
Procedural Location Generation with
Weighted Attribute Grammars

Jan Douwe Beekman
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

l.j.d.beekman@student.utwente.nl

ABSTRACT
In the game development industry, substantial costs are
linked to content creation. Procedural content genera-
tion is an effective tool for lowering this cost consider-
ably. Many techniques have been developed to generate
content, one of which is the use of generative grammars.
While grammars have been used to construct the game-
play structures from which a level could be created, it
sometimes is perceived as difficult as it required knowledge
about grammars that not all game developers have. This
method is still promising as it leaves more control to the
developer in which complexity or difficulty the resulting
dungeon would have. In this paper we discuss the combi-
nation of probabilistic and attribute grammars such that
the weights used for the probabilities can be computed
base on attributes. Whether this combination is useful
will be judged by the affected metrics like the complexity
of the grammars written in this language.

Keywords
Procedural content generation, Context-free grammars, Prob-
abilistic grammars, Attribute grammars

1. INTRODUCTION
Procedural content generation (PCG) [12] is a technique
used to change the content in a game from being designed
manually by humans to being generated by an algorithm.
When done properly, this could save a lot of time, and
therefore costs, and enhance the game significantly in ar-
eas such as replayability. PCG is implemented in many
ways with different algorithms, one of which is based on
probabilistic grammars. Many types of content can be
generated but specifically the generation dungeons in role-
playing games is heavily explored [15].

Grammars are a way to describe the structure and ex-
plain how each part is build from sub-parts. For example,
a sentence can have a subject and a subject can contain
adjectives. This can also be applied outside of grammars
for spoken languages. To give a simple example, a binary
tree can be structured like this:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT 2 July 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

BRANCH ->

node BRANCH BRANCH |

leaf

This however does not provide the ability to generate a
tree directly and a different algorithm would be needed
for that. By making a grammar probabilistic, chances
will be attached to certain possibilities of structures and
thus the grammar could also construct the sentences or
other objects. For this example we can add probability
distributions like this:

BRANCH ->

node BRANCH BRANCH [weight=1] |

leaf [weight=2]

Now we can generate a branch where it is twice as likely
to generate a leaf compared to a splitting node.

1.1 Problem statement
As grammars offer the developers a lot of control over the
structure and as the probabilistic side of these grammars
also potentially offer control over the outcome according
to set parameters, this could be a promising generation
method. This method, however, does also have disadvan-
tages such as the fact that not all game developers have
the required extensive knowledge of these grammars to
efficiently use the technique.

Furthermore, when using probabilistic grammars, it could
be a tedious job to determine the probabilities right such
that they are not too low and not too high. To get back
to the example of the binary tree

BRANCH ->

node BRANCH BRANCH [weight=1] |

leaf [weight=2]

gives on average 2/3 new branches for each branch. This
means it will terminate, but has a probability of 67% of
resulting in a tree with only one leaf. This can be solved
by increasing the chance to create a new node, but when
each branch creates on average more then one branch, a
branch would expand into infinity. On such a small gram-
mar, these outcomes are easier to see but it is still hard
to determine which probabilities are desirable. On bigger
and more complex grammars, this problem can get more
difficult and solving it could result in an even more com-
plex grammar. Lastly, improvements can be made on this
technique to make it easier for developers by giving them
more control over the parameters in the dungeon. This
could mean, for example, that the developer could easily
adjust the difficulty level of a room according to the pre-
vious room without creating a huge grammar. Another

1



example would be when a developer wants to increase the
size of the level. Adding parameters can prevent going
over all the probabilities and changing them accordingly.

1.2 Proposed solution
The most important requirement of the new language is
to support structures like:

BRANCH(x) ->

node BRANCH(x-1) BRANCH(x-1) [weight=x] |

leaf [weight=1]

This means that each symbol should be able to have argu-
ments and that these can affect the probability distribu-
tion among different options for each symbol. To make the
language more intuitive, both arguments and attributes
should be implemented. This could make it easier to read
and write the data and thus prevent a very long argu-
ment list or a very complicated expression to calculate the
weight. Arguments will be handled as attributes which
means that when these variables are changed, the new
value can be read outside of the symbol. Furthermore,
the language should still support the basic functionality
of any other probabilistic or attribute graph grammar.
This means that it can be used to construct objects prob-
abilistically based on weights and that attributes can be
calculated. The proposed language will also be a graph
grammar and thus each terminal will just be a node. The
choice for a graph grammar leads to the user not having
to write an extensive tree walker for each grammar they
construct. In this paper we will investigate the usefulness
of this proposed language with its new functionality.

2. RELATED WORK
Procedural content generation has been applied in mul-
tiple ways to dungeons such as space partitioning, agent-
based growing, cellular automata, genetic algorithms, gen-
erative grammars and many more [12,15]. For these meth-
ods, problems and limitations have been identified such as
limited control or overlapping structures. Furthermore,
like van Rozen and Heijn claim, many problems result
in levels not reaching intended goals due to complexity
of the grammars. More specifically the impact of small
changes to the rules and sheer number of possibilities re-
sulting from recursive rules can cause a lot of bugs [16].

Plenty of research has been conducted regarding grammars
in general as well as probabilistic context-free grammars.
These grammars can be used to predict complex structures
like DNA [17], but are also used to predict which parsing
of, for example, a sentences is most likely to be correct
when the grammar would otherwise be ambiguous [7]. An
example of this would be determining what the sentence ”I
saw the man with the telescope”means. Is the seeing being
done using a telescope or does the man hold a telescope?
Probabilistic grammars could help with deciding and thus
help with text interpretation.

Using grammars for the generation process of dungeons
offers potential as they can prevent issues such as over-
lapping, unconnected rooms or other structural problem.
Some have tried generating the gameplay in this way, while
generating the gamespace using complementary algorithms [3,
5, 9, 14]. Others have used grammar rules to insert detail
in, for example, a room in a dungeon [10, 16, 19]. Even
only combining grammars is shown to be possible [4, 13].

Metrics are useful to objectively reason about programs
or grammars. Two important groups of metrics are those
being based on size or being based on the flow through the

program, like which methods call which or which symbols
lead to which other symbols. There are also some other
metrics, like for example Halstead effort [8], which has a
more complicated calculation to decide how difficult some-
thing is to make. There are researchers who investigated
useful metrics for grammars. Some of those focused on cor-
rectness [1, 18] which is less applicable when there is no
clear correctness model. While researching this, focusing
on metrics also used for code in programming languages
by, for example, viewing symbols as functions is also an
option. Lines per method could be number of alternatives
per symbol and the number of characters per production
rule could be characters per line. Most importantly, there
are also metrics which are grammar specific which can be
used [2, 11, 20]. Which specific metrics are applicable and
used in this situation, will be discussed later in this paper.

3. NEW ARCHITECTURE
3.1 Formal preliminaries
We are about to define generative weighted attribute gram-
mars. To do that, let us first recall the classic definition
of a context-free grammar (CFG): it is a four-tuple G =
〈N , T ,P, S〉, where N is a set of nonterminal symbols, T
is a disjoint set of terminal symbols, P ⊆ N × (N ∪T )∗ is
a set of production rules of the form N → α, and finally
S ∈ N is the starting symbol.

Each CFG implicitly defines a direct derivation relation
⇒G⊆ (N ∪ T )∗ × (N ∪ T )∗ defined in such a way that
w ⇒G u if and only if w = w1Nw2 (with N ∈ N and
wi ∈ (N ∪ T )∗) and u = w1vw2 (with v ∈ (N ∪ T )∗)
and there exists N → v ∈ P. This relation links each el-
ement of (N ∪ T )∗(they are called sentential forms) with
another element that can be derived from it by picking
a production rule and replacing its left hand side in the
sentential form by its right hand side. Then, the language
L ⊆ T ∗ generated by the grammar L = L(G) ⊆ T ∗ con-
sists of words (sequences of terminals) that can be derived
from the starting symbol in some finite number of steps:
L = {α | S ⇒∗G α}.
Attributes are added to an underlying CFG by adding two
more components: the set of attributes A, the mapping
that assigns attributes to each node @ : N → A∗, and
the semantic part σ that associates each production rule
N → α ∈ P with a set of attribute evaluation rules, each
having the form of a0 = ϕ(a1, . . . an), where ai ∈ A and ϕ
is some computation function. We are mostly interested
in inherited attributes (propagated top-down, the same
direction our generation will go), so we can say that a0 ∈⋃
X∈α

@(X) is an attribute of one of the nonterminals of

the right hand side of the production rule, and all other
ai ∈ @(N) are attributes of the node itself. It is trivial
to reverse the condition to get to derived (synthesized)
attributes, or move to a completely constraint-based setup
by imposing no conditions on ai.

Finally, probabilities are added to our mix by using a
weight mapping ω : P → N, computed in such a way that
it can take local attribute values into account: ω(N →
α) = ψ(a1, . . . , an), where all ai ∈ @(N).

NB: We note the limitations of our formalisation — such as
only using inherited attributes (classic attribute grammars
also have synthesized attributes, but those are of much
less importance in generative grammars), or not explic-
itly distinguishing loop-free derivations (again, this only
becomes a noticeable issue for ambiguous analytic gram-
mars). However, we ultimately deem them to fall outside

2



the scope of this project. We believe to have left enough
freedom in our formalisation to allow extensions: for in-
stance, A is left undefined, so that one can define it to
take the domain of attributes into account.

To summarise:

Definition 3.1. WAG
A generative weighted attribute grammar (WAG) is an oc-
tuple 〈N , T ,P,A,@, σ, ω, S〉, where N is a set of nonter-
minals (nodes, classes, types, sorts, ...), T is a disjoint
set of terminals (alphabet), P ⊆ N × (N ∪ T )∗ is a set
of production rules, A is a set of attributes, @ is a map-
ping associating attributes to nonterminals, σ is a mapping
linking semantic evaluation rules to production rules, ω is
a mapping assigning weights to nonterminals, and S is the
starting symbol. �

3.2 Engineering the new architecture
The new architecture inherits properties of both a gram-
mar language and a programming language. Just like any
other grammar language, symbols and finals can be de-
fined. Due to it being a graph grammar language, all the
finals will be nodes in a graph. The step towards the pro-
gramming language comes in the form of scopes. Each
symbol and final has its own scope with variables that can
be declared and used in computations such as but not lim-
ited to the probabilities for deciding the alternative chosen
in a symbol.

For the use-case of calculating probabilities, which needs
to happen before any assignment or other calculation when
the scope of the symbol is entered, the variables or at-
tributes of a scope need to be declared before ”calling” or
”entering” the symbol. The proposed language supports
this by letting the symbols be called with arguments. The
values of the arguments can then be mapped to the vari-
ables and thus they can be used. These passed arguments
can be seen as inherited attributes, but all attributes can
be accessed in the parent symbol such that attributes can
also be synthesized.

The aforementioned scopes can be seen as a step towards
a programming language, but they only make the gram-
mar an attribute grammar. The real programming comes
when not only variables change based on other variables,
but when also the path through the program can change
based on these variables. This is essentially then an if-
else statement. In the new language this is possible as the
probability of a path can either be increased or decreased
and even be set to 0 and thus forcing a path.

3.3 Syntax description
We present a small example to illustrate how the language
is implemented. Further examples are given in the project
code. 1 For this example, a grammar for a binary tree is
written in such a way that most features of the language
are shown. Every symbols starts with the symbol name
with arguments, followed by all the alternatives which are
split with a | character. This means that all the production
rules are grouped by the nonterminal. The alternatives
have a more complicated structure. First the probability
weight is described in square brackets and this is calcu-
lated for each alternative when the symbol is entered so
all the necessary variables should already be declared in
the arguments. After the square brackets, there are three
options to follow. These options can be in any order and
can be repeated. The order is important as this is the or-
der the program executes the program. The first option is
1Our implementation of this language https://gitlab.
utwente.nl/s1994050/probplusgraphgrammar

to declare a node. This node should start with a lowercase
letter. Secondly, it is also possible to call a symbol. The
symbols should start with an uppercase letter and are of-
ten followed by arguments in parentheses, but this is not
needed. Lastly, there is an option for assignments. These
should be declared inside of curly braces. As the exam-
ple shows, also edges in the graph are declared here using
either a ← or → arrow.

ROOT(max): [1]

node

{node.max = max, node.depth = 0}

BRANCH(node) BRANCH(node);

BRANCH(parent)

: [parent.max - parent.depth]

node_split

{

node_split.max = parent.max,

node_split.depth = parent.depth + 1,

parent -> node_split

}

BRANCH(node_split) BRANCH(node_split)

| [1]

node_leaf

{parent -> node_leaf};

4. METHODOLOGY
When a new method for PCG is created, it should be
decided whether it is useful or even an improvement com-
pared to other methods. There does not seem to be a
benchmark or standardized test for this however [6]. Due
to this, it is hard to conclude if the new architecture has
any use, which clearly hinders this research. This is the
reason why a new benchmark was created.

The new test consists of multiple test cases or goals for
grammars which can be implemented in several ways or
with several PCG methods. When the implementations
were finished, certain metrics can be calculated and rea-
soned about. These test cases and metrics could be ex-
panded to improve the benchmark. Since this would go
beyond the intended scope of the research, the number
of cases will be limited to three. Even while this is the
case, the results can still be a good indicator of the new
language.

4.1 Test cases
4.1.1 Chain

The first test case was a chain of nodes (rooms) with an
average of around 20 nodes. The goal was to lower the
standard deviation of the amount of rooms. The first so-
lution was to hard-code a number of nodes, the second was
using more symbols in the grammar and the third was to
use the new calculations for probability. In Table 1, the
average number of rooms is described with #Nodes and
the standard deviation with σ#Nodes.

4.1.2 Linearity
The second was a grammar which constructs a dungeon
with certain decisions a player needed to make to decide
a path through the dungeon. The player could encounter
a split with 2 branches, a split which later reconnects or
a side path which loops directly back to the node where
the decision was made. The last option was for the player
to have no choice but only one way forward. The goal
was a dungeon with around 20 nodes where there were
roughly an equal amount of nodes with choices as nodes
with a forced path. Again there were 3 solutions. One

3

https://gitlab.utwente.nl/s1994050/probplusgraphgrammar
https://gitlab.utwente.nl/s1994050/probplusgraphgrammar


hard-coded, one with more symbols and one with weight
calculations. In Table 2, the average number of rooms
is described with #Nodes and the number of nodes with
a forced path divided by the number of choices is shown
under Linearity.

4.1.3 Enemy types
The third test was a ”dungeon” with 10 rooms where each
room could have one of three types of enemies. The goal
was to have only one of the enemies to occur 3 or more
times while the enemy in second place occurred twice.
This second condition was introduced as it otherwise would
be very easy to let the grammar create dungeons with only
one type of enemy. Here there was no hard-coded solution
where something was fixed. There was one solution with
more symbols and one with a simple calculation for proba-
bilities. Furthermore, there was a third solution with more
a more complicated calculation that was capable of enforc-
ing the goal 100% of the time instead of 60%-70% which
the other 2 solutions managed. In Table 3, the success
rate is defined as the percentage of generated graphs where
there exists only one type which has 3 or more nodes. Fur-
thermore, when ordered by the number of nodes each type
has, the table also displays how much nodes are allocated
to the type in the first, second and third place.

4.2 Metrics
In the case of this language, the goal is to see if it makes
creating and maintaining grammars easier. This goal should
be translated into metrics. Size metrics are useful to mea-
sure ease of construct and maintainability as if its smaller,
there is less to understand or to type. Complexity metrics
are also useful, more computations or possible paths is just
simply more to comprehend. Especially Halstead (HAL)
effort seems interesting as it consists of both volume and
difficulty. The volume is important just like other size met-
rics are, but the difficulty is even more relevant as game
designers needing to much knowledge about grammars was
part of the problem statement. Knowledge needed for
making a grammar in this language is hard to measure
in metrics. This is partially just based on the amount of
features the language has, but will also be represented in
complexity metrics. To see how complex structures have
influences on the outcome, can require just more effort,
but it can also require the knowledge on how to use certain
complex structures. This, however, is just an assumption.
Splitting the effort into these two factors could therefore
give more insight in how useful this new language is.

For this research, some metrics seemed to be more useful
than others. This is because there were metrics based
on the control-flow graph measured. The problem was
that the graphs were often only consisting of a few nodes
making these metrics close to useless.

5. RESULTS
One of the requirements was that the new language should
be able to do what normal other languages support. We
found, however, that this language is at least as powerful
as any other languages to write probabilistic grammars.
Not only is this the case, but the new language is even
more powerful. Due to the manipulation of probabilities,
a program can be created that chooses an alternative based
on data like an if-else statement. This decision is based
on read data and the language also support reading data.
This, essentially, is all that is needed for a Turing machine.
Therefore the language is Turing complete meaning that if
the computer which runs the code is infinite, any algorithm
that can be written, can be written in this language.

Table 1. Chain length
Normal Hard-coded Symbols New

#Nodes 20.164 20.906 18.732 20.296
σ#Nodes 19.388 9.276 8.936 10.869

VAR 2 3 4 2
TERM 3 13 3 3
MCC 3 4 8 3
AVS 1.667 4 1.875 1.667
VOL 66.439 289.863 193.588 96.864
DIFF 2.125 2.6 4.5 4.313
HAL 141.182 753.644 871.146 417.726
TIMP div by 0 100 40 div by 0
CLEV 100 100 100 100

NSLEV 0 0 0 0
DEP 1 1 1 1
HEI 2 2 4 2

Table 2. Linearity
Normal Hard-coded Symbols New

#Nodes 14.054 20.043 21.366 20.662
Linearity 1.005 1.058 0.911 0.949

VAR 2 3 4 2
TERM 6 6 6 6
MCC 6 6 16 6
AVS 2.833 3.5 2.611 2.833
VOL 474.974 587.555 1403.957 731.1267
DIFF 8.421 8.636 17.6 17.043
HAL 3999.781 5074.338 24709.634 12460.942
TIMP div by 0 div by 0 40 div by 0
CLEV 100 100 100 100

NSLEV 0 0 0 0
DEP 1 1 1 1
HEI 2 2 4 2

Table 3. Enemy types
Normal Symbols Simple Complex

Success 11.0% 71.6% 58.2% 100%
#First 4.962 7.252 7.624 6.37

#Second 3.244 1.98 2.096 1.974
#Third 1.794 0.768 0.28 1.656

VAR 2 7 2 2
TERM 13 13 13 13
MCC 4 15 4 4
AVS 3.75 3.2 3.75 3.75
VOL 474.744 1694.335 1134.989 1448.813
DIFF 6.818 17.185 16.667 34.645
HAL 3236.893 29117.463 18916.478 50194.349
TIMP div by 0 13.333 div by 0 div by 0
CLEV 100 100 100 100

NSLEV 0 0 0 0
DEP 1 1 1 1
HEI 2 3 2 2

4



This power, however, will technically not make such a big
difference in what is theoretically possible. If we take the
previous example of a binary tree, then we can simply see
that, maybe with a lot of hard-coding, the result is also
possible without probability calculations. The way this
can be done, is by creating new symbols for each possible
value of the arguments like:

BRANCH_TWO ->

node BRANCH_ONE BRANCH_ONE [weight=2] |

leaf [weight=1]

BRANCH_ONE ->

node BRANCH_ZERO BRANCH_ZERO [weight=1] |

leaf [weight=1]

BRANCH_ZERO ->

leaf [weight=1]

With the example of a tree, it is clearly sometimes easier
and most definitely shorter to use arguments to calculate
the weights, although other options are still possible. In
this example, the constructed grammar can even be as
short as the descriptive grammar which cannot generate
a tree. This is why also in practice the new language
is far more powerful as nobody would hard-code all the
options of what the arguments could be in a more complex
grammar.

5.1 Experimental Results
Like previously described, for each test case, multiple im-
plementations were constructed. First, a grammar was
made that only described the structure such that it could
theoretically create all the outcomes all the other gram-
mars could make. This grammar partially acted like a
control-group by giving more meaning to all the other mea-
surements.

After that, implementations were needed that did not re-
quire the extension with computable probabilities. The
easiest way to make sure outcomes like the number of
nodes result reach the goal, is by hard-coding. Going back
to the running example, this would result in the first split
being hard-coded which effectively doubles the tree size.

ROOT ->

node BRANCH BRANCH [weight=1]

BRANCH ->

node BRANCH BRANCH [weight=1] |

leaf [weight=2]

A different way of making sure the outcome reaches the
goal is by implementing more steps or routes towards the
result. In the binary tree example, a solution was men-
tioned to decrease the probability of splitting each step.
This would require a lot of symbols, but a compromise
could be made with having a symbol with a probability of
splitting into itself, while also having a chance of splitting
into the next symbol. This next symbol could split into
two branches while also having a chance to terminate into
leaves. This would also increase the average size while de-
creasing the chance of the tree only containing one node.

BRANCH_START ->

node BRANCH_START BRANCH_START [weight=1] |

BRANCH_END [weight=2]

BRANCH_END ->

node BRANCH_END BRANCH_END [weight=1] |

leaf [weight=2]

Furthermore, the goal could be reached by adding more
paths in the grammar. This would mean that at the start,

a decision is made to go for a certain outcome. These
options could be, for example, a symbol that constructs a
very big tree while there is also an options which creates a
small tree. Although this does not achieve a lot in the case
of binary trees, it might result in outcomes the developer
wants.

ROOT ->

BRANCH_BIG [weight=1] |

BRANCH_SMALL [weight=1]

BRANCH_BIG ->

node BRANCH_BIG BRANCH_BIG [weight=1] |

BRANCH_END [weight=1]

BRANCH_SMALL ->

node BRANCH_SMALL BRANCH_SMALL [weight=1] |

leaf [weight=5]

Lastly, there was also the implementation which used the
different weight calculations. These grammars could show
whether measurements would be changed. Like mentioned
in the test case descriptions, the third test also had this
option split into a simple and a complex grammar to show
the power of the extension for probabilistic grammars.

5.1.1 Measurements
Next to the previously discussed measured numbers, each
table of a test case also has standardized metrics. The im-
portant metrics are the number of nonterminals (VAR),
the number of terminals (TERM), the McCabe complex-
ity (MCC), the average right-hand side (AVS), the Hal-
stead volume (VOL), the Halstead difficulty (DIFF) and
the Halstead effort (EFF). The McCabe complexity, or
cyclomatic complexity, was measured as the total number
of alternatives in a grammar, just like Power et al. [11]
count this complexity. Furthermore, also the tree impu-
rity (TIMP), the normalized count of levels (CLEV), the
number of non-singleton levels (NSLEV), the size of the
largest level (DEP) and the maximum height (HEI) are
measured. These, however, are not as relevant as they
contain information on the control flow graph, which in
these cases often only consists of two nodes.

5.1.2 Size Metrics
Just like the expectations, the number of terminals, non-
terminals and alternatives are lower or equal on all the
grammars constructed with the new feature of argument
based weights. This is probably because the “normal”
grammar which can only properly describe the outcome
instead of creating the wanted outcome, can be adjusted
in probabilities without adding anything else. In the cases
where the results were equal, this might be because the
grammars are small and therefore the outcomes are small.
Therefore further expansion of test cases would improve
this benchmark. This leads us to conjecture that size met-
rics improve with this new feature of probabilistic gram-
mars, but a more detailed study needs to be conducted
with a larger sample size and with bigger constructed
grammars.

5.1.3 Halstead complexity
For a grammar where certain structures are fixed, the ex-
pected volume would be higher while the difficulty is still
low. The reason for this is that hard-coding decreases
the possibilities and calculations by replacing those with
assignments. Meanwhile, a grammar with more symbols
results in both a high volume and a high difficulty as there
are more or longer paths and each part of the path has a
certain volume and difficulty which are accumulated in the
total. Lastly, for a grammar with more calculations, we

5



expect the difficulty to go up drastically due to the need
for more math, while the volume only increases partially
to declare all the terms needed in the calculations.

Even though the results are lacking in quantity, it is inter-
esting to see that the results show the same as the expec-
tations. Especially comparing the options with more sym-
bols or more computations, it is interesting to see that, in
all these cases, the difficulties are roughly equal. There is,
however, still a difference in volumes and thus we can con-
clude the new feature for calculation weights, most likely,
requires less effort when creating grammars. The results
also show that the option with hard-coding structures can
still have the lowest effort. In the second test case this is
shown, but as the chain length case shows, this is not al-
ways the case. However, some developers might not even
want to force this in the results, so the recommendation for
minimizing the effort would depend on the programmers
preferences.

Furthermore, when the probability calculations are used,
it is possible to achieve more. For example, in the test-case
about enemy types, the complex solutions could achieve a
success rate of 100%. The effort to create such a gram-
mar will be significantly higher. So again, it is up to the
developers preference to decide which type of solution to
use.

5.1.4 Control-flow graph
Like mentioned earlier, metrics based on the control-flow
graph are less useful as the graphs were so small. Only the
height has an explainable difference because the grammars
which had more symbols, also had a bigger height.

In other metrics there were clear signs how little the results
meant. In the tree impurity calculations, for example,
there were a lot of divisions by zero, which shows that the
calculation is not meant for such small numbers.

6. CONCLUSIONS
This research suggests that there are actual use-cases for
this addition of probabilistic grammars. This is mostly
due to the fact that it makes more possible to practically
construct while also decreasing the size of other grammars.
The best indicator for this is that one of the test cases, the
new language made it possible to get a 100% success rate
since it was a lot easier to set limits.

The new method for PCG does also have negatives as
the difficulty of constructing grammars does not decrease.
This is both because the constructed grammars itself do
not seem to be less difficult, but also due to the simple
fact that more features of a language results in more to
learn and more options to consider while programming.
This, however, does not mean it would be useless. The
addition of the weight calculations can be seen as a tool
in the toolbox of a game designer, for which the developer
itself can choose whether to use it or not.

Given that the objective was to get a method of creat-
ing content which did not require a lot of knowledge from
the developer, the Halstead difficulty was more important
than the Halstead effort. Given that these difficulties tend
to be equal or worse, this means that the results do not
conclude that new language is ”better”.

In this research, it is important to notice that the amount
of evidence is small and it would be useful to extend it
by testing on a larger group of developers with more test
cases. This would lead to more convincing data. This does
not take away that this research shows that the extension
on probabilistic grammars is interesting as there are clear

cases when the solution is easier to construct.

7. REFERENCES
[1] S. Bangalore, O. Rambow, and S. Whittaker.

Evaluation Metrics for Generation. In Proceedings of
the First International Conference on Natural
Language Generation, Volume 14, INLG ’00, page
1–8. Association for Computational Linguistics,
2000.

[2] E. Csuhaj-Varjú and A. Kelemenová. Descriptional
complexity of context-free grammar forms.
Theoretical Computer Science, 112(2):277–289, 1993.

[3] B. De Kegel and M. Haahr. Towards procedural
generation of narrative puzzles for adventure games.
In R. E. Cardona-Rivera, A. Sullivan, and R. M.
Young, editors, Interactive Storytelling, pages
241–249, Cham, 2019. Springer International
Publishing.

[4] J. Dormans and S. Bakkes. Generating missions and
spaces for adaptable play experiences. IEEE
Transactions on Computational Intelligence and AI
in Games, 3(03):216–228, jul 2011.

[5] A. Gellel and P. Sweetser. A hybrid approach to
procedural generation of roguelike video game levels.
In International Conference on the Foundations of
Digital Games, FDG ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[6] A. Gellel and P. Sweetser. A hybrid approach to
procedural generation of roguelike video game levels.
In International Conference on the Foundations of
Digital Games, FDG ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[7] S. Geman and M. Johnson. Probabilistic grammars
and their applications. In J. D. Wright, editor,
International Encyclopedia of the Social I&
Behavioral Sciences (Second Edition), pages 9–15.
Elsevier, Oxford, second edition edition, 2015.

[8] M. H. Halstead. Elements of Software Science
(Operating and Programming Systems Series).
Elsevier Science Inc., USA, 1977.

[9] J. Kowalski, R. Miernik, P. Pytlik, M. Pawlikowski,
K. Piecuch, and J. S ↪ekowski. Strategic features and
terrain generation for balanced heroes of might and
magic iii maps. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), pages
1–8, 2018.

[10] K. Merrick, A. Isaacs, M. Barlow, and N. Gu. A
shape grammar approach to computational
creativity and procedural content generation in
massively multiplayer online role playing games.
Entertainment Computing, 4(2):115–130, 2013. cited
By 7.

[11] J. F. Power and B. Malloy. A metrics suite for
grammar-based software. J. Softw. Maintenance
Res. Pract., 16:405–426, 2004.

[12] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games. Computational
Synthesis and Creative Systems. Springer, 2016.

[13] G. Smith, M. Treanor, J. Whitehead, and
M. Mateas. Rhythm-based level generation for 2d
platformers. In Proceedings of the Fourth
International Conference on the Foundations of
Digital Games (FDG), pages 175–182, 2009.

[14] R. van der Linden, R. Lopes, and R. Bidarra.
Designing procedurally generated levels. In AAAI
Workshop - Technical Report, pages 41–47, 10 2013.

6



[15] R. van der Linden, R. Lopes, and R. Bidarra.
Procedural generation of dungeons. IEEE
Transactions on Computational Intelligence and AI
in Games, 6(1):78–89, 2014.

[16] R. van Rozen and Q. Heijn. Measuring quality of
grammars for procedural level generation. In
Proceedings of the 13th International Conference on
the Foundations of Digital Games, FDG ’18, New
York, NY, USA, 2018. Association for Computing
Machinery.

[17] G. W. Wilburn and S. R. Eddy. Remote homology
search with hidden potts models. PLOS
Computational Biology, 16(11):1–22, 11 2020.

[18] C. Yang. Rage against the machine: Evaluation
metrics in the 21st century. Language Acquisition,
24(2):100–125, 2017.

[19] R. Zmugg, W. Thaller, U. Krispel, J. Edelsbrunner,
S. Havemann, and D. Fellner. Procedural
architecture using deformation-aware split
grammars. Visual Computer, 30(9):1009–1019, 2014.
cited By 5.

[20] M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle,
R. Forax, and G. Roussel. On automata and
language based grammar metrics. Comput. Sci. Inf.
Syst., 7:309–329, 05 2010.

7


	Introduction
	Problem statement
	Proposed solution

	Related Work
	New architecture
	Formal preliminaries
	Engineering the new architecture
	Syntax description

	Methodology
	Test cases
	Chain
	Linearity
	Enemy types

	Metrics

	Results
	Experimental Results
	Measurements
	Size Metrics
	Halstead complexity
	Control-flow graph


	Conclusions
	References

