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ABSTRACT
Whole slide scanners are a useful tool for doing cell anal-
ysis in an efficient manner. A big problem with this is
that scanning is not always perfect, which results in arti-
facts such as blur in some parts of the scan. This causes
further problems for the specialists using the scanner, as
they have to manually inspect the blurry areas in ques-
tion and give an objective conclusion. To solve this issue,
two Convolutional Autoencoders models are designed and
implemented to reconstruct cell slide images. The per-
formance of the models to remove blur from sections of
cell slides will then be investigated. The robustness of
the Autoencoders is also tested on cell images generated
artificially that have had Gaussian blur applied to them.
Both trained models successfully deblur cell images with
minor performance decreases when the blur is caused by
the camera lens focusing below the focal plane. The re-
constructions of synthetic cells is also achievable with only
a 15% performance decrease when deblurring cell images
with high amounts of Gaussian blur applied to them.

Keywords
denoising, Autoencoder, neural network, cell imaging, ma-
chine learning, image reconstruction

1. INTRODUCTION
In the biomedical industry, whole slide scanners are one
of the many tools to analyse cells for research purposes or
disease diagnosis. The underlying process of scanners, cell
imaging, consists of staining the cell dish with a fluores-
cent substance, taking pictures of different areas using a
microscope with high magnification (20x - 40x) and then
patching all of them together to create one high-resolution
scan. The scan image can then be further used for analysis
of the cells such as classification or counting.

However, this technique cannot deliver high-quality im-
ages all the time. It is estimated that 5% of the scans
present artifacts [14]. One of the most common problems
encountered in cell imaging is out-of-focus blur [5]. This is
caused by the fact that cells are not on the same level of the
Z-axis on the chamber slide, meaning that individual cells
can be higher or lower from each other on the dish. This
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results in some scan patches being blurry due to incorrect
focus of the lens. This also happens even if the microscope
has an automated focus system. The blurry areas in the
scan then need to be inspected manually which makes it
tedious and time consuming.

Various algorithms and systems have been proposed to
deal with this issue [9, 15, 12]. There are deep learning
solutions that detect blurry areas and segment them [11]
which is relevant as those areas are the most in need of de-
blur. This allows the microscope to re-scan just the blurry
area specifically without doing a full scan. Unfortunately
even rescanning a small section requires heavy time-loads.

In recent years, Autoencoders have gained a lot of pop-
ularity. This is due to their ability to reconstruct input
containing artifacts into its clear counterpart. Because of
this, the use of Autoencoders looks to be very suitable for
the scope of this project. Another advantage of Autoen-
coders is not needing labeled data for training which also
makes it ideal for unsupervised learning. It is also im-
portant to note that sometimes getting big quantities of
labeled data for a specific model training can be difficult.

In this research, two convolutional Autoencoder are trained
using two different methods to reconstruct blurry cell im-
ages into its non-blurry counterpart. The focus will be
made on out-of-focus blur anomalies as these are the most
common problem in cell imaging.

2. PROBLEM STATEMENT
Research has been done on ways to detect areas with
blurry anomalies in cell images for re-scanning purposes [17].
Some examples even use deep learning for this [11]. De-
spite that, there have been very few attempts at ”fixing”
the out-of-focus image directly. This paper presents two
systems that are trained to reconstruct out-of-focus cell
images, thus de-blurring them. The two systems are also
able to reconstruct images captured by other scanners
other than the one they were trained on.

2.1 Research Questions
In retrospect of the problem statement, the following re-
search questions are presented:

• RQ1: To what extent can an Autoencoder recon-
struct out-of-focus cell images?

• RQ2: How robust is the Autoencoder for out-of-
focus reconstruction when presented with cell images
recorded with a different microscope?

• RQ2.1: To what extent can it reconstruct out-of-
focus cell images recorded with a different micro-
scope?
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Figure 1. An example of a pair of two cell images resulted from Hoechst staining. a) shows an in-focus cell image while b)
shows the same cell slide but this time out-of-focus due to incorrect microscope calibration.

3. RELATED WORK
There has been substantial research done in the detection
of out-of-focus images in whole slide scanning. Senaras et
al. [11] presented a deep learning solution to detect and
segment blurry areas in digital whole slide images under
the form of a convolutional neural network. In another
paper, Yang et al. [17] argued that relative differences be-
tween two or more images in general lead to inconsisten-
cies, which is why they created a deep neural network to
predict an absolute measure of quality based on level of
blur. What is different from Senaras’ [11] model is that
their training data was synthetically defocused to 11 ab-
solute defocus levels.

Besides deep learning solutions, there have also been algo-
rithms and systems proposed for detection. One such ex-
ample of these is the system designed by Zerbe et al. [18].
They make use of the image analysis software ImageJ and
Tenenbaum gradient to assess and classify image patch
sharpness based on the degree of blur present. The full
microscope image is split into image patches. Then, us-
ing batch processing through the use of multiple comput-
ing nodes, each image patch is classified. Finally, all the
patches are aggregated in a sharpness map.

In a similar fashion, Shakhawat et al. [12] propose a method
to find the origin of the artifact, meaning whether the
distortion happened during the slide preparation stage or
scanning, but with the help of a support vector machine
to grade the quality of the region containing artifacts from
the whole cell image scan.

There are records of Autoencoders being used for image
processing. Gupta et al. [6] perform motion blur removal
using Coupled Autoencoders. They use two Autoencoders,
the first one being the source and the second being the tar-
get. The first one makes use of a blurry image, which is
formed out of the clear image with a blur kernel applied to
it, and the second Autoencoder uses the clear image sam-
ple. The coupling then learns the mapping of the blurry
image to the clear representation. This is done by hav-
ing the first Autoencoder learn the latent representation
of the blurry image, which is the output of the encoder of
the first Autoencoder. Afterwards, it is used as input for
the decoder of the second Autoencoder which was trained
on reconstructing clear images.

Shiva Shankar et al. [13] provides a technique for removing

the blur from an image by sharpening it. For this they use
convolutional layers inside the Autoencoder to downsam-
ple the training data, extract the relevant features from it
and then convert the image to a sharper version of itself.

From what has been gathered so far, there is a solid foun-
dation of artifact recognition and classification along with
previous use cases of Autoencoders in image related tasks,
but not enough work on using Autoencoders on cell im-
ages specifically for deblurring. In this paper two different
Autoencoders are proposed for dealing with this problem.

4. METHODS
For this research, two Autoencoder architectures have been
designed and implemented. They will be compared be-
tween each other using the metrics mentioned to see which
approach works best. The first Autoencoder model is
trained using the whole image from the training set, mean-
ing no segmentation is used. The second Autoencoder
however, is trained on a data set derived from the original
Human U2OS cell data set, each image being segmented
into 36 patches that correspond with an area of the origi-
nal image. Each image patch is then used as training data
for the second Autoencoder.

Moving forward into the paper, the first Autoencoder shall
be referred to as ”whole image Autoencoder” and the sec-
ond Autoencoder design as ”split image Autoencoder”.
The diagrams for both Autoencoders can be found in Ap-
pendix C1 and C2 respectively.

4.1 Whole image Autoencoder
The whole image Autoencoder starts with an Input layer
of 128x128x1, which corresponds to the image shape of the
training set. Afterwards, two pairs of Conv2D and Max-
Pooling2D layers are added, with a BatchNormalization
layer inbetween them. The filter size of the first Conv2D
layer is 32 with kernel size of (3, 3) while the second
Conv2D layer has a filter size of 64 also with a kernel
size of (3, 3). Both Conv2D layers have the same ReLu
activation function with padding ”same”.

The second part of the whole image Autoencoder starts
with a Conv2DTranspose layer with filter size of 64, ker-
nel size of (3, 3), strides size of 2, activation ELU and
padding ”same”. Next layer is a BatchNormalization layer,
with the second to last layer on the decoder side being an-
other Conv2DTranspose with the same parameters as the
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previous one, with the exception of the filter size, which
is now 32. Finally, a Conv2D layer with filter size of 1,
kernel size of (3, 3) and activation ”sigmoid” is used for
the final step in the reconstruction of the image.

The reason for choosing to use Conv2DTranspose over a
pair of Conv2D and UpSampling2D layers is due to the
fact that UpSampling2D just scales up the image by using
nearest neighbour or bilinear upsampling. On the other
hand, Conv2DTranspose does both a convolution opera-
tion just like Conv2D but at the same time it learns what
is the best upsampling for the job [10].

4.2 Split image Autoencoder
The second Autoencoder trained with split images starts
off similarly with an Input layer of 128x128x1, which cor-
responds with the size of a single image patch from the
whole full training cell image. On the encoder side we
have three pairs of Conv2D and MaxPooling2D layers, all
Conv2D layers having a filter size of 64 and kernel size of
(3, 3) with the first one’s activation function being ”sig-
moid” and the other two ReLu.

On the decoder side the opposite process of encoding is
happening, with three pairs of Conv2D and UpSampling2D,
the Conv2D layers having the same parameters as the en-
coder ones only in reverse. The last layer is the same as
the whole image Autoencoder, a Conv2D layer with filter
size of 1 and kernel size of (3, 3).

The decision to test out two different Autoencoders came
from literature review and finding two papers to use as
starting points, namely Gupta et al. [6] for the split image
Autoencoder and Shiva Shankar et al. [13] for the whole
image Autoencoder. Shiva Shankar uses a Convolutional
Autoencoder that is trained with the whole image while
Gupta only uses patches of image from the original picture.
The final architecture for each Autoencoder was realized
through a combination of empirical trials and inspiration
from the two papers until a visually correct result was
achieved for reconstructing cell images.

5. EXPERIMENT
5.1 Data
The data used for the research comes from the BBBC
(Broad Bioimage Benchmark Collection) database [1]. This
database offers a collection of microscopy image sets. For
the training and testing data, the Human U2OS cells data
set will be used as it contains pairs of out-of-focus and in-
focus cell images. An example of such a pair of cell images
can be seen in Figure 1. The data set was created by scan-
ning cells at 34 different z-stacks, ranging from z-stack 0
to z-stack 33. Each z-stack consists of 1536 images, half
of the cell slices being created through Hoechst staining
and the other half through phalloidin staining, totalling
at 52224 images in the whole data set.

The z-stack 16 collection of cell images is considered ground
truth for in-focus images while the others are out-of-focus.
The blurring is produced naturally through microscope de-
focus between stacks making it important for the Autoen-
coder training as artificial blurring might end us as bias
for the model. Furthermore, the image pairs are aligned,
meaning a cell in the in-focus image is in the same position
in the out-of-focus image.

The second data set used in the research is also taken from
the Broad Bioimage Benchmark Collection database [3]. It
consists of 19200 cell images that have been generated with
a simulator and then an artificial blur kernel was applied
to it. Half of the images are cell images while the other half

are nuclei stains. Thus, we will be working only with the
cell image part which consists of 9600 images. This data
set will be used to mimic the behaviour of microscopes
with different settings or lenses. The trained Autoencoder
will then be tested on random images from the data set
for cross-data-set performance analysis.

In order to prepare the data, NumPy [2] is used for ma-
trix operations and storing and loading of processed data,
OpenCV is used for image operations and loading the im-
ages from the data set. For image visualization, matplotlib
is used. Each image is resized to 128x128 from their orig-
inal size of 696x520 using bicubic interpolation and then
min-max normalization is applied. Furthermore, the val-
ues of each image are normalized to be between the [0, 1]
range.

As mentioned previously, the Human U2OS cells data set
contains images of cells obtained from both Hoechst stain-
ing and phalloidin staining. For the purpose of this re-
search, only the images obtained through Hoechst stain-
ing shall be used. As a result, the new size of the usable
data set consists of 26112 images and 768 images per z-
stack level. From each z-stack level, 80% of the images
are going to be used for training, while the remaining 20%
will be used for testing the capabilities of the Autoencoder
model.

5.2 Metrics
The metrics that will be used to see how the two models
perform will be Mean Square Error (MSE), Root Mean
Square Error (RMSE), Peak Signal to Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) [16].

5.2.1 Mean Squared Error
The Mean Squared Error is used to measure the quality
of the model. It is an indicator of how well the prediction
made by the model matches the real data. A MSE score of
0 indicates that the two images are the same. The formula
for MSE is as follows:

MSE =
1

n

n∑
i=1

(yi − f(xi))
2

where n represents the size of the data set, yi is the real
data and f(xi) the output of the model.

5.2.2 Root Mean Squared Error
The second metric, Root Mean Squared Error, is just the
square root of the Mean Squared Error. It can be in-
terpreted as the distance between the real data and the
prediction of the Autoencoder.

RMSE =

√∑n
i=1(yi − f(xi))2

n

5.2.3 Peak Signal to Noise Ratio
The third metric, Peak Signal to Noise Ratio, represents
the ratio between the maximum possible power of a signal,
in this case the maximum pixel value and the power of
the noise in the reconstruction. Higher values of PSNR
indicate bigger signal power than noise power.Despite it
being used in this project for image quality assessment, it
should be noted that it had faced criticism before due to
the values of the metric having a weak correlation with
subjective quality scores [8].

PSNR = 20 log10

(
MAXf√
MSE

)
where MAXf represents the maximum signal value from
the ground truth image and MSE is the Mean Squared
Error of the reconstruction.

3



Table 1. Average metrics for both Autoencoders calculated
from the testing set of the Human U2OS data set.

Autoencoder MSE RMSE PSNR SSIM

Whole image 0.002 0.315 30.277 0.876
Split image 0.003 0.524 26.905 0.802

5.2.4 Structural Similarity Index Measure
The last metric, Structural Similarity Index Measure, is
used to measure the similarity between two given images.
The similarity score is calculated by inspecting three fea-
tures of the images: luminance, contrast and structure.
The final score is a value between [0,1], with 0 meaning
the two images are very different from each other while 1
shows that the two images are very similar.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

In the formula above, µx and muy represent the averages
of x and y respectively, C1 and C2 are two variables to
stabilize the division with weak denominator, σ2

x and σ2
y

are variance of x and y, thus σxy is the covariance of x and
y.

5.3 Training
To build the two Autoencoders, Tensorflow [4] and Keras
are used. Both Autoencoder models were trained using
the Adam optimizer [7] with a learning rate of 0.001. Be-
sides the learning rate decay implemented in the Adam
optimizer, a custom step decay learning rate scheduler is
implemented that halves it by half every 15 epochs. Each
model is trained for a maximum of 50 epochs, with a batch
size of 16 and a learning rate decay of 1e-3.

The loss function used for both the whole image and split
image Autoencoder is the Mean Absolute Error also known
as L1. The reason for using this over Mean Squared Error,
also known as L2, is that Mean Squared Error is more
susceptible to outliers than Mean Absolute Error is.

Another reason is that Mean Squared Error gets stuck
in local minimums while Mean Absolute Error can reach
better minimums in the same amount of training. This
also has an impact on the quality of the result, as Mean
Squared Error leaves in artifacts that Mean Absolute Error
easily removes [19].

6. RESULTS
The metrics discussed above have been implemented from
the skimage library for the project. Below in Table 1 the
average MSE, RMSE, PSNR and SSIM is shown resulted
from the real cells testing data set. The values in the table
have been calculated by taking the average of each metric
from 4608 testing images. The values overall are high for
each metric indicating that the reconstructions are similar
to their ground truth counterparts.

Next, the average for the same metrics is shown in Table 2
for the synthetic cell images data set made up of 9000
images. The same procedure has been applied here as
with the testing set of the Human U2OS data set. Again,
the high values indicate that reconstruction is successful
for synthetic cell images as well.

For each z-stack level, the average MSE, RMSE, PSNR
and SSIM were calculated. The tables containing all these
values can be checked in Appendix A. Z-stack level 16 is
not present as that is the ground truth. What is important
to show however, is the SSIM values across all the z-stack
levels. Figure 2 shows the average SSIM value for all the

Table 2. Average metrics for both Autoencoders calculated
from the synthetic cell images data set.

Autoencoder MSE RMSE PSNR SSIM

Whole image 0.004 0.295 26.441 0.893
Split image 0.002 0.244 28.319 0.816

Figure 2. A graph visualization of the average SSIM values
per z-stack level for both Autoencoders. Observe how the
performance falls off as it starts reconstructing cell images
above z-stack 16.

Figure 3. A graph visualization of the average SSIM values
per artificial blur level for both Autoencoders.

z-stack values from 0 to 33 with the exception of z-stack
level 16. As it can be seen, from z-stack level 25 the SSIM
value drops off considerably.

Similarly, the synthetic cell images data set has 16 levels
of blur applied to it with increasing blurriness, with level 0
being the ground truth. The average SSIM was calculated
for each level of blur and plotted onto a graph for better
visualization.

Figure 3 gives a representation of the performance of both
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Figure 4. The same cell image being reconstructed and deblurred. a) represents the split image Autoencoder while b)
represents the whole image Autoencoder.

the whole image and split image Autoencoders on syn-
thetic cell images. For the full list of values, please refer
to Appendix B.

6.1 Discussion
As seen in Figure 4, the deblurring process is done success-
fully when using both the whole image and split image Au-
toencoders. This means it is possible to use Autoencoders
for cell image reconstruction of out-of-focus images, thus
answering the first research question. For the reconstruc-
tion of a synthetic cell image, please refer to Appendix D.
However, as Figure 2 shows, there is a steep decrease in
performance from z-stack level 25 onward. The reason for
that is actually in the kind of blur that occurs whether
the camera lens focuses above the ground truth or below
it. Figure 5 displays how natural out-of-focus blur can
change from one extreme to the other while Figure 6 shows
a reconstruction of a cell image from the z-stack level 33.
Besides this, the split image Autoencoders seems to have
learned how to also increase the brightness of cells when
deblurring them as an added bonus.

When looking at Table 1 and Table 2 which showcase the
average metrics for the real cells testing data set and the
synthetic cell images, it can be seen that the two Autoen-
coder models perform very similarly with the whole image
Autoencoder performing just a bit better than split image
Autoencoder. This can be attributed to the fact that the
split image Autoencoder has a ”bordering” effect on some
reconstructions due to the stitching process. This intro-
duces unwanted distortions which, to the human eye, are
not a problem but it does affect the SSIM score.

One problem that both Autoencoders seem to have is the
inability to reconstruct large cells properly. Instead of
reconstructing it fully, the Autoencoders thinks that there
are actually a bunch of small cells next to each other. The
reason for this is due to the small amount of images that
contain big cells in the first data set.

The synthetic cell image data set was used to answer RQ2
and RQ2.1 respectively. From Table 2 it can be seen from
the high PSNR and SSIM values that both Autoencoders
are robust to shapes of cells with a blur type they’ve never
seen before. The whole image Autoencoder performs just a
bit better than the other model, similarly to the difference
in performance calculated from the Human U2OS cells
data set. Figure 3 displays the decrease in performance as
the intensity of the artificial blur applied increases. While
this may seem like a big decline just like in Figure 2 it is
only a decrease of 15% in performance in 15 levels of blur.
What is interesting to see is that the scores are higher than
the real cells data set. A big difference between the two
data sets used for the research is that the synthetic images
are all uniform even in the type of blur applied to them
which is very similar to the blur found in z-stack levels
0 to 15. The shape of an artificial cell is generally only
round while the natural cells are both elliptical and round
with varying cell sizes.

7. CONCLUSION
In this paper, two Autoencoder models are designed for
the purpose of reconstructing and deblurring cell images
that have been captured by microscopes with incorrect
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Figure 5. The same cell image at three different z-stack levels: 0, 16 and 33.

Figure 6. An example of a reconstruction of a cell image from z-stack 33 made by the whole image Autoencoder.

calibration. Both are implemented and tested against each
other using two data sets, one formed out of image pairs of
real cells both in and out of focus, and the second data set
consisting of image pairs of artificially generated cells with
Gaussian blur applied to them at various intensity levels.
The first Autoencoder is trained with whole images while
the second Autoencoder is trained with patches of image
from the original data set.

After just 50 epochs of training, both Autoencoders suc-
cessfully perform their task of deblurring cell images af-
fected by out-of-focus blur, both natural and artificial blur.
When both Autoencoders are compared between each other
using the 4 metrics, MSE, RMSE, PSNR and SSIM, both
score similary with the whole image Autoencoder perform-
ing just a bit better than the split image Autoencoder.
The same result also applied when the synthetic images
data set is used for performance analysis.

For a more in-depth look, each metric was calculated per
level of blur for both data sets resulting in Figure 2 and
Figure 3. For Figure 2, it shows how the performance of
reconstructing cell images that are calibrated above the
ground truth focal plane than if it was below the focal
plane as z-stack levels 25 to 33 indicate. When the same
analysis was performed on the synthetic data set, the per-
formance just went down 15% due to the artificial blur
that does not change as drastically as it does with real
blur.

7.1 Recommendations
For future work, it would be interesting to see how well the

reconstructions fare compared to the ground truth coun-
terparts when subjected to cell counting or classification.
Besides this, the two Autoencoder models can be improved
further such as increasing the input size of the whole image
Autoencoder for more detail or adding batch normaliza-
tion to the split image Autoencoder. Regularization and
dropout might also help with improving the reconstruc-
tions of both models.

Besides the 4 metrics used in this research, another good
metric used very frequently in image assessment is the
Fréchet Inception Distance (FID). The use of this metric
is very popular for images generated by General Adver-
sarial Networks (GANs) and it could also be used for this
research as well even if Autoencoders differ quite a bit
from GANs. In the case of using Fréchet Inception Dis-
tance as a performance metric, MS-SSIM can then be used
in combination with L1 as the loss function for training the
Autoencoders as suggested by Zhao et al. [19].

Finally, since the reconstructions made are scored high by
SSIM, these images can be used as input in cell classifica-
tion and counting systems for further testing of how usable
these reconstructions are in real world use cases.
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APPENDIX
A. AVERAGE METRICS PER EACH Z-STACK

LEVEL
A.1 Average metrics for z-stacks 0 to 15

Table 3. Metrics for each focal plane resulted from both
Autoencoders for z-stacks 0 to 15.

Autoencoder z-stack MSE RMSE PSNR SSIM

Whole Image 0 0.003 0.409 26.848 0.805
Split Image 0 0.007 0.819 22.017 0.673

Whole Image 1 0.002 0.379 27.523 0.831
Split Image 1 0.007 0.787 22.432 0.709

Whole Image 2 0.002 0.355 28.094 0.849
Split Image 2 0.006 0.757 22.804 0.739

Whole Image 3 0.002 0.336 28.596 0.863
Split Image 3 0.006 0.730 23.125 0.758

Whole Image 4 0.001 0.321 29.026 0.872
Split Image 4 0.006 0.698 23.479 0.772

Whole Image 5 0.001 0.307 29.431 0.880
Split Image 5 0.005 0.665 23.870 0.779

Whole Image 6 0.001 0.291 29.920 0.889
Split Image 6 0.005 0.627 24.366 0.785

Whole Image 7 0.001 0.275 30.437 0.898
Split Image 7 0.004 0.588 24.891 0.790

Whole Image 8 0.001 0.259 30.968 0.906
Split Image 8 0.003 0.541 25.637 0.799

Whole Image 9 0.001 0.245 31.479 0.912
Split Image 9 0.003 0.477 26.760 0.821

Whole Image 10 0.001 0.231 32.030 0.919
Split Image 10 0.002 0.403 28.285 0.853

Whole Image 11 0.001 0.214 32.664 0.925
Split Image 11 0.001 0.331 29.941 0.883

Whole Image 12 <0.001 0.200 33.240 0.931
Split Image 12 0.001 0.275 31.385 0.904

Whole Image 13 <0.001 0.187 33.819 0.935
Split Image 13 0.001 0.236 32.460 0.912

Whole Image 14 <0.001 0.175 34.391 0.938
Split Image 14 0.001 0.215 33.068 0.911

Whole Image 15 <0.001 0.165 34.934 0.941
Split Image 15 <0.001 0.208 33.262 0.905

8



A.2 Average metrics for z-stacks 17 to 33

Table 4. Metrics for each focal plane resulted from both
Autoencoders for z-stacks 17 to 33.

Autoencoder z-stack MSE RMSE PSNR SSIM

Whole Image 17 <0.001 0.165 35.005 0.942
Split Image 17 0.001 0.231 32.301 0.890

Whole Image 18 <0.001 0.175 34.520 0.939
Split Image 18 0.001 0.246 31.747 0.881

Whole Image 19 <0.001 0.184 34.033 0.936
Split Image 19 0.001 0.256 31.394 0.877

Whole Image 20 <0.001 0.192 33.669 0.933
Split Image 20 0.001 0.261 31.242 0.874

Whole Image 21 0.001 0.196 33.494 0.932
Split Image 21 0.001 0.261 31.270 0.874

Whole Image 22 0.001 0.200 33.342 0.929
Split Image 22 0.001 0.257 31.431 0.876

Whole Image 23 0.001 0.202 33.246 0.928
Split Image 23 0.001 0.251 31.696 0.879

Whole Image 24 0.001 0.206 33.102 0.926
Split Image 24 0.001 0.245 31.984 0.885

Whole Image 25 0.001 0.216 32.715 0.923
Split Image 25 0.001 0.241 32.213 0.891

Whole Image 26 0.001 0.235 31.930 0.917
Split Image 26 0.001 0.247 32.097 0.893

Whole Image 27 0.001 0.264 30.904 0.908
Split Image 27 0.001 0.278 31.181 0.886

Whole Image 28 0.002 0.298 29.793 0.894
Split Image 28 0.001 0.333 29.684 0.861

Whole Image 29 0.002 0.338 28.616 0.875
Split Image 29 0.002 0.407 27.848 0.823

Whole Image 30 0.002 0.386 27.411 0.847
Split Image 30 0.003 0.494 26.096 0.776

Whole Image 31 0.002 0.444 26.192 0.808
Split Image 31 0.004 0.587 24.563 0.727

Whole Image 32 0.003 0.510 24.991 0.755
Split Image 32 0.005 0.681 23.277 0.683

Whole Image 33 0.004 0.583 23.861 0.686
Split Image 33 0.007 0.774 22.189 0.642
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B. AVERAGE METRICS PER EACH AR-
TIFICIAL BLUR LEVEL

Table 5. Metrics for each artificial blur level resulted from
both Autoencoders.
Gauss. B. L. = Gaussian Blur Level

Autoencoder Gauss. B. L. MSE RMSE PSNR SSIM

Whole Image 1 0.002 0.236 27.898 0.909
Split Image 1 0.001 0.192 29.877 0.842

Whole Image 2 0.002 0.219 28.560 0.915
Split Image 2 0.001 0.169 30.938 0.849

Whole Image 3 0.002 0.217 28.613 0.916
Split Image 3 0.001 0.164 31.224 0.855

Whole Image 4 0.002 0.207 29.051 0.920
Split Image 4 0.001 0.152 31.857 0.862

Whole Image 5 0.001 0.195 29.565 0.923
Split Image 5 0.001 0.142 29.565 0.923

Whole Image 6 0.002 0.208 28.959 0.923
Split Image 6 0.001 0.159 41.469 0.864

Whole Image 7 0.002 0.224 28.324 0.923
Split Image 7 0.001 0.178 30.528 0.855

Whole Image 8 0.003 0.267 26.824 0.913
Split Image 8 0.002 0.220 28.684 0.836

Whole Image 9 0.003 0.279 26.441 0.831
Split Image 9 0.002 0.222 28.578 0.831

Whole Image 10 0.004 0.325 25.123 0.894
Split Image 10 0.003 0.267 26.977 0.803

Whole Image 11 0.006 0.363 24.149 0.870
Split Image 11 0.003 0.301 25.948 0.768

Whole Image 12 0.006 0.399 23.335 0.847
Split Image 12 0.004 0.330 25.151 0.745

Whole Image 13 0.008 0.424 22.823 0.832
Split Image 13 0.004 0.340 24.902 0.748

Whole Image 14 0.008 0.434 22.620 0.828
Split Image 14 0.005 0.340 24.889 0.752

Whole Image 15 0.009 0.453 22.251 0.814
Split Image 15 0.005 0.333 25.079 0.758
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C. AUTOENCODER ARCHITECTURES
C.1 Whole image Autoencoder

Figure 7. Whole image Autoencoder architecture.

C.2 Split image Autoencoder

Figure 8. Split image Autoencoder architecture.
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D. SYNTHETIC CELL RECONSTRUCTION
EXAMPLE

Figure 9. The same synthetic cell image being recon-
structed and deblurred. a) represents the split image Au-
toencoder while b) represents the whole image Autoen-
coder.
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