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ABSTRACT
In 2020, STABILO released the novel OnHW-chars dataset,
which contains time series data recordings of characters
written with a sensor-enhanced pen. This dataset was
accompanied by an extensive exploratory work, present-
ing baseline accuracies for numerous types of Machine
Learning and Deep Learning based classifiers. In 2021,
STABILO released a new dataset, containing recordings
of written mathematical equations. In this paper, we
explore the possibility of applying the recently popular-
ized Transformer architecture to this new dataset. We
present a simple but effective adaptation of the Trans-
former model, where we use two convolutional layers for
embedding the input sequence data. With this model,
we achieve 92.69% accuracy per predicted individual to-
ken. This accuracy successfully highlights the effectiveness
of the Transformer architecture in sequence to sequence
problems, and encourages further experiments with this
model on the OnHW datasets.
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1. INTRODUCTION
1.1 Background
Written text is found almost everywhere nowadays. Most
people can read and write[1], and the recent advancements
in Artificial Intelligence have allowed for the development
of computer systems that can similarly recognize and pro-
duce written text. A well-known example of text recogni-
tion can be found in the form of Optical Character Recog-
nition (OCR). The aim of OCR is to convert visual rep-
resentations of written text into machine-encoded charac-
ters. OCR has proven to be an effective approach to dig-
itizing both handwritten and printed texts. One crucial
assumption that the functioning of OCR relies on, is the
availability of a visual representation of the written text.
This means that any time one wishes to digitize written
text, some kind of picture must be produced, for example
by taking a photograph of the writing.
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Types of handwritten texts that are suitable for use in
Optical Character Recognition include: postal addresses,
forms, forensic evidence, and many more. OCR falls into
the category of recognition often referred to as offline hand-
writing recognition (OFHWR). Offline handwriting recog-
nition stands in contrast to online handwriting recognition
(ONHWR), where ONHWR is concerned with recognizing
handwritten text as it is being written. In part due to
the large body of research in the field of computer vision,
OFHWR has seen more extensive research than ONHWR.
However, with the recent rise in popularity of personal
smart devices, such as smartphones, tablets, and their ac-
cessories, the interest in pen-based input technologies has
increased.

1.1.1 Pen-based Handwriting Recognition
This has prompted the development of several pen-based
technologies, with many of them focused on the combi-
nation between a stylus and a secondary device, such as
a smart phone or a tablet with touch screen. A novel
approach has recently been presented by STABILO, in
the form of their STABILO DigiPen[13]. This device is
a ballpoint pen enhanced with several sensors, including
accelerometers and a gyroscope. The point behind the
device is to remove the need for external devices and ac-
cessories, such as special writing surfaces. The device is
designed to be able to write on normal paper and it records
sensor data at a frequency of 100 Hz.

OnHW-chars.
In 2020, the OnHW-chars Dataset was released, as men-
tioned by Ott et al. in [13]. The dataset contains sen-
sor data recorded with the STABILO DigiPen for 31,275
handwritten characters, 52 classes (26 upper and 26 lower
case characters), written by 119 subjects. Ott et al. [13]
explored a number of ways that this data can be analyzed,
and a fair amount of machine learning models that can be
trained on the dataset. The paper focused on several clas-
sification methods, and found Deep Learning based meth-
ods to be most effective. These models included CNN,
LSTM, and BiLSTM networks. These models achieved
good baseline performances, with a best result of almost
90% accuracy for a CNN-based classifier for upper case
characters. STABILO released the data set mentioned pre-
viously as part of the UbiComp 2020 Time Series Classifi-
cation Challenge. STABILO is currently in the process of
releasing a new set of data[16]. This data set concerns a set
of sensor data labelled with mathematical equations, with
a limited alphabet (digits 0-9 and operator symbols such as
=,+,-). The data set is being published in two parts, which
are now both available. The first part consisted of 7,180
equations from 36 subjects. The second part added 2,297
equations, from 11 writers, totalling 9,477 equations writ-
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ten by 47 right-handed subjects. Each equation is present
in the data set as a collection of sequential sensor data,
labelled with the complete equation, e.g. ”123+123=246”.
There is no separation of the sensor data into segments
that belong to specific characters from the equation, and
all equations are mathematically incorrect (meaning that
the example of ”123+123=246” is not present), to prevent
a mathematical correlation between parts of the equation.
Ideally, the recognition system should not be concerned
with the mathematical relation between the numbers in
the equation. This second data set is presented as part of
UbiComp 2021.

1.1.2 Transformers
One model that was not included in the evaluation of the
OnHW data set is the recently proposed Transformer ar-
chitecture[22]. This novel model type has shown promising
results in the field of natural language processing[18, 23]
and other fields that focus on sequential information[3].
The model has also been shown to be able to learn how
to play chess[11]. The Transformer model is designed to
deal with sequential input data, but greatly improves on
training speeds compared to other types of sequence to
sequence models, such as RNN based architectures. This
improvement follows from a big practical difference be-
tween Transformers and RNNS: Transformers can process
the sequential input data in any order, and allow for signif-
icantly more parallelization than RNNS typically do[22].

1.2 Research Question
The main question of interest for this research has been as
follows: ”Can a Transformer model be applied to the field
of Online Handwriting Recognition?” To limit the scope of
this paper, we have specifically investigated the applicabil-
ity for the newly published dataset(s) from STABILO[15,
16], which we briefly introduced in Section 1.1.1.

2. METHODOLOGY
To answer the question posed in the introduction, it is
important to carry out experiments with the Transformer
architecture on a sequence to sequence translation prob-
lem. However, without something to compare the results
of those experiments to, it is hard to judge how well the
Transformer actually performs on this translation prob-
lem. The results from [13] are useful in this regard, but
not enough, since they only concern individual characters,
rather than sequences of characters. To build a more ro-
bust connection between their results and the results from
our experiments with the Transformer architecture, we’ve
taken the following steps:

Firstly, we’ve attempted to reproduce part of the results
as achieved in [13], to become familiar with the problem at
hand, and the type of preprocessing that has been found to
work. [13] gives a clear description of the models that have
been used, and of their architecture. They have trained a
total of four Deep Learning models: a CNN, an LSTM, a
BiLSTM and a combination of a CNN layer with an LSTM
layer. In our work, we have chosen to reproduce the re-
sults for the best performing and worst performing of these
four: the CNN and the LSTM respectively. Convolutional
Neural Networks are often used in image processing, be-
cause the ability of a CNN to identify simple features in
data and aggregate them to more complex parts is very
powerful. Long Short-Term Memory is a type of recurrent
neural network[12]. LSTMs came about in an attempt to
solve the vanishing and exploding gradient problems[14]
that plagued many RNNs. Because LSTMs are much bet-
ter at dealing with these two issues than earlier RNNs have

been, LSTMs are very suitable for tackling tasks that in-
volve long range dependencies in sequential data.

Secondly, we’ve investigated the effectiveness of a sequence
to sequence architecture as described in [9]. This involves
an encoder-decoder architecture based around Gated Re-
current Units. GRUs are fairly similar to LSTMs, and
perform just as well if not better on smaller datasets[5].
This means it should be a good match for the datasets we
choose to work with, as a set of around 9000 labeled items
is not typically considered large.

Thirdly, we’ve built a Transformer model, and measured
its accuracy. The Transformer is also an encoder-decoder
architecture, and has been shown to be very effective in
numerous sequence to sequence problems. Transformers
come in different shapes and sizes, but in our experiments
we’ve stuck to a reasonably simple architecture. Even
though the model was not exorbitantly large, implement-
ing the Transformer required some more effort than ex-
pected, which we will further discuss in Section 2.4.

2.1 Datasets and preprocessing
Throughout this research, two datasets have been used
for training and evaluation. These datasets both originate
from STABILO, who have recently started a new endeav-
our in the form of STABILO DigiVision[17]. The first
dataset was released in 2020, as part of Ubicomp 2020.
The second dataset is being released in a similar fashion,
as part of Ubicomp 2021.[6]

Both datasets contain sequential data which has been gath-
ered under similar conditions. The first set, as described
by Ott et al. is gathered from 119 right-handed persons,
who were asked to write the English alphabet six times in
lowercase as well as uppercase characters. This resulted
in a total of 15,650 lowercase characters, and 15,625 up-
percase characters. In total, this adds up to 31,275 hand-
written characters. Each character is represented in the
dataset by a sequence of features containing 13 values per
feature. These sequences are recordings of the sensor val-
ues from the DigiPen during writing of the mentioned
characters, sampled at a frequency of 100 Hz. Not all
sensor have the same measurable range of values, and in
Table 1 we list the minimum and maximum values of each
sensor. The two accelerometers, the gyroscope and the
magnetometer all yield values along three axes. Each tri-
axial sensor has the same bounds for all three of its axes.

Table 1. Measurement boundaries for the sensors found in
the DigiPen.

Sensor Max value Min value
Accelerometer front 32768 -32768
Accelerometer back 8192 -8192

Gyroscope 32768 -32768
Magnetometer 8192 -8192
Force sensor 4096 0

2.1.1 OnHW-chars dataset
The dataset from 2020, also known as the OnHW-chars
dataset[13, 15], is a collection of six subsets. Each subset
contains one of three types of labeled sensor data: upper
case characters, lower case characters, or a combination of
upper and lower case characters. Another distinction is
made between subsets: each subset of data is arranged in
a manner suitable for either Writer Dependent (WD) or
a Writer Independent (WI) classification tasks. With WI
classification, training and validation data are not allowed
to overlap in writers. This means that if one character of
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a writer occurs in the training data, all characters writ-
ten by that person are in the training data, and not a
single character written by that person is present in the
validation data. And vice versa: if a character from a
specific writer occurs in the validation data, then none of
their characters will occur in the training data. In con-
trast to WI classification, WD classifications relies on the
assumption that the characters of one writer are propor-
tionally spread over both the training and validation set.
This division between writers is made based on the idea
that different persons have different styles of writing and
therefore may produce specific patterns that will only oc-
cur in their writing. Even before obtaining any results, it
can be expected that Writer Dependent classification will
yield better results, because any model will have had the
opportunity to become familiar with the patterns of every
writer in the validation set. Conversely, the Writer Inde-
pendent task is expected to yield somewhat lesser results.

An aspect that is mentioned in the readme.txt file that ac-
companies the OnHW-chars dataset is that each subset is
arranged as five tuples for five-fold cross validation. Each
tuple consists of four items: training data, training labels,
test data, and test labels. As described by the readme,
each tuple consists of 100% of the data from that subset,
and all tuples contain a different split of training and test
data.

2.1.2 OnHW-equations dataset
The newer dataset, which has recently been published as
part of UbiComp 2021, contains sensor data recordings la-
beled with complete equations. We don’t exactly know the
name that STABILO will decide to give this dataset, we
think it would be sensible to name it the ’OnHW-equations
dataset’, but we will refer to it with ’the dataset from
2021’ or something to the extent for the remainder of this
paper. The challenge set by STABILO for teams that par-
take in the competition is to recognize single equations of
unknown writers. This would be considered Writer Inde-
pendent recognition. However, in this paper we focus on
the Writer Dependent case. We choose to do so for the
sake of simplicity. For the OnHW-chars dataset, the WD
tasks have been shown by Ott et al. to give better results.
We reasoned that this means that any significant results
for our experiments would be visible more quickly under
WD conditions, which speeds up the process of debugging
and tuning our models.

The dataset is made up of 47 subfolders, one subfolder
for each person. Each subfolder contains one folder per
recording of that person. Each recording folder contains
two CSV files, one with one long timestamped sequence
of sensor data, and one with all equation labels and the
timestamp intervals that indicate the part of the sensor
data sequence that corresponds to that equation. The
vocabulary (or alphabet) of the labels consists of digits
(0,1,...,9) and mathematical operators (=,+,-,*,:). All writ-
ers were right-handed, and the dataset contains a total
of 9,477 equations. The dataset is also provided with a
Python script which makes it easier to split all recordings
into separate labeled sequences. This hierarchical struc-
ture of the data is much more versatile than the way in
which the OnHW-chars dataset was stored, since it allows
for alternative partitioning of data into training and val-
idation sets than either fully Writer Dependent or fully
Writer Independent. For example, one could arrange the
data in such a way that training and validation data are
50% Writer Dependent, and 50% Writer Independent.

One peculiar aspect of this dataset is that all equations are

mathematically incorrect. This is done to prevent abuse
of mathematical inference for label prediction. One may
argue that this in itself is a hint: a model might learn
that if it is predicting a label and has two potential la-
bels, ”123+123=246” and ”123+123=245”, that the latter
is more likely to be the ground truth, since the former
is mathematically correct and can therefore not be the
ground truth. Even though this is theoretically possible,
the amount of conceivable equations that are mathemati-
cally incorrect definitely far outnumber the amount of con-
ceivable equations that are mathematically correct. Still,
this characteristic of the data might be a cause for bias in
our models.

2.2 Preprocessing
Before training our models, we’ve applied a number of
steps to transform the sensor data features into a represen-
tation better suited for training of Deep Learning models.
The preprocessing for both datasets is similar, but differs
at some important points. We describe both cases.

The steps applied to the OnHW-chars data is indepen-
dent of the specific subset that is being used for training.
To start off, we make sure that there are no empty se-
quences. We’ve encountered some errors that were caused
by sensor data sequences of length 0, which was somewhat
unexpected. The fix is simple: removing all sequences of
length 0 from the set. Subsequently, we resample each se-
quence to exactly 64 time steps. Lastly, we normalize each
data feature. This means that we multiply and translate
all values of each feature in such a way that the range of
each sensor is compressed into an interval of [-1, 1]. We
can do this by multiplying each feature with a vector that
maps the ranges in Table 1 to the interval [-1, 1]. This is
straightforward for all except one sensor: the force sensor.
This sensor has an asymmetrical domain range, meaning
that we have to divide each sensor value by 2048 (4096 /
2 = 2048). This gives a range of [0, 2], after which we can
translate to [-1, 1] by subtracting 1.

For the dataset from 2021, we extract the CSV data us-
ing the pre-provided Python script. This results in a list,
where each element represents one of the 47 writers. Each
element is again a list, with all the labeled sequences for
that specific person. As mentioned before, we chose to ex-
plore the Writer Dependent case, so we ignore the distinc-
tion between persons, and collect all 9477 labeled items
into one list. Then, each item in that list undergoes three
steps. First, each item is inspected for any ’hovering’,
where the force sensor value remains below 200. This
lower bound is sufficient to identify a hovering head and
tail of the sequence where nothing is being written. Both
the head and the tail are removed. Second, we normal-
ize all sensor data features of each item, the same way we
normalize the data for the OnHW-chars subsets. Thirdly,
we calculate the average length of all sequences, which
turns out to be 665 time steps. We double this number
to 1330, and we resample every sequence longer than 1330
time steps to exactly 1330 time steps. We also pad all se-
quences shorter than 1330 time steps with zeros to match
the length of 1330.

2.3 Experimental Setup
All models have been implemented in Python, in the form
of Jupyter notebooks. There are a number of machine
learning platforms, but we have chosen to work with Ten-
sorflow. We’ve used two setups, both of which were con-
figured with an installation of Python 3.8.5 or higher, in-
cluding the Tensorflow package, and support for CUDA.
The first setup was a Lenovo Thinkpad P51, which fea-

3



tures an Intel Core i7-6820HQ Processor paired with 16
GB DDR4, and an NVIDIA Quadro M1200 with 4 GB
GDDR5. The exact specifications of this device can be
found on Lenovo’s website[19]. For the first two models,
namely the relatively small CNN and LSTM, this setup
worked well. However, the significantly larger encoder-
decoder architectures turned out to be a fair bit too de-
manding for this setup. The main limiting factor was
graphical memory. This is why a second setup was put
into use. The second setup was a distributed computing
platform provided by the University of Twente. This plat-
form is available for members of the University of Twente
at https://crib.utwente.nl/geospatialhub/. This
platform is made up of a large number of computing units,
where each unit is an NVIDIA Jetson AGX Xavier. The
distributed nature of the platform makes it such that there
are virtually no limits to the graphical memory available.
This allowed us to train much larger models than possible
with the first setup.

2.4 Model implementations and training
All the source code and implementations for models men-
tioned in this paper can be found at https://github.

com/DrumsnChocolate/A-Pen-Is-All-You-Need. In to-
tal, four types of models have been trained and validated.
Two of these have been picked from the set of models that
were described and evaluated in [13]: a CNN based model
and an LSTM based model. A full description of these
two architectures will be given below, including any de-
viations from the descriptions in [13]. These two models
were trained and tested on the data from 2020.
The Convolution Neural Network based model consists of
two CNN layers, with each a 40% dropout rate, to avoid
overfitting. These layers are followed by a fully connected
layer of 100 units, with a fully connected output layer of
either 26 or 52 classes. To be specific, the recognition
of only uppercase or only lowercase characters required
26 output classes, and the recognition of both upper- and
lowercase characters required 52 output classes. The CNN
hidden layers in this model were each configured with 64
feature maps, a kernel size of 4, a max pooling size of 2.
All hidden layers used Rectified Linear Unit activation.
The Long Short-Term Memory based model is similar to
the CNN based model. It consists of two LSTM layers,
with each a 40% dropout rate. These layers are followed
by a fully connected layer of 100 units, and then a fully
connected output layer of 26 or 52 classes, depending on
the classification problem. The hidden layers in the model
were each configured with 64 units. In contrast to the
CNN based model, not all hidden layers in this LSTM
based model make use of the ReLU activation. Rather,
the hidden LSTM layers were configured with the more
traditional hyperbolic tangent activation function. The
reason for this is that CUDA offers a training speed up
for LSTM layers, with one of the requirements for this
speed up being that the layers are configured with the hy-
perbolic tangent activation function. The remaining fully
connected hidden layer with 100 units was configured with
ReLU.

For the newer dataset released in 2021, again two models
have been trained and tested. These are two encoder-
decoder architectures. The first of these combines the use
of Gated Recurrent Units with Bahdanau[2] additive at-
tention. The second is a Transformer based model. These
two models have been implemented with the help of two
tutorials from Tensorflow, where Neural machine transla-
tion with attention [10] gives a practical implementation
of the encoder-decoder based on Gated Recurrent Units

as described by Chung et al., and Transformer model for
language understanding provides an example implemen-
tation of the Transformer model designed by Vaswani et
al. Below, we will highlight the aspects that are relevant
for understanding our implementation of the Transformer,
but it should be noted that this is by no means an exten-
sive description of how the Transformer works internally.
Vaswani et al. splendidly present all the intricacies and
explain a great number of variants.

Our implementation of the Transformer is visualized in
Figure 6. It features one encoder, one decoder, an input
embedding element and an output embedding layer. The
output embedding layer is of the form that is often en-
countered in text generation and neural machine transla-
tion. The layer converts input tokens to dense vectors of a
fixed embedding dimension dmodel. The weights and biases
within the output embedding layer are learned through
training. When we consider the input embedding element,
it is first important to establish if it makes sense to use
an embedding layer. The sensor data sequences that are
used as input are already in a dense representation, so it is
not reasonable to apply the same kind of layer as used for
the output embedding. To explain this further: the out-
put labels are sequences which are mapped to sequences of
integer tokens before being fed to the output embedding
layer. These sequences of integers are considered a sparse
representation, because there is a lot of numerical ’space’
between two integers. By converting these sequences of in-
tegers to sequences of dense vectors, we allow the network
to learn a more rich representation of each token, and at
the same time make this richer representation very com-
pact in numerical space. For the sensor data inputs, we
don’t need a denser representation of information, since
the sensor data is already in quite a dense representation.

However, after numerous experiments without any form of
input embedding, we have come to the conclusion that the
sequences of sensor data features do not contain enough
information in themselves. This is why we introduce two
convolutional layers as a way of extracting richer repre-
sentation from the input sequences. The addition of these
layers allows the Transformer to transform the input se-
quences into sequences of more complex local patterns. We
configure each convolutional layer with 128 feature maps,
a kernel size of 10, a stride length of 2, and the Rectified
Linear Unit activation function.

2.5 Metrics
We use fairly comparable metrics for each model. For all
models, we predict one token at a time, which allows us
to apply the cross entropy loss function in all situations.
We also measure accuracy per predicted token. The use
of these two same metrics has kept comparison between
model performances very simple and clear. During train-
ing, the loss function is of course most relevant for gra-
dient descent, but ultimately we judge the model by its
accuracy per predicted token. In this paper, all accuracies
mentioned are of this same type: accuracy per predicted
token.

We refrain from using attention plots to describe our re-
sults, even though we appreciate their powerful repre-
sentation of the inner workings of the Transformer. A
good example of attention plots that allow for better un-
derstanding can be found in the example implementa-
tion on Tensorflow of the Transformer model: https :

//www.tensorflow.org/text/tutorials/transformer#

attention_plots. The reason these plots are so help-
ful is because they directly show how strongly words in
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Figure 1. Our adaptation of the Transformer model archi-
tecture showcased by Vaswani et al. in [22].

Table 2. Our results for two character recognition models
trained on the OnHW-chars dataset.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

CNN 82% 73% 87% 80% 69% 61%
LSTM 83% 74% 87% 80% 69% 64%

the source language are related to words in the destina-
tion language. In our adaptation of the Transformer, this
is not so much the case, since the attention plot would
show the relation between the embedded inputs, and the
individual tokens of the destination language (the equa-
tion labels). The embedded inputs are no longer directly
connected to the input sensor data features, meaning that
the attention plots no longer directly show how strongly
each feature in the sensor input data sequence correlates
to individual tokens in the equation labels.

3. RESULTS AND DISCUSSION
3.1 OnHW-chars dataset
The results for the dataset from 2020 are listed in Table 2.
Training the convolutional network for 20 epochs took less
than 30 minutes per classification task on our first setup,
but the LSTM took a while longer to finish. We’ve not
measured the exact duration for the LSTM, but this dif-
ference in training time may be attributed to the recurrent
nature of the model, which has been known to cause long
training times[7]. The accuracies that have been achieved
are clearly somewhat lower than Ott et al. achieved. This

Figure 2. The results from the Online Handwriting Recog-
nition paper published in 2020[13].

Figure 3. The training and validation loss measured over 50
epochs of training the GRU and Attention based encoder-
decoder.

may have a number of different causes that we are unaware
of, but there are two things that we can identify which
could explain this difference in results. The first of these
is that we’ve trained each model for exactly 20 epochs.
Ott et al. doesn’t seem to mention the time or amount of
epochs that they have trained their models, so it may well
be that the performance of their models was similar at 20
epochs. Another possible influence is that Ott et al. men-
tion a correction for bias in the sensor values. It is unclear
to us whether or not this correction is already present in
the OnHW-chars dataset or not. This also goes for the
noise filtering and a number of other preprocessing steps
that have been mentioned in their work.

We’ve encountered some difficulties in replicating the re-
sults for the Writer Dependent sets. This seems to be due
to an issue within the pre-provided WD files in the OnHW-
chars dataset. We come to this conclusion after shuffling
the WI subsets to artificially obtain WD subsets. Shuf-
fling the Writer Independent subsets does not guarantee
that a writer occurs in both the validation and the train-
ing partitions proportionally, but it works well enough for
our purposes. This allowed as to sufficiently circumvented
the problem, and achieve the WD results listed in Table 2.

3.2 2021 dataset
We’ve found the GRU and Attention based encoder-decoder
to be capable of reaching 82% validation accuracy within
50 epochs. However, the training time required for 50
epochs was around 12 hours, and due to time constraints
we have not been able to reproduce this best result. In-
stead, we provide the loss and accuracy of another training
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Figure 4. The training and validation accuracy measured
over 50 epochs of training the GRU and Attention based
encoder-decoder.

Figure 5. The training and validation loss measured over
75 epochs of training our adaptation of the Transformer

run in Figures 3 and 4. This run reaches 71.04% valida-
tion accuracy, which is significantly different from the best
performance of 82%, suggesting that the epochs needed for
the model to converge are somewhat unstable. However,
it should be noted that the curve in Figure 4 has a rea-
sonable slope, and there’s no plateau showing yet. This
means that the model would likely benefit from training
for a higher amount of epochs. We’ve decided not to do
so, due to limited available time, and because these results
form a decent enough indicator of the accuracy that the
model might achieve if trained more extensively. All in all,
these results are not bad at all, but training of this model
is rather time consuming, compared to the models we’ve
discussed in Section 3.1.

The Transformer performs very well with the addition
of convolutional layers as input embedding, and we’ve
achieved an accuracy of 92.69%. The model was config-
ured with two CNN layers with 128 filters each. This
resulted in an embedding dimension of 128. To match
this, the output has also been embedded into 128 dimen-
sions per token. These embedded inputs and outputs were
then combined with positional encoding, and fed to the
encoder and decoder of the Transformer, as described in
Section 2.4. The Transformer was configured with 8 at-
tention heads per Multi-Head Attention layer. This model
was trained for 75 epochs, and training took 50 minutes,
including calculation of validation metrics for each epoch.
The values for loss and accuracy for training data and val-

Figure 6. The training and validation accuracy measured
over 75 epochs of training our adaptation of the Trans-
former

idation data are shown in Figures 5 and 6.

4. CONCLUSION
In this paper, we’ve explored the field of online handwrit-
ing recognition, building upon the work of Ott et al. We
have shown that their results are reproducible, and we’ve
contributed to the search for solid solutions for the recog-
nition problems that arise from the OnHW datasets. We
have outlined, implemented and trained four models, in-
cluding two encoder-decoder architectures designed for se-
quence to sequence tasks. With our results, we success-
fully highlight the effectiveness of the Transformer archi-
tecture in sequence to sequence problems, and we provide
an adaptation of the Transformer model that embeds in-
put sequences using convolutional layers. This adapta-
tion performs well on the most recently published datset
from STABILO, which consists of time series data labeled
with mathematical equations. The most notable result
in this paper is the 92.69% prediction accuracy that was
achieved using our adaptation of the Transformer model,
where output labels were predicted per individual char-
acter. Our work provides a good basis for further explo-
ration and fine tuning of the Transformer architecture to
the datasets from STABILO, and encourages looking more
broadly at possible applications for the Transformer to
other datasets in the field of online handwriting recogni-
tion. All the source code and implementations for models
mentioned in this paper have been published at https:

//github.com/DrumsnChocolate/A-Pen-Is-All-You-

Need.

5. FUTURE WORK
We’ve mainly investigated the Writer Dependent case in
this paper. It would be interesting to see how well the
Transformer model performs in a Writer Independent en-
vironment. This should require very minimal work as this
can be set up in the preprocessing phase of the experi-
ments; We’ve already laid the groundwork for an imple-
mentation of the Transformer.

Another interesting unexplored avenue lies in the ques-
tion of how well the Transformer model performs on the
OnHW-chars dataset[15]. The Transformer is designed
for sequence to sequence problems, and the OnHW-chars
recognition problems can be seen as a sequence to sequence
problem where each target sequence has length 1.

The embedding section in our adaptation of the Trans-
former is made up of two convolutional layers, but this
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is not necessarily the best approach. It may be the case
that there are far better alternatives for embedding the
sensor data features that we have not thought of, and it
would be valuable to gather more insights in this area.
Normally, the embedded sequences are masked during nu-
merous phases in the Transformer, based on the length
of the sequence and the amount of padding of the input
sequence. We were unable to apply this principle to the
features that were extracted with the convolutional em-
bedding layers, as the embedded input was of a different
sequence length than the original input sequence. It is
not unlikely that this lack of masking based on different
input lengths has affected the performance of the Trans-
former. Further research in this direction could yield ways
to re-implement this step.

Besides improving the embedding of the sensor data fea-
tures, there’s a multitude of other ways that one might
improve upon the performance achieved in this work. To
name a few:

• Artificially expanding the dataset, by duplicating ex-
isting samples and slightly shifting/changing the val-
ues in the duplicates.

• Applying weight regularization, to try and reduce
overfitting.

.
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