
The Usage of Models in Model-Driven Software
Engineering

Anissa D. Donkers
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.d.donkers@student.utwente.nl

ABSTRACT
During the Software Systems module of the Bachelor of
Computer Science at the University of Twente, students
learn how to produce code based on Model-driven Software
Engineering (MDE). They are familiarized with different
kind of Unified Modelling Language (UML) diagrams to
model software systems. The topics that are taught are
part of the knowledge base of MDE.
This research looks into the recognition of diagram types
and which design models are actually used by practitioners.
The result of this research could be used for an improvement
to the Computer Science MDE curriculum, but also for
other technical studies at the University of Twente (UT)
where students learn how to develop a software system.
The curricula could be adapted so that they are more
fitting to what is used by practitioners in the field of
software engineering. From the results it is concluded that
practitioners prefer to use self designed syntax over the
UML syntax. Generally, the use of design is not prominent.
However, when there are diagrams, they mostly present
the architecture of the system.

Keywords
Modelling Formalism, Model-Driven Software Engineering,
Design Usage, Education

1. INTRODUCTION
Model-Driven Software Engineering (MDE) is a develop-
ment methodology that focuses on creating and exploiting
domain models. This methodology is taught in all com-
puter science curricula, including the Bachelor and Master
degrees. A core set of concepts and practices (i.e. a Body
of Knowledge) was proposed during the MODELS 2018
Educators’ Symposium [10], based on the experiences of
people who are researchers in this domain. The main sub-
jects for the curriculum were determined and the advice
was that these concepts should be taught in the Software
Engineering courses [9].

MDE courses teach how to formulate a design of a software
system in a model with well-defined semantics. There
are a lot of different graphical modelling languages. Each
language in turn has different types of models or diagrams.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

For instance, the Unified Modelling Language (UML) has
14 different types of diagrams such as class and activity
diagrams [8]

Although there is a great variety of design models which
are accepted in the field, only a small portion is taught in a
curriculum. Optimally, it would be good to have this part
to be as relevant as possible for the practice. By doing so,
graduated students are well prepared for working in the
MDE field.

1.1 Research question
The goal of this paper is to investigate what design models
are used in practice. In particular, the following questions
will be investigated:

1. What are the inclusion and exclusion criteria for the
contributions and their artefacts?

2. What are the characteristic components of a design
model and how can these models be categorised?

3. Which design model components are used in practice
and by whom?

This paper presents literature research and observation
research. First, a schema was created for analysing the
data-set and especially for the recognition of modelling
types of design diagrams. Thereafter, the work of graduate
students was analysed. For each present software design
diagram, the components were noted and the diagram
received a general type as a label. Next, published work
from a software conference was analysed. This large data-
set was filtered down by the criteria which were defined
with the first research question.

The structure of the paper is as follows; This paper will
first go through the first two research questions. After
these questions are answered, a classification schema can
be given. This schema will contribute to the recognition of
the diagram type.
Next, the outcome of the observation is discussed per data-
set as described before. The paper will be concluded with
points of discussion, a recommendation for the curricu-
lum for software engineering courses at the University of
Twente and future work.

2. BACKGROUND
The module Software Systems of the Bachelor of Computer
Science offers a good start for novice programmers on how
to design and document systems using Software Engineer-
ing models [2]. Various components are introduced during
this course and this knowledge can be extended during the

1



Master of Computer Science. A body of knowledge for
MDE has been assembled by several researchers [10, 9, 13].
The body of knowledge specifies topics that are relevant
for bachelor and master studies in the area of software
engineering. The topics are very diverse since there is a lot
to know about MDE.

To go further into depth about models and design, there
are a lot of different types of models. Even only considering
UML, not every diagram is as well known as the others.
In previous research, Reggio et al. [14] did a survey about
the use of UML diagram types, to find out which diagrams
were known and which were used. One of the outcomes of
this survey was that several UML diagrams were known by
approximately less than half of the participants (namely
timing and interaction overview diagrams) and most had
been produced by fewer than half of the industry partic-
ipants. Academic participants in general knew and pro-
duced more of the diagram types. Additionally, another
outcome was that the usage of the given diagrams was
lower than the knowledge of these diagrams. So even when
the developer is familiar with certain diagrams, they do
not use them in their work.

In the research of Reggio, he collected the usage of design
models from the developer’s own point of view. Also, the
research was focused on the knowledge and usage of UML.
However, what a practitioner uses and thinks that they use
could differ. Therefore, this research observed what prac-
titioners actually use for the modelling of their software
system. This research not only looks for UML diagrams
in the work of practitioners but also looks for the general
design diagrams and their layout and components. This
gives more insight in software modelling than when only
looking at

3. INCLUDING AND EXCLUDING CRITE-
RIA

This section will answer the first research question of this
paper. The question was formulated to set the restrictions
on the data-set which is used for this research. On the
ground of generalizability and representativeness not being
the main concern for this research, the data-set has to fulfil
certain requirements.
The answer to the questions was found by analysing the
environment of the problem and by giving a definition to
practitioners.

Since the term practitioners gives a broad result, a bound-
ary has been set. The focus lies on which practitioners and
their work are interesting for this research.
For this research, practitioners are limited to students from
Technical Computer Science at the UT that have built
a model-driven software system, and engineers that have
built a model-driven software system which is presented
at a software engineering conference. The motivation for
these choices can be found below.

3.1 Venue
This research was motivated by the University of Twente.
This means that there were some requirements regarding
the data, keeping in mind that the result should be accurate
for the University. For this reason, the research focused
on practitioners’ work within the Netherlands. This was
done so that the UT can alter the curricula based on local
experiences. Therefore, the criteria that the data should
originate from a local source was determined. Local is

defined as practitioners from the Netherlands or their work
should be from a source where it would be likely that a
Dutch developer would publish their work.

Interesting factors of this research are the use of modelling
diagrams among students and software developers outside
of the university. First of all, the knowledge base about
model-driven software engineering of students from the UT
is known. This gives an informative insight into what the
students prefer to use. Additionally, practitioners outside
of the university give a good insight into what is preferred
in the field. Furthermore, it is good to reflect the results
of the students on a larger scale. That is why for this
research, the focus lies on students and developers in the
field of software development.

In short, the source from where the data was received
should be of interest for University of Twente to keep the
research as relevant as possible. Also, it was determined
that the data that was analysed must be from students of
the UT or software developers.
Possible venues(i.e. sources) where the data could be
collected from are named below;

• A source where students’ work is published.
This is for the reason that the knowledge of the stu-
dent is predetermined by following the curriculum.
This gives an interesting comparison to what is actu-
ally used.

• A source where University lecturers’ work is published
These employees of the university teach the students
how to design software systems with design diagrams.
It is interesting to know what they themselves use for
their work. This also is a broad sample group since
these teachers have different backgrounds.

• Information-technology (IT) conferences
When looking at the participants of a general IT con-
ference the backgrounds of these participants could
also vary just like the background of the employees
of the UT. Furthermore, this data-set could be quite
large, which is preferable for this research.
Another possibility is to look only at Software En-
gineering conferences. These are more specific and
have a bigger probability of showing designs related
to a software system.

Examples of venues are the EEMCS - Bachelor Showcase
[1] for analysing the work of students and the research
information web page from the University of Twente [6] for
analysing published work of UT lecturers. There are several
IT conferences, one of them is ICT Open [4]. Examples
of conferences related to only software engineering are the
International Conference on Software Engineering [7] and
the Intelligent tutoring systems International Conference
[12].

In the end, the decision has been made to observe 2 venues
due to the scope of the paper. These were the Bachelor
Showcase and the International Conference on Software
Engineering 2020. The choice for these venues has been
made because they show two extremes. Normally students
and participants of such conference would not influence
each others work.

3.2 Contributions
The venues, which were discussed previously, consist of
contributions from practitioners. The next phase is to filter
these contributions so that only the relevant papers for this

2



research would be analysed. Therefore, from the available
data at a certain venue, only a sample was considered. The
sample was selected based on the following predetermined
criteria.

• The paper represents a software system.

• The paper should represent a self-made system such
that the data that was gathered are developed by
practitioners.

• In order to have a relevant result, the contribution
should be no older than 5 years. This is because
the field of Software Engineering and IT in general
evolves quickly.

• The paper includes one or more software design dia-
grams

3.3 Artefacts
For this research the artefacts are the presented diagrams in
a contribution that fulfilled the requirements as described
above.

When looking at a diagram, there were several require-
ments that needed to be fulfilled to be considered for this
research. A diagram had to be directly related to the soft-
ware system of the contribution. It had to give a visual
representation of a process within the software, or of the
user-system interaction or of the architectural design of
the software.
It was not relevant for this research when the diagram
showed a workflow of the development (e.g. scrum dia-
gram), a graphical user interface, the working of a different
system than presented or any other diagram which is not
related to the software system and its procedures. Also
when the diagram showed either the in and/or output of
the system, the diagram was considered meaningless for
the research. A short overview of the artefact criteria is
given below.

• The diagram must be related to a software system.

• The diagram shows a process of the system, user-
system interactions or the architectural design.

• The diagram must not show any development related
process.

• The diagram must not show a GUI or general input
or output generated for/by the system.

The diagrams can be presented in a report or paper, these
diagrams were not considered as a communication tool
to the outside world but only as part of the development
process. These diagrams were part of the research but will
not be referred to as a communication tool.
The diagrams that are present on a poster or any other
presentation were considered a communication tool. A
presentation must clarify the system to outsiders. These
people are not involved in the development process, but
they are interested in the software system.

4. DIAGRAM CHARACTERISTICS
The goal of this part is to compose an overview of char-
acteristic elements of design diagrams. When looking at
a diagram, interpretation is the key. A design model will
represent only a simplified version of the system. This

means that the diagram should be understandable without
any extra information. Just to give an example, Figure 1
is a diagram of the MOOColab system [11]. This system is
not related to the project, its purpose is illustrative only.
This image is a nice example of what can be found when
looking at design diagrams of software systems. These kind
of diagrams are supposed to give an overview of the system
or its design. Later, an analysis is given on this diagram.

UML [5] has split up the overall design models into 3 dif-
ferent modelling types, namely Supplemental, Behavioural
and Structural Modelling.
According to the UML documentation, a diagram that
represents supplemental modelling will contain use cases
or deployments that are connected with information flows.
These deployments specify components that can be used to
define the system architecture and assignment of software
artefacts to system elements.
Behavioural Modelling shows what possible outcomes a
system has. The diagrams can contain activities, common
behaviour, interaction and statuses. These elements are
linked with a triggering event or in other words a control
flow.
Lastly, the documentation states that the Structural Mod-
elling diagrams can contain system values, classifiers but
also packages or the common structure. These components
of the system are linked with associations.

With the schema that has been created for this research,
the UML diagram specification is covered. A more detailed
description of the schema with a definition of each element
and the possible value of the outcome of the analysis is
given below.

Software system
When the diagram shows important information about the
software system, it will be denoted as “yes”. Otherwise,
it can be described as workflow when the development
process is represented. When it can neither be classified
as software system or workflow the diagram is labelled as
’other’. When the value is other than yes, the rest of the
elements are not considered during the observation.
Value: yes, workflow or other

Diagram type
When looking at elements of the diagram together with
the given description, the type is determined. The diagram
could be a representation of a process within the software
or other design-related matter or the architecture of the
system. These types do not yet correlate with the UML
Modelling types as defined before.
Value: Design or architecture.

UML
When the diagram is a recognisable UML diagram, the
type is given and the components do not need to be filled
in. When this is not the case, the field will be left blank.
Value: Class diagram, use case diagram, etc or blank.

Components
Here, the focus is on the layout of a diagram. This will
mostly be built out of blocks with connections. These
blocks can describe software components or events/actions,
but also a status of an object. In the case of an element
that is anomalous, it is also mentioned here.
Value: (sub-)components, status, activities (or similar)

Connections
The connections between the components of a diagram can
illustrate different communications. A link can show the
data flow of the system. It can also show the triggering
event to go from the first state to the second. This will be

3



Figure 1. Example design model from MOOColab

named a control flow. A connection between components
can also illustrate an association. Every connection which
is not a data or control flow will be labelled as an associa-
tion. Examples that will be considered as associations are
aggregations, compositions and dependencies.
Value: Control flow, data flow, association

Layout
A diagram can have significant details in the layout which
makes it less complicated to identify the type of the dia-
gram. These details can vary but examples of these details
are a sequence pattern or layers.
Value: sequence, layers, etc.

Completeness
Some diagrams are relatively big. This makes it hard to
refer to and for the reader to read. That is why fragments
are used.
Value: Complete, fragment, etc.

Location
It is noted down whether the diagram is found in a presenta-
tion or in the report/paper of the software system.Therefore
the distinction is made whether the diagram was used as a
communication tool or as part of the development process.
Value: Poster, presentation or report

These last 2 elements are only relevant for the research but
not for identifying diagrams. The process of analysing with
the help of this schema is presented in Figure 2. The first
blocks make sure that the diagram represents a software
system. When the diagram shows a workflow or something
different, the analysis will not continue. In the next green
section, more general features of the diagram are denoted.
It ends with the question whether it is a UML diagram
or not. When it is a UML diagram, it is noted and the
analysis is already complete. Otherwise, the analysis will
go into more detail. The blue section shows a brief expla-
nation of the observation methodology for the diagrams
which are not a UML.

4.1 Example observation
Figure 1 is an example of a design model which can be
found during the observation part of this research. When
looking at this diagram, all the aspects of the diagram
characteristics, as defined above, are analysed. Below, an
example of the methodology of the research is given with
this diagram.

From the context of the diagram in the original paper, and
by looking at the structure, it can be concluded that this
diagram represents a software system.
The next remarkable segment of this diagram is the boxes.
The smaller blue ones represent system components. Seg-
ments of a database are also represented on this level. But
around these components, there are black lined boxes but
also grey fields. So this diagram shows components and
within areas, there are sub-components.
Additionally, segments are numbered. Numbering in gen-
eral can indicate a sequence or an hierarchy. In this diagram
this is not the case. The numbers are used to label the
components and it sub-components.
On the right side, there are 2 actors stated. These are
also connected to the system. These actors can perform
an activity that influences the system or the system has
specific functionality for a user. In this diagram, it is shown
that the user can give a certain input and that the system
keeps track of the data of the actors.

All in all, this diagram shows the architecture of the system.
However, multiple elements of the system are combined
within this diagram. This means that it does not only show
an architecture but also possible activities or user-system
interactions. From this, the conclusion can be made that
there were different modelling types, described by the UML
documentation, used within this one diagram.

5. RESULTS
The research is split up into 2 separate smaller researches

4



Figure 2. The process of an artifact observation analysis

where the collected data is from different sources. The
results are also discussed per sub-research. In the end, the
conclusion is given where the results are compared.

5.1 The Bachelor Showcase
The first data-set which is analysed is collected from the
EEMCS Bachelor Showcase [1]. The students end their
bachelor of computer science with a practical application
of their knowledge and a research-oriented project. The
results of these projects are presented at this Showcase.

33 projects were analysed. 9 of the 33 projects were
research-oriented projects. 24 projects were the results
of the Design project of Technical computer science.

Most students of the research projects did not create a
software system. These students provided an extension
or a theoretical approach towards a technical improve-
ment. Therefore only two out of the nine observed research
projects had one or more diagrams that were related to a
system design.
Both had an architecture type of diagram which showed
components and sub-components of the system. These
components are connected with links that show the data
flow between the components.
One of the researches showed a design diagram. In this
diagram, a certain process was described with components
and control flows.
No student showed a UML diagram.

For the Design Project, more software systems were created.
These systems consisted mostly out of a web application. 25
projects were observed. 23 out of the 25 projects showed at
least one diagram which is related to the design of a system.
In these projects, there was a total of 75 design diagrams.
Other present diagrams are related to the workflow of the
development, used as a Graphical User Interface or related
to the theory of the project.

18 out of the 75 diagrams showed the architecture of the
system. These diagrams were similar to the architecture

diagrams from the research projects. There were visible
components of the system which are connected with a
control or data flow.

54 of the 75 diagrams gave a more detailed description
of the design of the system. 26% of these diagrams were
similar to a UML activity or flow diagram. The diagrams
showed activities and trigger events. The activities could
either be executed by an actor or by the system itself.
A lot of these projects have a database incorporated into
their systems. 14 of these 54 diagrams were a database
schema that gave an overview of the database.
Additionally, 17% of the 54 diagrams are categorised as
UML class diagram. These diagrams showed a detailed
overview of the code of the system.

Although a variety of UML diagrams are used, 14 dia-
grams were not classified as UML. They mostly showed
sub-components within components, namely 64%. The con-
nections between these components differ. The preference
is set on a data flow. 1 diagram even had a combination of
a data flow and event flow. Other observed connections are
control flows (2 diagrams) and associations (1 diagram).
Another noticeable fact is that the diagrams that are not in
UML consisted of multiple characteristics in one diagram.
For instance, components of the system are combined with
user interactions in an architectural environment.

Lastly, the location of a diagram tells what the purpose of
the diagram is. For example, when the diagram is shown
on a poster it should be understandable for a novice. And
when it is only shown in the appendix it could be considered
as extra information which is not needed in the core of the
paper or report. 105 diagrams were found in the design
and research projects together. 81% of these diagrams were
located within the core of the report. 15% were put in the
appendix of the report. The posters were only part of the
design project, therefore 4 out of the 54 were presented on
a poster.

In short, there are students who use UML diagrams to
describe their work. However, the majority chooses to use

5



components of their system together with a control or data
flow. This gives a direct overview of the whole system.
Some students have put multiple aspects of the system
within one diagram. These diagrams do not only represent
the working of the system but also potential user interac-
tion or an in/output. This construction does not benefit
the understanding of the reader.

5.2 The 42nd International Conference on
Software Engineering

The second data-set which is analysed is collected from
the 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE) [7]. ICSE is the premier
software engineering conference, providing a forum for
researchers, practitioners and educators to present and
discuss the most recent innovations, research, experiences,
trends and concerns in the field of Software engineering [3].

25 papers were observed. This is a subset of all the pa-
pers presented at the conference. Only 14 of these papers
showed an overview of the system in one or more diagrams.
Another noticeable fact is that there were some videos as
extra presentation material. These videos mostly func-
tioned as a demo of the tool that has been created. Still,
3 videos showed some design diagram. These were mostly
architectural related and also present in the paper.

In total, the 14 papers (including the videos) showed 17
diagrams. Often, the papers include only 1 diagram which
gives an insight into the architecture of the software system
they have built. These systems were mostly tools that are
used within a larger system. In the diagram, it was shown
how the tool would interact with the system.

Only 1 diagram was a UML diagram, namely an activity
diagram. The participants of the conference preferred to
show the components of their tools together with either
the input and output or a data flow with the information
that is sent to the larger system. Also, different compo-
nents of different UML diagrams were used in the same
diagram. Components were combined with user-system
interaction such as manually executed inputs and outputs
for the system.

6. CONCLUSIONS
After looking at both groups, the students and the par-
ticipants of a Software Engineering conference, it can be
concluded that there are a lot of similarities but also quite
some differences.

Both tend to create diagrams which are not specified in
UML. They use their own way to describe the necessities
of their system in order to understand it. The syntax of
UML is not used for this, but several elements of different
UML diagrams are used. They combined elements from
the three different UML modelling types as discussed in
section 4. Also for both, when they do use a UML specified
diagram, the preference is to use an activity diagram.

The students had more variety of diagram types. although
an architectural pattern was very common, diagrams that
show any kind of event flow were also frequently present.
Also for the design projects, when a project had a diagram,
they often had more than one diagram included.
The participants of the conference often used only one dia-
gram, which showed the architecture of the system. This
was sometimes extended with the links to the larger system
where their system is an extension for.

6.1 Recommendation
The combination of elements from different modelling types
within one diagram is not preferred, since this makes a
design model more difficult to interpret.
So firstly, the focus within the curriculum must be more on
the importance of the different design models and modelling
types. When the core ideas of the modelling types is more
clear, the structure would be better even when combining
elements from these different types.
Next, architecture was very common in use. However
this was not by the use of class diagrams or any package
structure. This does not comply with the course material
of the Software Systems module.

From a personal point of view, the syntax of UML is clear
and should be used more often. However, in the field it
is shown that this is not preferred. That is why a deeper
understanding of design elements is important. Then ele-
ments can perhaps be combined in a single diagram and
still be clear. Inferring from the results, there is a demand
for knowledge about architectural design models. UML of-
fers more diagrams than those which are taught during the
Software System module. However, those other diagrams
still do not cover the needs of practitioners.

7. DISCUSSION
Since it was unknown what diagrams were used by practi-
tioners, the schema was defined broadly. As shown, it still
covers the characteristic components which are described
in the UML specification. For a more detailed research it is
advised to work out the schema into more detail. Though,
the schema is sufficient for the goal of recognising modelling
types and diagram elements.

For this research, only a small data-set is observed. This
research could be fairly easily extended by increasing the
size of the data-set. This will benefit the results of the
research.

All in all, all the goals of this research are accomplished.

8. REFERENCES
[1] Bachelor Project Showcase - University of Twente.

TCS/BIT bachelor projects.
https://bachelorshowcase-eemcs.apps.utwente.nl/.
Accessed: May 2021.

[2] EEMCS - Computer Science: Software Systems.
https://www.utwente.nl/en/education/exchange-
students/programmes/computer-
science/courselink:201700117.
Accessed: April 2021.

[3] ICSE 2020.
https://conf.researchr.org/home/icse-2020.
Accessed: June 2021.

[4] ICT.OPEN2021. https://www.ictopen.nl/.
Accessed: June 2021.

[5] Omg unified modeling language - version 2.5.

[6] Research Information - University of Twente.
https://research.utwente.nl/en/publications/.
Accessed: June 2021.

[7] ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, 2020.
Seoul, South Korea.

[8] D. Baisley, M. Björkander, C. Bock, S. Cook,
P. Desfray, N. Dykman, A. Ek, D. Frankel, E. Gery,
Øystein Haugen, S. Iyengar, C. Kobryn,
B. Møller-Pedersen, J. Odell, G. Övergaard,
K. Palmkvist, G. Ramackers, J. Rumbaugh, B. Selic,

6



T. Weigert, L. Williams, et al. OMG unified
modeling language (OMG UML), superstructure.
version 2.4.1. Object Management Group, Apr 2014.

[9] L. Burgueño, F. Ciccozzi, M. Famelis, G. Kappel,
L. Lambers, S. Mosser, R. F. Paige, A. Pierantonio,
A. Rensink, R. Salay, et al. Contents for a
model-based software engineering body of knowledge.
Software and Systems Modeling, 2019.

[10] F. Ciccozzi, M. Famelis, G. Kappel, L. Lambers,
S. Mosser, R. F. Paige, A. Pierantonio, A. Rensink,
R. Salay, G. Taentzer, et al. Towards a body of
knowledge for model-based software engineering.
Proceedings of the 21st ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, 2018.

[11] A. C. A. Holanda, P. A. Tedesco, E. H. T. Oliveira,
and T. C. S. Gomes. MOOCOLAB - A Customized

Collaboration Framework in Massive Open Online
Courses. 2020.

[12] V. Kumar and C. Troussas. International Conference
on Intelligent Tutoring Systems (16th : 2020 :
Online). Intelligent Tutoring Systems: 16th
International Conference Proceedings, Its 2020,
Athens, Greece, 2020.

[13] A. Pierantonio et al. A body of knowledge for
model-based software engineering.
https://modeling-languages.com/body-of-knowledge-
model-based-software-engineering/, May
2020.

[14] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses
what of the UML: A personal opinion survey. Lecture
Notes in Computer Science Model-Driven
Engineering Languages and Systems, 2014.

7


