
To display the probability of correctness (as a percentage)
for each entry, “ prob” has to be called as a column, which
can also be used in the WHERE and ORDER BY clauses.

B.3 Method 3
PROBSELECT column1 [, column2 , etc.]

FROM table1 [, table2 , etc.]

[WHERE column [=|>|<|<=|>=] value]

[ORDER BY column [ASC|DESC]]

For this method a new selection query is used, PROBS-
ELECT. This query needs to be used if one of the tables
is probabilistic. It will automatically calculate the proba-
bility of correctness (as a percentage) for every entry and
display it as the last column in the results. This proba-
bility can also be called as a column in the WHERE and
ORDER BY clauses by the name “ prob”.

8

