Intelligent Bomberman with Reinforcement Learning
Ngo Hung Minh Triet

University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

ngohungminhtriet@student.utwente.nl

ABSTRACT

Bomberman is a strategical, maze-based game where the
players defeat their enemies by placing a multi-direction
count-down bomb that would explode and destroy obsta-
cles and other players. In this paper, a simplified version
of Bomberman is implemented in Java, where different
controlled agents are placed. Each agent represents one of
five reinforcement learning methods: Q-Learning, Sarsa,
Double Q-Learning, and Deep Q Neural Network with
two state representations: 5-tiles information and com-
plete information. Then, we investigate whether a specific
reinforcement learning method can successfully learn to
play Bomberman efficiently by evaluating them with ad-
hoc agents and finally against each other. The configu-
ration of 5-tiles information with Sarsa archives the best
overall quantitative results.

Keywords

Reinforcement Learning, Bomberman, Computer Game,
Q-Learning, Neural network, Deep Reinforcement Learn-
ing

1. INTRODUCTION

In the past decades, Reinforcement Learning is gaining
more attention. Being inspired by animal learning the-
ories, reinforcement learning (RL) is developed with the
idea that an agent can deduce from its experience to de-
cide which actions to take to maximize predefined values.
This agent learns by interacting with the environment and
receiving feedback indicating the values or rewards of the
action. The objective is that after the learning process
is that the agent will perceive a specific state of an envi-
ronment and reason the actions that would give the most
rewards. [11, 16].

Nowadays, there are many studies on creating reinforce-
ment learning agents for various genre of games rang-
ing from grid games including traditional games such as
shougi, Go, and chess [13, 15, 9, 12, 14] to modern com-
puter games such as Mario, Atari, Bomberman, Ms. Pack-
man [8, 4, 2] in order to improve the efficiency and win-
rate of the reinforcement learning agents against other re-
inforcement learning agents or human champions of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

35”” Twente Student Conference on IT July. 2nd, 2021, Enschede, The
Netherlands.

Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

corresponding games.

In this study, we show the correlation between reinforce-
ment learning algorithms with different state representa-
tions and the ability to learn and play the game Bomber-
man. We used five reinforcement learning algorithms: Q-
Learning, Sarsa, Double Q-Learning, and Deep Q Neural
Network and two state representations: 5-tiles information
and complete information. Each configuration is tested
with three tests: the learnability test, the advance test,
and the comparative test. In each of the tests, the agents
are evaluated per generation. Each generation consists
of 10000 training episodes and 100 evaluation episodes.
Then, win rates and average rewards are extracted to make
comparisons. The results show that although simple Q-
Learning works, but performance deteriorates in scenar-
ios with larger state space. While a preliminary version
of the Deep QQ network shows superior results and looks
promising compare to Q-Learning with the use of the neu-
ral network to tackle the ample state space. In the end,
5-tiles information with Sarsa configuration archives the
best overall quantitative results.

In Section 2, we introduce the game and describe the im-
plementation of simple Bomberman in Java with differ-
ent state representations. Then, in section 3, we give an
overview of five reinforcement algorithms we used for the
agents. After that, we present the experimental setups and
results in section 4. In section 5, we discuss the research
process and draw reflections from thorough our research.
Finally, we end the paper by summarising our paper and
discuss some future improvements.

2. BOMBERMAN

In 1983, Hudson Soft published the original variant of
Bomberman, and new generations of Bomberman are still
being published to this day. Nowadays, there are almost
100 different variants of Bomberman games released on
various platforms [7]. In the original variant of Bomber-
man, which is named Bankudan Otoko in Japan but is
called Bomber Man in most releases, the player is trapped
in a maze with monsters. In each stage, the objective is to
find the exit and eliminate all monsters by moving around
the maze, placing bombs, obtains power-ups that empower
player’s bombs. When the goal is met, the player can
proceed to the next stage. While single-player campaigns
mode occupied a large portion of Bomberman, we focus
on the multiplayer variant in this research, where players
are trapped in the same maze, and their only objective
is to eliminate each other by placing bombs strategically
until the very last man is the winner. Furthermore, since
the game can prolong forever, over the iterations, there
will be more challenges that help end the game, such as
more power-ups or bombs appear randomly to speed up
the termination of the game.

2.1 Environment

We implemented an environment that represents a simpli-
fied version of Bomberman. The core of the environment is
Java and JavaFX as the framework that helps visualize the
game. The grid size can be customized, but in our experi-
ments, a board with the size of 7x7 (including the unbreak-
able border)is used, with its environment configured as in
Figure 1. The players in each test type are different but
ranging from two to four. There are two types of agents:
ad-hoc agents and learning agents. Ad-hoc agents con-
sist of stationary agents and random agents. This type of
agent is used to assess the ability to learn and compatibil-
ity (the quality of the agents’ policies) of a learning agent
with Bomberman. FEach learning agent is implemented
with a combination of a reinforcement learning algorithm
and a state representation. Each turn, the agents receive
the state representation from the environment (the game)
that the agents use to determine their next move. After
receiving all the moves from the active agents, the environ-
ment executes the moves and sends back the results and
rewards of the agents to them, and then the cycle repeats
until there is less than one agent on the field.

Figure 1. The game configuration uses for all tests in this
study. Blue tiles are breakables walls, deep brown tiles are
unbreakable walls, and learning agents (in this case, 4) are
represent by human-like figures and are distinct by colors.
This configuration separates the agents with walls, and each
agent is contained in a smaller grid which turns out to be the
balance between complexity and fairness. To win the game,
the agents need to learn how to break walls and approach
then eliminate the opponents.

The rules of the game are as follows, each turn, the agent
can move in one of four directions or place a bomb in the
same position that the agent is standing. If a bomb is
placed, it will explode in 3 turns in four directions within
one radius. If the explosion hits a breakable wall or an
agent, those objects will be removed from the game, and
the credit belongs to the owner of the bomb. Further-
more, if a bomb is inside another bomb’s explosion, it will
explode as well, which will set off a chain reaction. There-
fore, the game is more complicated, and the agent has to
consider the nearest bomb countdown and those that can
set off that bomb. The agents can be in the same posi-
tion but are not allowed to move to a tile that is a wall
(breakable and unbreakable) or a bomb. As time progress,
particularly after 50 turns, we introduce the same prob-
ability of a bomb that will spawn at the agent position

for all the agents in the game. This probability will in-
crease linearly with turn count to 1.0, which prevents the
game from running forever. Therefore, to win the game,
the agents must learn how to dodge bombs and finish the
opponent as soon as possible.

2.2 State representation

According to Figure 1, as there are 36 changeable tiles
(free/breakable/unbreakable), 36 tiles to place a bomb, 36
tiles for the agents (ranging from two to four) to move
into, the number of state can be approximated as 33 -
236 . 436 ~ 4.9.10* different game states in total. In
this part, we introduce two ways to represent the game.
One of them will show the complete information of the
game, which results in the enormous state space mentioned
above. The other is an attempt to minimize the state
spaces by limiting the agent knowledge (how much the
agent can perceive from the game/environment) and only
showing the agent’s surroundings to them.

2.2.1 Complete information

In this configuration, the game is converted to a flatten-
able array that contains all the information of the current
game state. The array is in 2D and has the same size as the
board. Each of the cells in the array contains the informa-
tion of the respective tile in the game. That information
is computed by the following values:

e Tile type: Free, Breakable wall, Obstacles (Unbreak-
able wall or Bomb).

o Whether the tile contains the agent.
e Whether the tile contains any of the other agents.

e The foreseeable explosion countdown of the tile. In
other words, the agent knows whether there will be
an explosion in this tile with the precise countdown.

As mentioned in the game rules section, the bombs in this
game can be chained to create a bigger explosion. There-
fore, The environment uses BFS (Breadth-First Search)
to calculate the foreseeable explosion countdown in order
to group explosion tiles together, and the group count-
down value is equal to the lowest countdown bomb in the
group. This way, the agent knows whether the tile is safe
according to the nearest bomb countdown but the precise
countdown of the exploding bomb even it is chained by
another bomb. In this configuration, the number of states
is equal to the calculated game states, which is ~ 4.9-10%.

2.2.2 5-tiles information

Since the main goal of this study is to evaluate how well
the simple reinforcement learning algorithm performs in
Bomberman, we think that it is not feasible to store or
explore the state space with the size of a 50 digits number.
Therefore, we developed a game representation that limits
the agent’s vision to only its adjacent surrounding and
the information relating to the nearest opponent. The
information that the state provides is as below:

e Tile type: Free, Breakable Wall, (Unbreakable wall
or Bomb) and are normalized as 0, 1, -1, respectively
in four directions (North, East, South, West) and the
agent’s current position.

e The foreseeable explosion countdown of the tile and
is ranging from 0 to 3 and are normalized by dividing
the current countdown to the maximum countdown,
which is 3 in four directions (North, East, South,
West) and the agent’s current position.

e An integer value that represents the relative position
of the nearest opponent.

Since in this configuration, the information that the agent
perceives are relative to its current position and surround-
ing, we couldn’t store the opponent position as fix number.
Therefore, we measured the number of steps which agents
require to reach the according position using the Manhat-
tan Distance [3] of the agent as in the equation d(X,Y) =
32, |#; —yi| and extract the minimum distance then cal-
culate the displacement vector that represent the current
relative position vector from the agent to the nearest op-
ponent as in the equation X =Y = (z1 — y1,22 — y2) as
represented in Figure 2. Last but not least, in this con-
figuration, since there are 36 positions that the agent and
its nearest opponent can occupy, the approximation of the
number of states can be calculated as follow 3°-2°.45.36% ~
10°. While it is still a relatively big number, it has been
significantly reduced from a 49 digits number. Early in
the study, we tried to only include the surrounding of the
agents without the nearest opponent’s information, but
the results were not promising. The agent seems to lose
its way and couldn’t find the opponent and had to rely
purely on randomization.

Figure 2. The image illustrates the 5-tiles information state
representation is an example of the game. The red cross-
shaped represent the agent’s surrounding where it takes
state information. At the same time, the green arrow rep-
resents the Manhattan distance that measures the size of
the vector that shows the relative position (direction and
distance) between the agent and its nearest opponent, il-
lustrated by an arrow in yellow.

2.3 Ad-hoc agents

In this study, we want to assess whether a configuration of
state representation and reinforcement learning algorithm
can learn how to play Bomberman. Therefore, we imple-
mented two simple ad-hoc agents that act as a baseline to
compare among our configurations. The two agents are
a stationary agent and a random agent. The stationary
only chooses to stay at its starting position in all games,
which helps us evaluate how far the agent gets by evaluat-
ing its average rewards after every generation’s evaluation
phase. The agent can learn the possible knowledge: how
to perform correct moves, break walls with bombs, and
eliminate the opponent with bombs. On the other hand,
the random agent, who can perform six moves, including

five movements and a 1% chance of placing a bomb, help
us create a more complex environment where the oppo-
nent of the agent can move freely. Therefore, this agent
not only creates a vastly wider state space that the learn-
ing agent needs to anticipate but also has the ability to
potentially dodging bombs primitively.

3. REINFORCEMENT LEARNING

Reinforcement Learning was introduced by Sutton and
Barto in 2015 [16]. This type of machine learning algo-
rithm helps the agent learn to achieve certain goals in a
certain environment by optimizing the agents’ behaviors
with trial and error (aka making a sequence of actions re-
peatedly) in order to maximize the expected future reward
sum. From each time step, the agent can perceive the cur-
rent state of the environment and make an action which
in turn is mapped into a numerical reward. This reward is
dependent on the effect of the agent’s action on the envi-
ronment. If the action helps the agent moves towards the
goals, it will be positive and negative otherwise.

To model the discrete-time stochastic control process of
the interaction between the agent and the environment,
Markov Decision Process (MDP) is introduced with a fi-
nite space state S, and a finite set of action A [1]. In this
definition, the environment state at time-step t is denoted
at s; while the action that the agent chose time-step t
is denoted at a;. The transition function Tr(s,a) — s
denotes transition of the state of the environment from
state s after executing action a while the reward function
R(s,a) — R denotes the numerical reward that when ex-
ecuting action a in state s and lastly, the discount factor
v € [0,1] decide how important the future rewards to the
optimal decision making process.

3.1 Reward Function

In our study, it is hard to evaluate each of the agent’s
actions for numerical rewards since immediate actions are
not resulting in an immediate reward. For example, plac-
ing a bomb does not always guarantee breaking walls,
killing other agents, or suicide. Therefore, we mapped
events or rather consequences of those actions into num-
bers. For the events that improve the agent knowledge and
push it towards victory, the rewards are positive, such as
eliminating another agent or breaking a breakable wall.
On the other hand, if the event obstructs or even halts
from reaching the goal, the rewards become negative. Fur-
ther details regarding specific event-reward value can be
found in table 1.

Event | Reward
Make a valid move -1
Make a invalid move -5
Kill a player 500
Die -300
Break a wall 30

Table 1. Event-based reward function. Positive rewards
are used for events that nudge the agent towards the goal,
and negative rewards are used for either promoting active
movement or punishments for events that prevent the agent
from archiving the goal.

The final event-reward value is modified throughout our
study since reward engineering directly affects the learning
process of the agents. For example, choosing -1 instead
of 0 in order to encourage the agent to move or a high
reward for killing an opponent encourages the agent to
eliminate the opponent faster. Although we modified the

rewards based on our assumption, engineering the rewards
was trickery, and the learning agent often exploited it.
After our tests, we arrive at our best performance reward
function, which is table 1. Finally, as we experiment with
the parameters, we decide to use the discount factor of
0.99, which archives better policies for the learning agents.

3.2 Q-Learning

As one of the breakthrough in reinforcement learning, an
off-policy TD control algorithm as known as Q-Learning
is introduced by Watkins in 1989 [17]. The action-value
function Q in equation 1 directly approximate the ¢* (the
optimal action-value function) is independent from the
the policy that it is following. Q(s,a) denotes the ex-
pected sum of rewards after executing action a in state s
and represents how significant the action a in state s in
gaining future rewards. For each time-step, the quadruple
(st, at, re41, St+1) is extracted to update Q(s, a) as follow:

Q515 a¢) <= Q(se, ar)Farepitymax Q(ser1, a) =Q(se, ar)]

(1)
Q-Learning uses Temporal Differences (TD) to estimate
the value of ¢*. TD-error is the latter part of equation 1
that is encapsulated in square brackets and represents the
difference between the estimated reward at a time step,
and the actual reward received. The larger the TD-error
is, the larger the difference between the expected rewards
and the actual reward. Therefore, the goal of Q-Learning
is to minimize the TD-error. The learning rate « is used
to determine how quickly we want to shift the current
Q(s,a) to its expected value. Finally, if we allow the agent
to execute all possible actions in all states by learning
indefinitely, the action-value Q function will converge to
the optimal policy ¢*.

3.3 Double Q-Learning

While Q-Learning is often powerful, the involvement of
repetitive maximization operations to approximate the

maximum expected action value introduces a significant
positive bias in the process [16]. As example 6.7: Maxi-
mization Bias Example (Sutton and Barto, 2015), they in-
troduced a simple episodic MDP that has two states A and
B, starting state in A, with the two actions: left or right,
where the optimal actions is 5% probability choosing the
left action from A. The experiment shows that Q-Learning
is affected by maximization bias and takes the left action
in a large portion at the start of its learning process, while
Double-Q learning is unaffected by maximization bias.

The proposed Double Q-Learning is to maintain two Q-
value functions Q1 and @2, and in each time-step, with
the probability of 0.5, one Q-value function will update
with the value of the other Q-value function. The update,
in each time step, in case @)1 is chosen, consists of finding
the maximizing action a* from @Q; by using

Qu(s',0") = max Qi(s',a) 2)

then use a* to determine Q2(s’,a*) and finally use those
value to update Q1(s,a) as follow

Q1(st,at) Q1 (st,ar)+
afrer + ymax Q2(se+1, ar) — Q1(se, ar))
(3)

In case Q2 is chosen, the label 1 and 2 is swapped, and
the same process applied.

3.4 Sarsa

State—action-reward—state—action (Sarsa) is introduced in
1994 as an on-policy TD control method [10]. Sharing
some similarities with Q-Learning, they are both Markov
chains with a rewards process and Sarsa’s goal is to mi-
minize TD-error but on policy, hence Sarsa aims to esti-
mate ¢~ (s, a) rather than ¢(s,a). Essentially, Sarsa agent
interacts with the environment based on its policy and up-
dates the policy based on actions taken using the equation
below:

Q(st,at) « Q(st,ar) + afrerr +YQ(se41, ar) — Q(se, ar)]

(4)
As in the equation 4, Sarsa, or rather all on-policy meth-
ods, it use behavior policy 7 to continually estimate ¢, and
simultaneously modify policy 7 toward greediness with re-
spect to gx. A distinction from Sarsa to Q-Learning is the
convergence properties since Sarsa convergence properties
is dependent on the behavior policy 7 [16].

3.5 Deep Q-Network

While Q-Learning is a simple but powerful algorithm to
derive policy that helps our agents learn how to play the
game Bomberman, it is not sufficient when the number of
states is a number with 49 digits. The resources that are
needed to store the complete Q table would be enormous,
and it would also require nearly infinite runs/episodes to
train the agent. Therefore, it is found out that applying
machine learning models such as neural networks would
help tackle the Q-Learning bottleneck. As illustrated in
figure 3, in Deep Q-Network the agent will consist of a
neural network that receives the state from the environ-
ment and then approximate the Q-value of the actions at
the output of the neural network, the maximum action
is chosen to send to the environment and get the accord-
ing reward similar to Q-Learning. Unlike Q-Learning, the
loss function is the mean squared error of the predicted
Q-value and the target Q-value which is calculated with:

L=E[(r+ymaxQ(s', a) —Q(s,a))’] (5)

Further more, consecutive samples consist of strong cor-
relations, by randomize and utilize experience replay, we
can store the agent’s experience at each time-step as e; =
(st,at, 7, S1+1) in a data-set, pooled it up and withdraw
mini-batches and updating the batch to the neural-network

8.

Deep Q Learning Agent

Repvard

Neural network — Environment

Action 1.

Action 2

Action
Action 3

Action 4.
Actions.

Action 6.

Figure 3. Deep Q-Network agent configuration.

In this study, we implemented a deep Q-Learning agent
that has a multi-layer perception. It is a feed-forward neu-
ral network that maps the flattened complete information
state as an input vector representing the game’s current

state and output. A vector consists of 6 nodes. Each node
is the approximation of the Q-value for one of the pos-
sible actions in Bomberman. We used only one hidden
layer consists of 256 nodes with the ReLU activation func-
tion. Finally, our output function is a linear function, so
the network can output value outside range [0,1]. While
training, we backpropagating the TD-error using the loss
function 5 to update the weights and bias inside the neural
network. After the training, the neural network is able to
approximate the Q-value of each action in a specific state
without the need to store all of the possible states in a
table.

4. EXPERIMENTAL RESULTS

In this section, we divide our experiments into three parts:
learnability test, advance test, and comparative test. The
learnability and advance test is training the learning agents
with ad-hoc agents to measure how much the agents can
learn from the game. In contrast, the comparative test
chooses four distinct learning agents and obtains results
so that we can roughly show which configuration of state
representation and reinforcement learning method yields
the most efficient results.

While having different purposes, all of the tests use the
same procedure and parameters and hyper-parameters for
the configurations. Each test consists of 100 generations.
In each generation, we train the agents for 10000 episodes
(games). Then we evaluate the agents with 100 evaluation
games. In the training episodes, the agents’ starting posi-
tions are randomly generated while we used one configura-
tion (Figure 1) for all of the evaluation episodes. Further-
more, we disable all of the exploration methods in evalu-
ating episodes. Therefore, only the results from the eval-
uation episodes are reliable. We collect win rates, mean
rewards and then observe the agents’ policies developed by
running evaluation on the game GUI with graphical-delay
which otherwise is disabled for faster training speed.

4.1 Hyperparameters

Hyperparameters are particularly difficult to decide since
each modification affects the configurations differently.
Therefore, we perform many tests to adjust the hyperpa-
rameters at the beginning of the tests so that it yields the
acceptable policies. All of the configurations use the learn-
ing rate of 0.001 and the discount factor of 0.99. Further-
more, the diminishing greedy exploration method is used
for training the deep Q-Network agent, while the simple
greedy exploration method is used for all of the tabular
TD learning, including Q-Learning, Sarsa, and Double Q-
Learning. Lastly, all of the hyperparameters can be found
in table 2

QL Sarsa DQL DQN

€ 0.1 0.1 0.1 0.5—0.01

@ 0.001 0.001 0.001 0.001

o 099 099 0.99 0.99

batch size - - - 16

buffer size - - - 100000

epoch - - - 4

hidden layer - - - 1
Table 2. Hyperparameters for reinforcement learning

methods. In this table, Q-Learning is denoted as QL, Dou-
ble Q-Learning is denoted as DQL and Deep Q-Network is
denoted as DQN

4.2 Learnability test

In this test, we evaluate whether the agents are able to
learn how to play Bomberman and their policies. As a
rule of thumb, we would like the agents to learn how to
move properly, which means the agents should make al-
most no invalid moves. Then, the agents should learn how
to destroy the wall and eliminate other opponents while
dodging the explosion of the bombs. Therefore, in this
test, we place all of the agents against a stationary agent.
Furthermore, we disable the spawning bomb for this sta-
tionary agent, making the game into a puzzle game. The
agent needs to learn how to move, break the wall, find
the opponent, and then eliminate them before the game
spawning bomb rapidly to kill the learning agents.

—— DoubleQ_board —— Q _complete —— DoubleQ_5tiles
Sarsa_complete —— Q Stiles —— Sarsa_Stiles

DeepQNetwork

600

;

400 4

200 4

mean rewards

—200 4

—400 4

T T T T T T
0 20 40 60 80 100
Generations

Figure 4. The figure shows the Learnability test average
rewards according to the learning agents’ configurations.
Each configuration is named as a reinforcement learning
method and a state representation (e.g., Q_complete is an
agent who uses Q-Learning and complete information state
representation). Except for the Deep Q-Network agent who
always uses the complete information state.

The results of the test are shown in Figure 4. In the graph,
we observe that all of the configurations show the progress
of the agents in their learning period. Since the opponent
is stationary, it is both an advantage and disadvantage for
the learning agents. Using a stationary agent, we reduce
the state size for the learning agent, but the agent would
rely on randomization to reach and eliminate the station-
ary agents. All of the simple TD learning such as (Double
Q-Learning, Q-Learning, or Sarsa) with the complete in-
formation state representation can learning how to move
properly and destroy walls to get more points. But only
the configurations with 5-tile information with Double Q-
Learning and Q-Learning are able to learn how to reach
the opponent and eliminate them, which resulting large
spikes in Q-5tiles’ line and DoubleQ-5tiles’ line at gener-
ation 55 and generation 96, respectively, and since this
is a puzzle game with a stationary opponent, the learning
agent will stop learning when they found their optimal pol-
icy. While 5-tiles information is scalable, it is not generic
since further training after the optimal policy is found to
degrade rewards. While Deep Q-Network is not showing
any remarkable progress, observation showed that it could
move properly and then suicide to lessen the negative re-
ward because it couldn’t find a better policy. One possibil-
ity could be that it loses the spatial features by flattening
the state vector (the correlation between neighbors cells).

One potentially approach would be to implement convo-
lutions layers that preserve those spatial features, which
help the neural network learn more efficiently, unlike Q-
Learning with the same complete information state repre-
sentation, which shows steady progress over the training
period.

4.3 Advance test

In this test, we evaluate how well the learning agent per-
forms against an ad-hoc agent, specifically a random agent.
Sharing similarities with the learnability test, the setup
and procedure of this test are as same as the learnability
test. We place both agents on the same board, but this
time the random agent can move. In this test, the optimal
or rather desirable policy that we expect from the agent
would be to destroy walls, dodging bombs while trying to
trap the opponent. Since this is not a puzzle game like in
the Learnability test, we don’t stop learning when an op-
timal policy is found. Furthermore, we decided to collect
win rates in this test to see the progress of the learning
agents. Lastly, this test would pose more challenges for
the learning agents since their opponent can move, which
in turn generates more states. Therefore a traditional tab-
ular with complete information state representation would
suffer due to the vast state space that the random agent
generates by moving.

—— Q_complete —— Q_5tiles —— DoubleQ_S5tiles —— Sarsa_Stiles —— DeepQNetwork

0.8+

0.6

win rates

0.4+

0.2+

0.0 4

T T T T T T
[} 20 40 60 80 100
Generations

Figure 5. The figure shows Advance test win rates accord-
ing to the learning agents’ configurations. Each configura-
tion consists of a reinforcement learning method and a state
representation (e.g. Q_complete is an agent who uses Q-
Learning and complete information state representation).
Except for the Deep Q-Network agent who always uses the
complete information state.

The win rates of the advance test can be found in Fig-
ure 5. Since we expect that other TD learning methods
such as Sarsa and Double Q-Learning with the complete
information state representation would result in some sim-
ilar patterns, we exclude them to preserve memory storage
and training speed. From the result, we can observe that
despite the chosen configuration, all of the learning agents
showed their progress as their win rates increase linearly
with the generation count but with different speeds. As
expected, the agent with Q-Learning and complete infor-
mation state representation perform worst since the state
space is much larger now. Nevertheless, it can learn to
beat the random agent with a roughly 20% win rate at
generation 100. In contrast, as an improvement of the Q-
Learning and the use of the neural network from machine
learning, the Deep Q-Network agent can approximate the
Q-value function, reducing the memory usage significantly.

As observed, the win rates of the Deep Q-Network agent,
although it fluctuates but can reach 70% at generation 38.
Last but not least, the 5-tiles information state represen-
tation performs better than the others. The agent who
uses Sarsa and 5-tiles information reaches the win rate of
90% in several generations.

4.4 Comparative test

In this test, we want to push the learning agents even
more by putting four learning agents on a board and let
them learn the game simultaneously. As a representation
of their group, we chose

e QQ-Learning with 5-tiles information state represen-
tation.

e Sarsa with 5-tiles information state representation.

e QQ-Learning with complete information state repre-
sentation.

e Deep Q-Network with complete information state
representation.

Like all the above tests, all of the tests consist of 100
generations, and each generation contains 10000 training
episodes and 100 evaluation episodes. In this test, we col-
lect win rates in two different scopes, the test, and genera-
tions. Similar to the previous assumption, with four mov-
able agents, the state space would be even larger for the
complete information state representation users. There-
fore, in this test, the expected optimal policy we would
like the agent to derive would be to destroy walls, dodging
bombs while balancing between eliminating other oppo-
nents and staying alive since the game’s goal is to become
the sole survivor of the game. There are more ways for
them to be eliminated (either by game spawning bombs
or the other agents’ bombs).

B O Stilessmm Sarsa_Stilesllll DeepQNetworkllll Q complete

80 A

60

Win rates

20 A

20 40 60 80 100
generations

Figure 6. The figure shows Competitive test win rates ac-
cording to the learning agents’ configurations. Each config-
uration is named as a reinforcement learning method and
a state representation (e.g. Q-_complete is an agent who
uses Q-Learning and complete information state represen-
tation). Except for the Deep Q-Network agent who always
uses the complete information state.

With the results are shown in Figure 6 and table 3. We
can see that the 5-tiles information state representation

Configuration | ‘Win rates

Q_5tiles 33.72%
Sarsa_5tiles 53.22%
DeepQNetwork 2.59%
Q_Complete 0.18%

Table 3. The table shows Competitive test overall win rates
according to the learning agents’ configurations. Each con-
figuration is named as a reinforcement learning method and
a state representation (e.g. Q_complete is an agent who
uses Q-Learning and complete information state represen-
tation). Except for the Deep Q-Network agent who always
uses the complete information state

is dominating the complete information state representa-
tion. While the Deep Q-Network agent seems to be able
to learn how to win a minority of the game, its win rates
are often larger than the normal Q-Learning with com-
plete information state representation (Deep Q-Network
at 2.59% and Q-Learning at 0.18%). As we suspected, Q-
Learning is suffering greatly from the state space with all
four moving agents. Lastly, the Sarsa on-policy TD con-
trol method seems to be reliably archiving the highest win
rates throughout the test and obtain a final approximately
53% win rates, which is more than half of the games in the
comparative test. The 5-tiles state representation can only
create a significantly smaller state space than the complete
state representation since the 5-tiles state representation
only concerns the surrounding of the agent and its near-
est opponent, while the complete state representation rep-
resents all of the information from the game. Therefore
Sarsa_btiles and Q_btiles learn faster than Q_Complete
and DeepQNetwork. While it would take an eternity to fill
in the Q table of normal Q-Learning, Deep Q-Network uses
a neural network to approximate the Q values by refining
its weights and bias in the network, but since it would take
longer to archive a good configuration, our preliminary
Deep Q-Network agent is falling behind. Nonetheless, the
experiment showed that even though its win rate is not as
high as the 5-tiles state representation agents, it shows sig-
nificant improvement compare to normal Q-learning with
the complete information state representation.

S. DISCUSSION AND REFLECTION

In the previous section, we discuss how different configura-
tions can archive various win rates or mean rewards. After
all the tests, the agent who uses Sarsa as the reinforce-
ment learning method and 5-tiles information state repre-
sentation performs the best. Sarsa_5Tiles archive approx-
imately 600 points in the learnability test, which means it
is able to find a way to eliminate the opponent by combin-
ing, moving, breaking walls, and dodging bombs. While in
the advance test, it archives approximately 90% win rate
against a random agent, which also involves combining its
bomb and the environment bombs. Lastly, in the com-
parative test, it obtains consistency with the highest win
rates throughout the generations and an overall win rate
of approximately 53%.

From observations, while training the agents throughout
the study, we note that reinforcement learning methods
are rather easy to exploit to win the game or to maximize
its rewards. For example, in the early phase of this study,
we place the learning agent against an ad-hoc stationary
agent while training it to eliminate the agent. We found
out that through randomization, the agent never learned
how to place a bomb and dodge it properly or move break-
ing wall until killing the opponent. Therefore, it either

exploits a trick to win the game (such as moving in be-
tween two tiles and waiting for the game to spawn bombs
and kill the opponents) or exploits a way out of the game
(aka suicide). The agent will move back and forth from its
position and learn how to dodge the bomb better than the
stationary opponent since we did not disable the spawn-
ing bomb for the ad-hoc stationary agent at that point of
the study. Or, on another board configuration, it decided
that it would be better to commit suicide to avoid further
punishment. After trial-and-error, we decide to replace
the board with another board with less complexity and
disable the spawning bomb for the stationary agent.

Not only the complexity of the board and the rules of
the game that the learning agent can exploit but also the
Engineering the reward function for the environment that
can greatly affect the agents. Any small adjustment in
each event can cause the agents to exploit the game. But
not all the reward functions work with all of our tests.
We find out that one of our decent reward function that
works decently in the learnability test but suffers greatly
in the other test. Therefore, we aim to provide the reward
function that produces a decent policy at an acceptable
learning rate since the test results are heavily dependent
on hyperparameters and the reward function.

As an extension of our study, we have the least time to
work with deep Q-Network, after two weeks of researching
about neural network and how former researchers apply
deep Q-Network to their study regarding apply deep re-
inforcement learning to games such as Atari, Go, Chess,
ete. [13, 15, 9, 12, 14]. But the complexity of their re-
search is too large for our study. Therefore, we implement
our framework for deep reinforcement learning with Py-
torch and exclude the convolutions layers. At the end
of our study, we can show that we can make a learning
agent that can play complex games such as comparative
tests or advanced tests by applying neural networks in Q-
Learning. While the deep Q-Network agent results are not
as expected, it shows superior power compared to normal
Q-Learning. Lastly, since our environment is in Java and
the Deep Q-Learning agent in Python, we have to use a
socket that introduces network latency into our training,
which is normally much slower than training normal TD
learning methods. Each of our tests requires more than 10
hours to train for deep Q-Learning. Therefore, tinkering
with hyperparameters or debugging is extremely difficult.

6. CONCLUSION

In this study, we investigated four reinforcement learning
algorithms and two state representations to build a learn-
ing agent that can learn how to play the game Bomber-
man. We performed three tests: learnability test, ad-
vance test, and comparative test. The learnability test
is used to determine whether it is possible to use a config-
uration of an agent to play the game Bomberman. The
advance test further tests the agents’ capability by in-
troducing more states. Lastly, the comparative test is
used to determine the most effective configuration by bat-
tling the four most suggestive agent configurations on one
board. Regarding the overall result, we found out that
using State—action-reward-state—action (Sarsa) as the re-
inforcement learning algorithms and 5-tiles information
state representation yields the best results in our tests.

In future work, we would like to further improve our deep
Q-Network agent with convolutional layers, which helps
to persevere the spatial features that are trimmed by the
flattening feature vectors and other latest techniques. Fur-
thermore, we would like to show effective all of the con-

figurations would be in a more complex and more exten-
sive board. On a side note, we also want to investigate
the applications of reinforcement learning in real-life ap-
plications, such as helping develop intelligent social robots
such as waiter, dog, etc. [5] or furthermore improve NPC
and bosses by implementing learning agents that can con-
stantly learn and improve to adapt with the players’ play-
styles in FPS games rather than apply into board game
such as Bomberman [6].

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. Bellman. A markovian decision process. Indiana
Univ. Math. J., 6:679-684, 1957.

L. Bom, R. Henken, and M. Wiering. Reinforcement
learning to train ms. pac-man using higher-order
action-relative inputs. In IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement
Learning, ADPRL, pages 156—163, 2013.

S. Craw. Manhattan Distance, pages 639-639.
Springer US, Boston, MA, 2010.

Goulart, A. Paes, and E. Clua. Learning How to
Play Bomberman with Deep Reinforcement and
Imitation Learning, volume 11863 LNCS of Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2019.

J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan,

P. Pastor, and S. Levine. How to train your robot
with deep reinforcement learning: lessons we have
learned. The International Journal of Robotics
Research, 40(4-5):698-721, Jan 2021.

G. Lample and D. S. Chaplot. Playing fps games
with deep reinforcement learning, 2018.

U. V. List. Bomberman series statistics.
https://www.uvlist.net /groups/info/bomberman.
Accessed: 2021-06-23.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. 12
2013.

P. G. Patel, N. Carver, and S. Rahimi. Tuning
computer gaming agents using g-learning. pages
581-588, 2011.

G. Rummery and M. Niranjan. On-line g-learning
using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, 11 1994.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Press, USA, 3rd
edition, 2009.

H. M. Schwartz. Multi-Agent Machine Learning: A
Reinforcement Approach, volume 9781118362082 of
Multi-Agent Machine Learning: A Reinforcement
Approach. 2014.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre,
G. Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature,
529:484-489, 01 2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, T. Lillicrap, and D. Hassabis. A general
reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science,
362:1140-1144, 12 2018.

[15]

[16]

[17]

D. Silver, J. Schrittwieser, K. Simonyan,

I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. Van Den Driessche, T. Graepel,
and D. Hassabis. Mastering the game of go without
human knowledge. Nature, 550(7676):354-359, 2017.
R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second
edition, 2018.

C. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, 8:279-292, 05 1992.

