
Providing Concurrency Guarantees Using An
Event-Driven Language

Alexander Stekelenburg
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.v.stekelenburg@student.utwente.nl

ABSTRACT
The need for programs to become concurrent is ever-growing.
This is a problem because concurrent programs are very
complex which makes it very difficult to write error-free
programs. In this paper, I design a programming language
that attempts to solve this problem by separating critical
and non-critical code sections and employing an event-
driven concurrency model. Additionally, I implement a
compiler for the language to ensure that providing the lan-
guage’s concurrency guarantees is feasible. The designed
language alleviates some of the problems which cause con-
currency issues at the potential cost of performance. The
event-driven concurrency model makes it easier to effec-
tively utilize a multiprocessor architecture and interacts
well with the separation of critical and non-critical code
sections.

Keywords
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1. INTRODUCTION
Programming error-free concurrent programs continues to
be a challenging task. The cause of this is the complex
interactions between different threads that are executing
code at the same time. To ensure these programs behave as
intended the programmer must use mutual exclusion where
necessary or use carefully designed lock-free data structures.
Additionally, computer hardware is becoming increasingly
parallel, so concurrent programs are needed to effectively
use the capabilities of this hardware. Hence we have a prob-
lem, concurrent programs are the way of the future but
programming them is challenging and error-prone. There
are attempts at solving this problem. One such attempt is
Transactional Memory (TM) which can be implemented
both in hardware and in software.[5] Additionally, some lan-
guages like Rust provide stronger concurrency guarantees
through extensive compile-time checking. These checks
help the programmer by detecting when they have made
a mistake, but they still have to fix the error themselves.
The goals of this research are defined as such:

• Design a language that provides strong guarantees
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about the behaviour of concurrent programs

• Implement a compiler for said language to discover
whether it is feasible to provide these guarantees

• Analyse whether the language’s concurrency guaran-
tees and event-driven concurrency model help to solve
or prevent the issues that are found in concurrent
programs

To achieve these goals, I will answer the following research
question: To what degree can the use of a language which
separates critical and non-critical code sections and has
an event-driven concurrency model provide concurrency
guarantees and lead to intuitive parallelization for the pro-
grammer? To answer this research question, I will first
answer these sub-questions:

RQ1 What concurrency issues are most common and what
causes these to be introduced into programs?

RQ2 What concurrency guarantees can be provided using
the information that the designed language has access
to at compile-time?

RQ3 To what degree do the compile-time concurrency guar-
antees from RQ2 and the event-driven concurrency
model provided by the designed language prevent the
concurrency issues identified in RQ1?

This paper is divided up into several sections. Firstly,
in section 2 I will discuss some existing solutions to the
problem. Secondly, in section 3 the design of the language
is explained along with the reasoning behind the choices
that have been made. Thirdly, the specifics of the compiler
implementation can be found in section 4. Fourthly, I will
present my results in section 5. Finally, I will conclude in
section 6 and discuss possible future topics of research in
section 7.

2. EXISTING SOLUTIONS
To implement our language’s concurrency model lock-based
synchronisation is used. An alternative to using locks is
using (Software) Transactional Memory (TM). TM is a
multiprocessor architecture designed to support lock-free
synchronisation without the performance drawback that
the conventional lock-free data structures have compared
to structures that require mutual exclusion.[5] TM works
by providing instructions to the programmer which allow
them to define sets of shared memory locations that should
be guarded against concurrent reads and writes. The pro-
grammer can then use these instructions to read from and
update the data at these locations, but the changes do not
become permanent until the transaction is committed. If
no other transaction has changed the data in the set of
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memory locations then the transaction succeeds, otherwise,
it is reverted. TM does not suffer from the conventional
problems that mutual exclusion has. Namely, deadlocks
and higher priority processes having to wait on lower prior-
ity processes. TM can be implemented in hardware (HTM),
software (STM), or using a hybrid (HyTM) approach.[13]
Meier and Gross (2019)[9] reflect on the results of the
Python VM being parallelised using STM and fine-grained
locking. STM and fine-grained locking both have a sig-
nificant performance overhead. However, in practice the
STM based implementation seemed to suffer less from this
depending on the use case. The Python VM implementa-
tions based on fine-grained locking have to employ quite
complicated locking strategies due to the need to adhere
to Python’s semantics. However, the language that is pro-
posed in this paper has semantics that are less restricting
than Python’s semantics. For this reason, I believe that,
despite Meier and Gross’s results, an implementation of
its concurrency model using fine-grained locking is a good
choice.

Another approach to prevent concurrency errors from end-
ing up in programs is using extensive compile-time checking.
A prime example of a language that has implemented this
is Rust. Rust’s safety mechanisms are based on its borrow
checker which keeps track of the ownership of variables.[10]
Using the borrow checker Rust effectively eliminates errors
due to mishandling of pointers and references. Ownership
of variables cannot be transferred to a different thread
which effectively prevents low-level data races. To actually
share variables one has to explicitly use data structures
that provide access using code that is not checked by the
borrow checker. These synchronisation constructs can be
marked with the Send trait which allows them to be shared
across multiple threads. The Rust standard library pro-
vides several synchronisation constructs which implement
this trait. While Rust’s borrow checker makes sure that
variables cannot be shared across thread boundaries with-
out using these synchronisation constructs, it does not
check whether these constructs are used appropriately. Es-
pecially Rust’s mutual exclusion construct Mutex can cause
high-level data races because it is automatically unlocked
when the borrow checker determines the guarded variable
is no longer used.[10]

3. LANGUAGE DESIGN
Because the language will compile to run on the Java
Virtual Machine (JVM) it shares many of Java’s semantics.
This includes the type system, heap allocation and implicit
boxing and unboxing of primitive types and their heap-
allocated Object counterparts. Furthermore, code blocks
follow the same scoping rules as Java. The choice to follow
Java’s semantics was made because the JVM is built to
optimise bytecode generated by the Java compiler. The
language provides a clear syntactic divide between contexts
where fields can be mutated and where they can not. This
is done using the concept of Read-Write Flows which apply
to any number of Components (data structures). These
Components are the only data the Read-Write Flow is able
to mutate. An example of the syntax of a Read-Write
Flow and a Component can be found in Listing 1. The
Read-Write Flow in this example declares the targets A
and B as mutable, has one (immutable) parameter called
amount and returns nothing (void). Before a Read-Write
Flow can be invoked it must be instantiated using the new
keyword. Whenever the Read-Write Flow is invoked the
language ensures that it has exclusive (mutable) access to
its fields and targets.

1 component BankAccount {
2 String owner;
3 float balance;
4 }
5

6 read_write_flow Transaction(float amount
) for BankAccount A, BankAccount B ->
void {

7 {
8 A.balance += amount;
9 B.balance -= amount;

10 }
11 }

Listing 1. A Component representing a bank account and
a Flow that performs a bank transaction

Furthermore, the language is built around an event-driven
concurrency model. Event-driven program structures have
advantages when it comes to the effective use of system
resources, but tend to make programs more complex.[3] To
implement this, the language has structures called Events
which are defined based on the data types that make them
up. An example of an Event’s syntax and how to fire it
can be found in Listing 2. The Event in the example has 3
fields which are passed to every Handler that is bound to
it when it’s fired.

1 event TransactionEvent -> BankAccount ,
BankAccount , float;

2

3 fire TransactionEvent(accountA , accountB
, 20.0f);

Listing 2. An Event that is fired when a bank transaction
takes place

Events can be bound to Handlers. An example of a Han-
dler’s syntax and how to bind it to an Event can be found
in Listing 3. The handler in Listing 3 also shows an exam-
ple of a field. Whenever a Handler is invoked through a
bound event being fired (in the example that would be the
TransactionEvent) it ensures that the fields and parameters
it uses cannot be mutated while the Handler is running.
However, when the Handler invokes a Read-Write Flow
or a Read Flow these constraints are let go to prevent
deadlock issues.

1 handler TransactionHandler for
BankAccount A, BankAccount B, float
amount {

2 String prefix;
3 {
4 println(prefix);
5 println(A.owner);
6 println(B.owner);
7 println(amount);
8 }
9 }

10

11 TransactionEvent => new
TransactionHandler("Transaction:");

Listing 3. A Handler that is bound to a
TransactionEvent

Whenever an Event is fired all of the Handlers that are
bound to it are executed by submitting them to the runtime
thread pool. Additionally, the language has two more
constructs the Function and the Read Flow. Functions are
pure procedures that only depend on their parameters and
do not have any side-effects. Read Flows are similar to
Read-Write Flows but they only get immutable access to
their targets. Examples of a Function and a Read Flow
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can be found in Listing 4. When the Read Flow in the
example is invoked the language will ensure that the target
A and field splitter remain unchanged until the Read Flow
has finished executing.

1 function fibonacci(int n) -> int {
2 if (n < 2) return 1;
3 return fib(n-2) + fib(n-1);
4 }
5

6 read_flow AccountBuilder () for String A
-> BankAccount {

7 StringSplitter splitter;
8 {
9 String [] split = splitter(A);

10 String owner = split [0];
11 Option <float > balance = parseFloat(

split [1]);
12 return new BankAccount(split[0],

unwrapFloat(balance));
13 }
14 }

Listing 4. An example of a Function that calculates the
n-th fibonacci number and a Read Flow that builds a
BankAccount from a String

Listing 4 also shows the language’s type system in ac-
tion. The local variable balance is of the generic type
Option<float>. The Option<T> type is defined in the
language’s standard library and can be instantiated for
any type T. The type system is based on Java’s types be-
cause the compiler targets the JVM. Components, Read(-
Write) Flows, Events, and Handlers all map to Java classes
whereas Functions are mapped to static methods. When-
ever a compiled program is executed a thread pool is cre-
ated and the initialisation Event is fired from the main
event loop. The program’s main behaviour, whose syntax
is simply a code block without surrounding keywords, is
a Handler for this Event. The event loop will keep run-
ning until the exit Event is fired using the quit() standard
library Function.

4. COMPILER IMPLEMENTATION
The compiler is implemented using ANTLRv41 and the
ObjectWeb ASM library2 in Java. ANTLR provides a
way to quickly generate the parser for the language. The
resulting parse tree is then turned into an Abstract Syntax
Tree (AST). This AST is passed to the code generator
which uses the ASM library to generate JVM bytecode.
The choice to target the JVM was made because it allows
the use of its garbage collector and the Java standard li-
brary. This simplified the code generation a lot because the
JVM handles memory management. Additionally, the Java
standard library contains many synchronisation constructs
which the generated code can use. In particular the java.
util.concurrent.locks.ReentrantReadWriteLock and the java.
util.concurrent.LinkedBlockingQueue were used for mutual
exclusion and the event queue respectively. To allow event
handling to be done concurrently the execution of these
Handlers is done by submitting them to the thread pool.
The thread pool of choice was the work-stealing pool, cre-
ated using java.util.concurrent.Executors#newWorkSteal-
ingPool. This pool was chosen because it is particularly
well suited for the efficient use of threads when the pro-
gram schedules many short-lived tasks which is a common
occurrence in event-driven programs. After compilation,
the resulting JVM bytecode is packaged in an executable

1https://www.antlr.org/
2https://asm.ow2.io/

JAR file along with the language’s standard library. The
standard library contains classes that are used internally
by the generated code to perform automatic locking and
run the main event loop. Additionally, the standard library
contains a few Functions and Flows that act as a wrapper
for the Java standard library to perform tasks like printing
to the standard output and conversions between Strings
and primitive types. The locking strategies that are gener-
ated by the compiler to ensure mutual exclusion for Flows
and Handlers are generated as separate classes to allow
them to be more easily replaced in the future. A more
detailed description of the way these locking strategies
work can be found in subsection 5.2.

5. RESULTS
5.1 RQ1
Strömbäck et al. (2019)[11] and Strömbäck et al. (2020)[12]
analysed common problems that students have while mak-
ing concurrency exercises. Students seemed to have the
most trouble with the proper identification of critical sec-
tions and deciding upon the best granularity for locks. The
improper identifications of critical sections can be split up
in two groups. The first group of students saw critical
sections as bits of code that should not be executed at the
same time and thus required synchronization. This is an
incomplete view because it is not just the code that needs
to be ”protected” but also the data that the code uses. As
such these students did not apply synchronization in other
locations where this same data was used or written. The
second group of students saw critical sections as variables
that should be accessible without data races. This is an
incomplete view because often a piece of code requires that
the variables it uses do not change while the calculation
is being performed. These students often used locks that
were too granular (one lock per variable and locking and
unlocking only for the direct usage of the variable). In
situations where a variable was read a calculation was per-
formed and the variable was written again, synchronization
would be applied around each read and write separately
instead of around the entire code fragment.

Kolikant (2004)[7] studied the evolution of high school stu-
dent’s understanding of synchronisation between two tests.
As was the case for [11, 12] student’s main problem was
the identification of the ways in which code required syn-
chronisation. However, even when these synchronisation
goals were identified the students still had problems un-
derstanding the concurrency constructs (e.g. semaphores)
that enabled synchronisation. Instead, students relied on
applying usage patterns for these constructs that they
had seen previously. This caused students to come to
the wrong conclusions about the thread-safety of the pro-
grams discussed in the test. Apparently, these concurrency
constructs were so complex that students did not have
sufficient understanding of them even after being refreshed
on the definitions of these constructs. This shows that a
lack of understanding can be hidden for a long time which
could cause concurrency issues if a programmer fails to
(find and) apply the correct usage pattern to their program.

Lu et al. (2008)[8] examined 105 concurrency bugs in four
large mature concurrent applications. Of these bugs, 31
were classified as deadlock bugs. Additionally, 72 of the
non-deadlock bugs could be classified as either atomic-
ity or order violations. Of the non-deadlock bugs 34%
involves more than one variable that is semantically con-
nected. Only 20 out of the 74 non-deadlock bugs were
fixed by adding locks. They give three reasons for this:
locks cannot guarantee some intent like ordering of ac-
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cesses, locks often come at a performance cost and they
may introduce new deadlock bugs. 44 out of 105 concur-
rency bugs could be avoided using Transactional Memory
(TM). TM is especially well suited for preventing data race
and deadlock bugs when they apply to relatively small
critical sections. However, if critical sections get too big
or if they involve I/O operations the use of TM gets more
complicated because it is harder to reliably revert these
operations. Additionally, 20 out of the 105 bugs could not
be solved using TM because TM cannot guarantee that
the programmer’s order intentions are observed. Unfor-
tunately, mutual exclusion also cannot guarantee to solve
this problem.

5.2 RQ2
The language design allows us to provide some guarantees
about the behaviour of concurrent programs written us-
ing the language. By only allowing side-effects to occur
in Read-Write Flows a compiler can easily generate lock-
ing strategies that prevent low-level data races. This is
achieved by creating a ReentrantReadWriteLock for each
Component. Whenever a Handler is invoked its locking
strategy is applied. The locking strategy will acquire read-
locks for each Component field of the Handler unless this
Component is marked with the concurrent keyword. Sim-
ilarly, the compiler also generates locking strategies for
Flows these strategies involve acquiring read-locks for the
Flow’s Component fields and the Read Flows’s targets and
acquiring write-locks for the Read-Write Flow’s targets.
If the locks are acquired (the order in which they are re-
leased does not matter) in a fixed order by every locking
strategy, it becomes impossible for a deadlock scenario to
occur.[4] The compiler generates the code for these locking
strategies. The strategy that was implemented orders all
components that need to be locked based on a Universally
Unique Identifier (UUID) whenever the locking strategy’s
startSection method is invoked. This UUID is generated for
each instance of a component whenever it is instantiated
using the new keyword. Whenever a locking strategy’s
endSection method is invoked it will release all the read
and write locks that were acquired by the startSection
method. To do this the startSection method writes the
list of components that were locked to a cache which is
re-used by the endSection method. The language also at-
tempts to prevent livelock scenarios by employing an Event
queue which prevents repeated Events from being handled
before the previous instance was handled. This is not a
watertight solution because there is no way to pre-empt
a long-running Handler which means such a Handler can
hold up the execution of any subsequent Handlers that
need access to the same data. Flows can only be invoked
from Flows and Handlers because Functions are prevented
from having any side-effects. This has the upshot that
the compiler does not need to generate locking strategies
for these procedures while still guaranteeing that low-level
data races cannot occur. Similarly, Events can only be
fired from Flows and Handlers because Events trigger Han-
dlers which may in turn cause side-effects. Additionally,
Flows can only invoke other Flows on local variables or on
targets that they already have a read or write lock on. This
is needed to avoid the locking order changing arbitrarily
because nesting Flows would allow locking to be delayed
until the nested Flow was invoked.

Low-level data races are not the only data races that ap-
pear in concurrent programs. Artho et al. (2003)[1] define
high-level data races as: ”sequences in a program where
each access to shared data is protected by a lock, but the
program still behaves incorrectly because operations that

should be carried out atomically can be interleaved with
conflicting operations”. High-level data races can occur
even if there are no low-level data races[1]. This form
of data race occurs when the scope of variables that are
”guarded” by a lock is inconsistent. Artho et al. (2003)[1]
provide an algorithm that attempts to find these inconsis-
tencies but this algorithm still results in false positives and
false negatives. This is because it is hard to infer the intent
of the programmer. The language design discussed in this
paper attempts to make it easier for the programmer to
express the program’s intended behaviour. It does this
by providing Read-Write Flows and Read Flows which
are syntactic structures that represent (read-only) critical
sections. By providing a clear syntactic separation between
code that is a part of a critical section and code that is
not, it becomes intuitive to put all variable accesses that
belong together in the same code block. Another way to
express this is that this syntactic separation encourages
the programmer to divide their code up into linearizable
operation. If an operation on an object is linearizable it is
essentially atomic with respect to other operations on that
object[6]. This means it is impossible for operations to be
executed on a linearizable object that lead to unpredictable
behaviour.

5.3 RQ3
After answering RQ1 we find that most concurrency issues
have on of three causes.

1. It is hard to identify which code sections and which
memory locations are part of a critical section

2. The use of specific synchronisation constructs is hard
and students often rely on the combination of pre-
viously seen patterns instead of fully grasping the
semantics of the data structures.

3. A programming language’s execution model is often
thought of as simpler than it actually is. This leads
programmers to make unconscious assumptions about
the execution of the program.

The language attempts to solve these issues in the follow-
ing ways. Firstly, the language provides the Read Flow
and Read-Write Flow constructs that correspond to the
program’s critical sections. Because these constructs have
their own scope it is impossible to forget to include a data
access in the section. Because the mutation of non-local
variables is exclusively possible in Read-Write Flows it is
assured that every write operation whose result might be
accessed concurrently is automatically guarded with a lock.
Secondly, the language intentionally obscures the underly-
ing synchronisation constructs that are used to provide its
concurrency guarantees. This comes with the downside of
reduced performance compared to the best-case scenario of
a programmer’s direct usage of synchronisation constructs.
However, abstracting away these constructs allows the pro-
grammer to focus on the intended behaviour of the program
and precludes the possibility of writing code that results
in deadlocks, data races or other concurrency issues. Care
should still be taken to use data structures that require a
minimal amount of mutual exclusion. However, because
of the concurrency guarantees the language provides, this
can only lead to degraded performance and no longer to
incorrect behaviour. Thirdly, most programming languages
are sequential in nature. However, when threading is added
to a language this breaks a lot of the guarantees that these
languages normally provide in a single-threaded context.
To visualise the program execution of programs that use
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a thread-based concurrency model one has to think about
multiple sequential programs executing in parallel. This is
different for programs that use an event-driven concurrency
model. Event-driven programs can easily be visualised as
a graph of events and the event handlers that are trig-
gered by these events and the events that are in turn fired
by the event handlers. This is easy to understand be-
cause it is analogous to many real-world processes which
can also be understood as sequences of actions (events)
and responses(event handlers). Additionally, Dabek et al.
(2002)[2] have shown that event-driven programs can be
efficient, easy to use and make good use of multiprocessor
hardware.

5.4 Example Application
To provide a comparison between Java and our language
a simple banking application was implemented in both
languages. This application consists of six producers which
will execute transactions between the same two bank ac-
counts. If no race conditions occur the resulting balances
in each account will be the same as the starting balances.
Listing 5 shows the Java implementation of the applica-
tion using Threads and synchronized blocks. I decided to
use these constructs to provide an example of a program
written using a thread-based concurrency model and which
uses synchronisation constructs in an explicit manner. List-
ing 6 shows the implementation of the application in our
language using Read-Write Flows and Handlers. As op-
posed to the Java implementation this implementation uses
the language’s event-driven concurrency model. Addition-
ally, the choices that determine which variables and code
sections need to be guarded with specific synchronisation
constructs are implicitly defined through the language’s
syntax which requires the programmer to separate the mu-
table from the immutable context. These listings can be
found in Appendix A. To compare the performance of
these implementations some benchmarks were performed.
These benchmarks were performed on a machine with an
i7-8750H (6 cores/12 threads at a 2.2ghz base clock) pro-
cessor. Because the thread pool used by our language
automatically utilises a number of threads matching the
number of threads the processor has, the implementation
uses at most 12 threads. However, because the application
only has 7 event handlers (including the main behaviour)
not all of these threads are in use. Therefore, the amount
of threads used by the Java implementation and the im-
plementation in our language is the same. subsection 5.4
shows the average execution times over 20 runs of each
implementation.

0 2 4 6 8

Java

Our Language

7.98

7.65

Execution time (s)

Figure 1. The average execution times of the banking appli-
cation in Java and in our language

While these execution times seem to show our language
being slightly faster than Java in this use case, this is most
likely caused by the complexity of run time lock-ordering
giving other threads extra time to execute which leads to
less failed transactions due to insufficient balances. To
test this the implementations were updated to include

a Thread#Yield call at bottom of the while loop body.
Figure 5.4 shows the execution times for the updated im-
plementations. As expected, the implementation in our
language got slower because it spent more time waiting
between each loop iteration. However, the Java imple-
mentation became more than ten times faster because
threads were no longer able to repeatedly re-acquire the
locks before the other threads got a chance to perform a
transaction. The run-time lock ordering performed by our
language evidently introduces a significant performance
overhead. Notably, there are several ways in which this
issue can be minimised which are discussed in section 7.
While this is a trivial example it does show a way in which
our language simplifies some of the choices a programmer
must make. For the synchronized blocks in lines 38-45
the programmer had to not only decide which variables
needed to be guarded but also the order in which these
synchronisation measures were used. This order has to be
preserved throughout a program to avoid deadlocks. By
contrast, while in our language the programmer still has
to identify the bank accounts as the variables which are
mutable this automatically follows from the fact that their
balance must be mutated in a transaction. Additionally,
the lock ordering is handled by the generated program
runtime. The thread-based concurrency model is arguably
more intuitive for this program because it is more intuitive
to wait for (join) all the threads to finish executing instead
of keeping track of this yourself using the FinishCounter
and the Incrementer. This problem could be resolved by
implementing Futures and Callbacks which are described
in more detail in section 7.

0 2 4 6 8 10

Java

Our Language

0.62

9.35

Execution time (s)

Figure 2. The average execution times of the updated
banking application in Java and in our language

6. CONCLUSION
In this research, an attempt was made to discover whether a
language that makes the programmer separate their code’s
critical sections from the non-critical sections while em-
ploying an event-driven concurrency model has benefits
when creating concurrent programs. Firstly, most con-
currency issues are caused because it is hard to identify
which code segments and variables need to be in a critical
section. Especially for complex projects, it is easy to forget
to include something. The language solves this by separat-
ing non-critical and critical sections into different lexical
scopes. This helps to avoid both low-level and high-level
data races. Secondly, it can be hard to grasp the seman-
tics of specific synchronisation constructs. This can lead
to deadlocks, livelocks and data races. By automatically
generating locking strategies the compiler assures that the
resulting program is free of these problems. However, this
comes at a performance cost compared to manually using
synchronisation constructs. Finally, the language’s use of
an event-driven concurrency model helps to make writing
concurrent programs more intuitive by making concurrency
a central part of the program’s execution model, instead
of an addition like with thread-based models.
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7. FUTURE WORK
There is still a large part of this topic that this research does
not cover. Firstly, a language that clearly separates not
only critical and non-critical section but also mutable and
immutable contexts is a great target for many optimization
techniques. The compiler implemented for this research
makes no attempt to optimize the code that it puts out.
Particularly the locking strategies that are generated by
the compiler have some obvious ways in which they could
be optimized. For Handlers read locks could be released
once a variable stops being used instead of at the end of the
handler and for Read-Write Flows that invoke other Flows
on the same targets re-entering the locks could be skipped.
There are many more of these potential optimizations to
explore. Secondly, in section 2 I discussed (S)TM as an
alternative to fine-grained locking. A re-implementation
of the language’s compiler using TM could yield further
optimization. Finally, many event-driven languages make
extensive use of so-called Futures and Callbacks which
describe values computed asynchronously and code that
is executed when another task is complete. While the
programmer can implement this themselves using a mul-
titude of Events and Handlers the integration of these
constructs in the language itself could provide additional
information to the compiler about the way certain vari-
ables are used which might allow for more efficient locking
strategies to be generated. Finally, more work is needed
to test whether identifying mutability constraints, like our
language requires the programmer to do, is indeed easier
than identifying critical sections.

APPENDIX
A. LISTINGS

1 class Banking {
2 static class BankAccount {
3 float balance;
4

5 public BankAccount(float balance
) {

6 this.balance = balance;
7 }
8 }
9

10 static class TransactionProducer
implements Runnable{

11 final int count;
12 final float amount;
13 final BankAccount A;
14 final BankAccount B;
15

16 public TransactionProducer(int
count , float amount , BankAccount
A, BankAccount B) {

17 this.count = count;
18 this.amount = amount;
19 this.A = A;
20 this.B = B;
21 }
22

23 boolean transaction () {
24 if (A.balance - amount < 0

|| B.balance + amount < 0) {
25 // Failed
26 return false;
27 }
28 A.balance -= amount;
29 B.balance += amount;
30 // Success
31 return true;
32 }
33

34 @Override
35 public void run() {

36 int i = 0;
37 while(i++ < count) {
38 synchronized (A) {
39 synchronized (B) {
40 if (! transaction

()) {
41 // Failed so

repeat
42 i--;
43 }
44 }
45 }
46 }
47 }
48 }
49

50 public static void main(String []
args) {

51 long start = System.
currentTimeMillis ();

52 BankAccount A = new BankAccount
(250f);

53 BankAccount B = new BankAccount
(250f);

54 Thread a = new Thread(new
TransactionProducer (250000 , 50,
A, B));

55 Thread b = new Thread(new
TransactionProducer (250000 , -50,
A, B));

56 Thread c = new Thread(new
TransactionProducer (250000 , 50,
A, B));

57 Thread d = new Thread(new
TransactionProducer (250000 , -50,
A, B));

58 Thread e = new Thread(new
TransactionProducer (250000 , 50,
A, B));

59 Thread f = new Thread(new
TransactionProducer (250000 , -50,
A, B));

60 a.start();
61 b.start();
62 c.start();
63 d.start();
64 e.start();
65 f.start();
66 try {
67 a.join();
68 b.join();
69 c.join();
70 d.join();
71 e.join();
72 f.join();
73 }catch (InterruptedException

ignored){}
74 System.out.println("Amount after

I’m done");
75 System.out.println(A.balance);
76 System.out.println(B.balance);
77 System.out.println("Took:");
78 System.out.println(System.

currentTimeMillis () - start);
79 }
80 }

Listing 5. An implementation of a simple banking application
in Java

1 component FinishCounter {
2 int count;
3 }
4

5 read_write_flow Incrementer () for
FinishCounter counter -> int {

6 long start;
7 {
8 return ++ counter.count;

6



9 }
10 }
11

12 component BankAccount {
13 float balance;
14 }
15

16 read_write_flow Transaction(float amount
) for BankAccount A, BankAccount B ->
boolean {

17 {
18 if (A.balance - amount < 0 || B.

balance + amount < 0) {
19 // Failed
20 return false;
21 }
22 A.balance -= amount;
23 B.balance += amount;
24 // Success
25 return true;
26 }
27 }
28

29 handler TransactionProducer for
BankAccount A, BankAccount B {

30 int count;
31 float amount;
32 Incrementer incrementer;
33 {
34 Transaction t = new Transaction(

A, B);
35 int i = 0;
36 while(i++ < count) {
37 if(!t(amount)) {
38 // Failed so repeat
39 i--;
40 }
41 }
42 if(incrementer () == 6) {
43 println("Amount after I’m

done");
44 println(floatToString(A.

balance));
45 println(floatToString(B.

balance));
46 println("Took:");
47 println(longToString(millis

() - incrementer.start));
48 exit();
49 }
50 }
51 }
52

53 event ProduceEvent -> BankAccount ,
BankAccount;

54

55 {
56 long start = millis ();
57 FinishCounter counter = new

FinishCounter (0);
58 Incrementer incrementer = new

Incrementer(counter , start);
59 ProduceEvent => new

TransactionProducer (250000 , 50f,
incrementer);

60 ProduceEvent => new
TransactionProducer (250000 , -50f,
incrementer);

61 ProduceEvent => new
TransactionProducer (250000 , 50f,
incrementer);

62 ProduceEvent => new
TransactionProducer (250000 , -50f,
incrementer);

63 ProduceEvent => new
TransactionProducer (250000 , 50f,
incrementer);

64 ProduceEvent => new
TransactionProducer (250000 , -50f,

incrementer);
65 fire ProduceEvent(new BankAccount

(250f), new BankAccount (250f));
66 }

Listing 6. An implementation of a simple banking application
in our language
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