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ABSTRACT

The MODEST TOOLSET is a tool that can analyse mod-
els and produce schedulers based on these models. These
schedulers, also known as controllers or strategies, repre-
sent which action should be taken in a specific state in
the model, to reach the optimal reward. When the mod-
els get more complex, the resulting schedulers become too
complex for humans to easily analyse them. To improve
this, there are tools like DTCONTROL, a toolset that pro-
cesses schedulers using decision tree learning algorithms.
We propose to use this DTCONTROL to process schedulers
produced by the MODEST TOOLSET and evaluate the ef-
fectiveness of this processing, to make analysis of these
schedulers much easier.

1. INTRODUCTION

The modelling language MODEST was introduced in 2001.
In 2012 the MODEST TOOLSET was introduced, incorpo-
rating analysis of stochastic hybrid systems and special
cases thereof |17], so the models written with MODEST
could be analysed. Since then, it has been applied in
several case studies. The MODEST TOOLSET supported
the model-based analysis of electric vehicles [13], and the
probabilistic modelling and verification of the MODEST
TOOLSET were applied in reliable network-on-chip system
design [21].

The MODEST modelling language is very useful in the mod-
elling Markov Automata. Like in the modelling of Bitcoin
attacks to try and optimize the attacks [19)].

The MODEST TOOLSET itself processes models written in
a few different formats. These include Modest, JANI, and
PRISM. The toolset will check these models and produce
the state space accordingly. Based on this state space it
produces an optimal scheduler. The scheduler controls the
model, it restricts behavior so that all scheduling require-
ments of the model are met. The state space is a set of
all the different states of the model. Transitions occur
between these states by performing actions. The states
themselves are defined by the combination of values of the
variables and the steps in the process of the system that
we are modelling.

One of the shortcomings of model checkers like the MOD-
EST TOOLSET has, is that the number of possible states
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Figure 1. The processed scheduler of pacman.vl.jani, used
with variable MAXSTEPS=20, as used in Section 7. In
this figure, there are two types of nodes; decision nodes
and state nodes. Decision nodes check whether a variable
(depicted by GO <= 0.5 in the topmost node), fulfills
a condition and determines to which variable the model
will evaluate next, until it reaches a leaf node. Leaf nodes
depict the action that should be executed in this state, as
determined by the scheduler.

generated by the model can be very high [20]. This num-
ber of states can make it difficult for a human interpreter
to get any useful information out of the generated sched-
ulers. We can address this issue by finding a way to process
the schedulers to make them easier to interpret.
dtControl is one way to process schedulers. It is a tool
that represents the schedulers as decision trees, a tree-
like model of decisions and their consequences,and applies
decision tree learning to minimize this decision tree, re-
sulting in an overall decrease of decision nodes [2]. This
system was later improved into dtControl 2.0 [3]. In the
related papers different algorithms are used to process the
schedulers. In the paper it is concluded that their new pro-
cessing technique MaxFreq is efficient at processing sched-
ulers. The decrease in decision nodes that DTCONTROL
achieves is quite promising, as the resulting decision trees
always have less decision nodes than there are states in
the original scheduler. Thus, dtControl is a candidate to
help interpreting the schedulers produced by the MODEST
ToOLSET. Figure [I| gives an example of a scheduler, that
has been processed by dtControl.

Prior to this paper, the dtControl toolset does not support
schedulers produced by the MODEST TOOLSET as input



for its processing. This means that either support for the
MODEST TOOLSET should be implemented in dtControl or
support for dtControl into the MODEST TOOLSET, before
any testing can occur. However, since dtControl offers
ways of integrating new formats in their interpreter [4],
the aim of this research is implementing support for the
schedulers produced by the MODEST TOOLSET into DT-
CONTROL.

In this paper we present a method to aallow dtControl
process the Modest schedulers, and in the process mak-
ing the schedulers easier to interpret. We checked this
method on correctness, by comparing if the scheduler and
decision tree produce the same action in the same state,
and efficiency, by comparing the number of state-action
pairs in the scheduler to the number of decision nodes in
the decision tree, and it should be available for use in fu-
ture studies where model-checking, through the use of the
MoDEST TOOLSET, is applied.

2. PROBLEM STATEMENT

In this paper, the main question that remains to be an-
swered is as follows:

e Is dtControl an effective tool to use in making
schedulers generated by models which the MODEST
TOOLSET more compact, to make the schedulers
more easily interpretable for humans?

To solve this problem, we define the following subprob-
lems. Solving them will lead us to answering the main
question:

1. Can dtControl correctly process a scheduler pro-
duced by the MODEST TOOLSET?

2. How effective is dtControl at decreasing the number
of decision nodes, when applied to Modest models?

3. RELATED WORK

There are many different ways to represent models and
schedulers. These representations encode all possible
states and actions within a model. One such represen-
tation is a binary decision diagram, which has been a
popular approach to represent both models and sched-
ulers [6}[71[11}22/23]. These binary decision diagrams have
a tree structure with Boolean functions representing the
nodes, and are thus a bit more compact than the tradi-
tional scheduler. However, this does not mean that they
are easier to read. To improve this decision trees can be
used to represent schedulers [7].

These decision trees are more efficient, as they can be
trained to memorize which features are important for the
scheduler, and which are not important. The algorithm
then uses this to construct the tree based on information
gain, resulting in a more compact representation which
can be more easily analysed.

These decision trees have been applied in other places
in the past, such as to find to find reusable Homomor-
phisms in a Markov decision process [24]. Or to represent
the scheduler for two player games [8|.In these examples
the training algorithm produces error-free representations.

4. THE MODEST TOOLSET

The MODEST TOOLSET |[18] is a comprehensive suite of
tools for quantitative modelling and verification. The pri-
mary forms of input language for analisys are MODEST
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Figure 2. The MA family tree [19)

and JANI [9]. The Toolset offers support for Markov Au-
tomata in several of its tools, of which the one that will
be used in this paper is mesta [10].

4.1 Markov Automata

Markov Automata, or MA for short, were introduced in
[12] as a version of Segala’s probabilistic automata with
continuous time [14]. This type of automaton is closed
under parallel composition and hiding. The Automaton
has two types of transitions; one is a probabilistic transi-
tion and labeled with an action(like an LTS), and the other
is a Markovian transition and labeled with a positive real
number between 0 and 1, representing the probability of
that transition occuring (like a DTMC). The relation be-
tween MA, LTS and DTMC is further illustrated in Figure
2. In this paper the focus will be on Markov Decision Pro-
cesses, or MDP for short, which are MA that moves only
in discrete time steps instead of continuous time. This is
in contrast to a Continuous Time Markov Decision Pro-
cess , or CTMDP, which moves in continuous time.

The following definitions are reused from [14]. We let
Act be the universe of actions that has the empty action:
T € Act, and Distr(S) the set of distributions over the
countable set S.

DEFINITION 1. A Markov automaton (MA) is a tuple
M = (S, A, —,=,30) where S is a nonempty, finite set of
states with initial state so € S, A C Act is a finite set of
actions and

o — C S x Ax Distr(S) is the probabilistic transition
relation, and

e = C S xRsg xS is the Markovian transition rela-
tion.

We abbreviate (S,a,u) € —, where by s = u and
(s,\, s’y e=>bys 25 s'. A MA can travel between states
via the Markovian and probabilistic transitions. If s = s,

it will leave state s through the execution of action a and
arrives in some state s’ € S, with the probability u(s"). If

PR s, the automaton will move from s to s’ at rate ),

unless there is a transition available from s labeled as the
empty action 7. In the latter case it will always be taking
that transition without delay.

DEFINITION 2. A path in an MA is an infinite sequence
10,5t 1t .
70:#0.%0 R LLE . with s; € S,0; € Act

m™ = S0
U{L} , and t; € RZO'

Oisliyti

For o; € Act,s; ——5 5,41 denotes that the MA has
moved from s; to s;+1 through action o; after residing ¢,

time units in s, with a probability ;(si+1). On the other

Lopint, . e
hand, s; — s;4+1 denotes that a Markovian transition

led to s;1+1 with probability u(si+1) = P(ss, Si4+1), which



denotes the probability of getting to s;+1 from state s;.

Such a path 7 is a resolution of all stochastic, probabilis-
tic, and nondeterministic choices. The set of all paths that
end in a state in the MA M is denoted by IIin(M). |19)

To be able to find an optimal path, we need something to
evaluate paths with. This is done by defining properties
for a model. For example these properties evaluate based
on maximizing a certain probability, or minimizing the
expected number of time the model takes. Based on these
properties we can assign reward values to paths. The next
definition is adapted from [19)].

DEFINITION 3. Let M be a MA. We define a scheduler
as a function: < : lypin(M) — TR(M) where TR(M)
denotes the set of all transitions. We write S(M) for the
set of all schedulers of M.

So in short, a scheduler is a function that takes a path in
a MA M, and outputs all the transitions that it takes.
This scheduler is deterministic.

If this scheduler is then applied on MA M, it will remove
the nondeterminism, leaving us with a stochastic process
with paths that can be measured and assigned probabilites
according to rates A and distributions from Distr(S) in
the MA. For these schedulers we are interested in some
properties [19]:

e Reachability probabilities: Given a set of goal states
G C S, we compute the probability of the set of
paths that terminate at a state in G

e Expected accumulated rewards: We compute the ex-
pected value of the random variable that assigns to m
the value rew(7s;n ), where 7y, denotes the shortest
prefix of m with a state in G.

e Long-run average rewards: We compute the expected
value of the random variable that assigns to path =
the value

lim rew(m<;/dur(r<;)
11— 00

4.2 Model checking

For the purposes of this report, we want to find the op-
timal scheduler for a property of a model. The MODEST
TOOLSET offers the mcsta tool for this purpose. mcsta is
an explicit-state model checker. It evaluates the properties
of schedulers as described in Section 4.1 in the following
ways:

e Reachability probabilities and expected accumulated
rewards: These properties are evaluated by mcsta
through the use of the value-iteration [15], linear pro-
gramming, and interval iteration [5|16] algorithms
[10]. It also provides BRTDP as in [1], for which sim-
ulations with the uniform probabilistic scheduler are
used to explore parts of the state space of the model.
It runs a batch of simulation runs, then interval it-
eration is applied to compute the bounds [10].

e Long-run average rewards: These properties are eval-
uated by mecsta through the use of two algorithms:
one based on a reduction to a linear program and
another algorithm based on value-iteration [15] [10].

Through these evaluations the MODEST TOOLSET is able
to process a MA and output an optimal scheduler. The in-
put for this can contain multiple properties that are evalu-
ated individually. The MODEST TOOLSET then produces a

scheduler that describes per property which action to take
in which state to get the optimal rewards for the model.
It is also possible to use mcsta to only check the model for
a specific property.

5. DTCONTROL

DTCONTROL is a comprehensive open-source tool for the
post-processing of schedulers into compact and more in-
terpretable representations [2]. It contains various deci-
sion tree learning algorithms that can be applied to sev-
eral scheduler formats; (i) a raw comma-separated values
(CSV) format with each row consisting of a vector of state
variables concatenated with a vector of input variables; (ii)
a sparse matrix format used by SCOTS; and (iii) the raw
strategy produced by UPPAAL STRATEGO [2], PRISM, and
STORM |[3].

5.1 Decision Trees

A decision tree, or DT for short is a tuple (T, A, p) over
the domain X, which is the set of states, with the set of
labels U, where T is a finite full binary tree, which is a
binary tree where every node has exactly 0 or 2 children),
A assigns a label u € U, and p assigns to every inner node,
which is a node with exactly 2 children and is from now
on referred to a decision node), of the tree a predicate, a
boolean function which returns either 0 or 1 2.

To use the decision tree, one needs to input a state x. The
variables of state x are then used in the decision nodes,
and it will move through the DT. It starts at the root
node n,, it evaluates p(n,) and transitions based on the
output of the function, where at the next node executes
this step again until it arrives at a leaf node. Once one
arrives at a leaf node [, the result of the decision tree will
be the label A\(I) as assigned to that node by A.

For example, take a look at Figure 1. This figure represents
the DT to find the optimal action a player should execute
in a game of Pacman. In this case U = {0, 1,2} (0 is down,
1 is left, and 2 is the empty action) and X is the possible
states the player can end up in. Let’s say this DT is used
to find out for a state © = GO0 = 1, steps = 9,yG0 = 2.
First the root is evaluated, and as xGO is bigger than 0.5, it
travels down the transition labeled false. Next, steps <=
9.5 returns True, so it travels down the transition labeled
True. Afterward yGO <= 2.5 returns False, so it travels
down the transition labeled False. Finally it ends up at a
leaf node labeled 0, so the action that should be chosen in
this state is 0.

5.2 Decision Tree Learning for representa-
tion of schedulers

The DT learning algorithms that are used by DTCON-
TROL follow the same underlying structure. For a finite
set C' C X xU of feature-labeled pairs. This returns a DT
that represents C precisely; so for every par (z,u) € C
the leaf node for x has the label u. Here, C is a scheduler,
x is a state, and u is an action [2].

To minimize a DT, the entropy of a scheduler C, denoted
by entr(C), should be minimized by splitting according to
a predicate. So, for some C C X X U,

entr(C) := — Zpul(?g(pu)

u€eU

where p, — %

is the empirical probability that
label u is in C, and || is the cardinality of a set. [2].
The underlying algithm used works recursively in the fol-

lowing way:



e if entrC = 0, thus all state-label pairs share the same
label we return a DT (T, A, p) where T has only 1 leaf
node r, where A(r) = y and p has no domain.

e entrC # 0, C will need to be split. C is split based
on 1 predicate P € PREDS, where PREDS is the set
of predicates for the scheduler. The predicate that
minimizes the entropy of C after it is split will be
picked. The perfect option in this case would be
a predicate that splits the Decision Tree into 2 ho-
mogenous parts. After this the algorithm will recur-
sively apply itself to the left subtree and the right
subtree in the same manner [2].

In this research, we will be focussing on the MaxFreq pre-
set. This preset processeses a DT by grouping together
data points that share the same label.

For this purposes, DTCONTROL can output the DT in the
following formats:

e a DOT-file that can be converted into a visual repre-
sentation of the DT.

e a C-file that contains a classify() function that is
a functional representation of the DT.

e a JSON-file.

6. IMPLEMENTATION

The dataset-loader in the DTCONTROL system is a class
that retrieves the relevant information from a sched-
uler. To implement a new one, a new dataset-loader
class extending the dataset-loader base class. For this
extension, only one method needs to be implemented;
_load_dataset(self,file).

We have implemented such a dataset-loader class for
schedulers produced by the MODEST TOOLSET.

This dataset-loader requires two files; a scheduler file and
a state-space file.

The state-space files begin by listing all variables in the
model, so the dataset-loader gets all the variable names
from here. For our implementation we took inspiration
from the PRISM dataset-loader that is already imple-
mented.

The scheduler file contains a list of state-action pairs for
a property in the model. The action that is listed for each
state is the optimal action to optimize the rewards. The
dataset-loader goes through each state and collects the
values for each variable. These values are then combined
in a list that is appended to a NumPy array. Next for
each state it collects the action for that state in a separate
NumPy array. Then it specifies some metadata for both
NumPy arrays. Finally, it returns the metadata and the
two NumPy arrays.

When model-checking using the MODEST TOOLSET it is
possible to process multiple properties of a model at the
same time. This results in a scheduler file that contains
schedulers for multiple properties. Due to limitations in
DTCONTROL it is not possible to process multiple sched-
ulers at once. This means that if the dataset-loader
encounters a second property in a scheduler file it will
stop processing the file and only use the data it has gath-
ered so far. If a user still wants to use this scheduler file,
they must move the schedulers to a separate file.

The MODEST TOOLSET can process different kinds of
properties. One of these properties checks the model

for each value of a certain variable, like in the bitcoin-
attack.modest model [19]. In this case it iterates over
the values between 0 and 10000 for the remaining reward
variable, so for each value of this variable a scheduler is
generated. The dataset-loader evaluates this property by
encoding this remaining reward as a variable like the other
variables in the model. This implementation is used for
the experiments as laid out in Section 7.

7. EXPERIMENTS

The models used for this are obtained from the Quantita-
tive Verification Benchmark Set [20]. These experiments
were executed on a 64-bit Windows 10 System running
Python 3.8. For the us of STORM the docker image moves—
rwth/storm:travis was used.

7.1 Checking Correctness

It is necessary to show that DTCONTROL creates correct
decision trees for the input schedulers, so we could guar-
antee correctness to future users. The approach taken for
this was to utilize the decision trees implemented in C, as
output by the DTCONTROL processing using the MaxFreq
preset. Next, we went through the scheduler generated by
the MODEST TOOLSET. For each state-action pair in the
scheduler we used the classify() function from the decision
tree C-file with the variables from the state, and check that
the output action is the same as in the state-action pair.
We did this for a number of schedulers. When finding no
discrepancies, we have an indication that DTCONTROL cre-
ates correct decision trees for schedulers produced by the
MODEST TOOLSET.

7.2 Checking Effectiveness

We wanted to evaluate the effectiveness of DTCONTROL on
making schedulers produced by the MODEST TOOLSET, so
we could find out if it made sense to apply DTCONTROL to
these schedulers. To check this effectiveness, the number
of states in the scheduler was compared to the number
of decision node in the decision tree generated from that
scheduler. This was done for a number of models and we
analysed the difference.

Next, schedulers for these same models were also generated
using storm. These schedulers were then processed into a
decision tree using DTCONTROL. Next, we compared the
resulting DT against the DT resulting from the scheduler
produced by the MODEST TOOLSET from the same model.
This comparison shows the effectiveness of the processing
of schedulers produced by the MODEST TOOLSET relative
to the processing of schedulers produced by STORM. As
the STORM schedulers cannot be processd using MaxFreq,
we instead used the default preset for both schedulers to
make a fair comparison.

7.3 Used commands
For the generating of schedulers using the MODEST
TOOLSET we used the command:

modest mcsta <model-name>.<filetype> -E "<variable-
values>" --props <property(optional)> --scheduler
<model-name>.modest --statespace
<model-name>_states.modest

For the generating of schedulers using STORM we used
the command:

storm --jani <model-name>.jani
--janiproperty <property(optional)> --constants
<variable-values> --exact --timemem --buildstateval



Figure 3. This plot shows the relation between the number of state-choice pairs in the scheduler as generated by the Modest
Toolset, and the number of decision nodes in the DT as processed by dtControl for the pacman.v1.jani model. In this plot

the data of Table 1 is used.
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Number of state-choice pairs in scheduler, and number of decision nodes in resulting DT using MaxFreq

Input model Input variables Property evaluated State- Decision # of errors

choice nodes in

pairs in | DT

scheduler
pacman.vl.jani MAXSTEPS=5 crash 6 1 0
pacman.vl.jani MAXSTEPS=10 crash 21 2 0
pacman.vl.jani MAXSTEPS=15 crash 27 2 0
pacman.vl.jani MAXSTEPS=20 crash 101 4 0
pacman.vl.jani MAXSTEPS=25 crash 278 45 0
pacman.vl.jani MAXSTEPS=30 crash 702 116 0
pacman.vl.jani MAXSTEPS=35 crash 1458 171 0
pacman.vl.jani MAXSTEPS=40 crash 8140 622 0
pacman.vl.jani MAXSTEPS=45 crash 10516 769 0
pacman.vl.jani MAXSTEPS=50 crash 23459 1025 0
pacman.vl.jani MAXSTEPS=55 crash 43673 1682 0
pacman.vl.jani MAXSTEPS=60 crash 56192 2006 0
pacman.vl.jani MAXSTEPS=65 crash 77134 2694 0
pacman.vl.jani MAXSTEPS=70 crash 98075 3417 0
pacman.vl.jani MAXSTEPS=75 crash 124489 4577 0
pacman.vl.jani MAXSTEPS=80 crash 147364 5659 0
pacman.vl.jani MAXSTEPS=85 crash 163710 6704 0
pacman.vl.jani MAXSTEPS=90 crash 184577 8525 0
pacman.vl.jani MAXSTEPS=95 crash 204686 9459 0
pacman.vl.jani MAXSTEPS=100 crash 225471 10225 0
bitcoin-attack.modest MALICIOUS=0.1,CD=6 | P_-MWinMax 500000 26 0
firewire_abst.v1.jani delay=3 rounds 7 1 0
firewire_abst.v1.jani delay=3 time_max 68 1 0
firewire_abst.v1.jani delay=3 time_min 68 1 0

Table 1. This table describes the results of the experiment as described in Section 6.1. Each model described is checked by
the Modest Toolset according to the variables and property as described in the second and third column. The fourth and
fifth column describe a comparison between the number of state-choice pairs in the scheduler and the number of decision
nodes in the DT, obtained by making the scheduler more compact using the MaxFreq preset. The last column describes the
number of errors encountered when checking if the DT is a correct representation of the scheduler.



Number of state-choice pairs in scheduler, and number of decision nodes in resulting DT using the default preset
Input model Input variables Property evaluated Decision Decision
nodes nodes in
in DT | DT result-
resulting ing from
from the | STORM
MODEST
TOOLSET
pacman.vl.jani MAXSTEPS=5 crash 1 21
pacman.vl.jani MAXSTEPS=10 crash 2 179
pacman.vl.jani MAXSTEPS=15 crash 2 840
bitcoin-attack.modest MALICIOUS=0.1,CD=6 | T_-MWinMin 4 8
firewire_abst.v1.jani delay=3 rounds 2 12
firewire_abst.v1.jani delay=3 time_max 2 16

Table 2. This table describes a comparison between the processing of schedulers resulting from both the Modest Toolset
and storm. It compares the number of decision nodes in the DT resulting from the processing using the default preset.

--buildchoiceorig --exportscheduler <model-name>
.<variable-values>.<property(optional)>.storm.json

To then apply DTCONTROL to the scheduler by processing
the schedulers generated by the MODEST TOOLSET using
the MaxFreq prese we used the command:

dtcontrol --input <model-name>.modest --use-preset
maxfreq

and using the default preset:

dtcontrol --input <model-name>.modest --use-preset
default

To change models written using MODEST into a JANI
file so STORM can model-check it we used the command:

modest moconv <model-name>.modest -0F JANI
-0 <model-name>.jani

For the processing of the schedulers generated by STORM
using the default preset we used:

dtcontrol --input <model-name>.storm.json --use-
preset default

8. RESULTS
8.1 Checking Correctness

For the results of the experiment as laid out in Section 6.1,
we refer to Table 1 for the results. For the verification of
correctness, the last column is of interest. This column
shows the number of errors in the DT when compared to
the scheduler. To find this number we compared for each
state which action the scheduler picked, and which one the
DT picks, if these differ we count it as an error. As can
be seen, none of the generated DT’s contain any errors.
This leads us to believe that DTCONTROL can correctly
processed schedulers generated by the MODEST TOOLSET.

8.2 Checking Effectiveness

For the evaluation of effectiveness as laid out in Section
6.2 we refer to Table 1 for a benchmark of the processing
of the schedulers generated by the MODEST TOOLSET. We
observe that the number of decision nodes is always lower
than the number of state-choice pairs.

For example, take pacman.vl.jani used with
MAXSTEPS=100. Here, the number of decision nodes

in the DT is about 20 times smaller than the number
of state-choice pairs. It can be seen that the number of
decision nodes is still large enough that the DT is not
easily read. However, in slight of this fact we still consider
the processing to vastly increase the readability of the
scheduler.

It also shows that some models are processed better than
others. This is very obvious for the bitcoin-attack.modest
model, where the DT contains only 26 decision nodes, but
the original scheduler has 500000 state-action pairs. This
extreme difference can be attributed to the property that
is used for this scheduler, as we discussed in the last para-
graph Section 7. Due to this type of property the scheduler
has a lot more state-choice pairs. Duplicate state-choice
pairs also appear in this scheduler, only differentiating on
the remaining reward. And due to these duplicate pairs
DTCONTROL can easily group these together in order to
make the DT more compact.

Overall, it can be concluded that the resulting DT’s are
much more managable than the scheduler representation
from the output of the MODEST TOOLSET.

For deeper analysis of the pacman.vl.jani model, we re-
fer to Figure 3, where for each value of MAXSTEPS the
number of state-choice pairs is plotted against the number
of decision nodes. This plot might suggest that for this
model, the relation seems to be linear in nature. However,
the shape of the plot at the latter half might indicate
exponential as well. To get a more resounding answer on
the trend of this plot more data needs to be collected.
We suggest to decrease the step-size in the variation of
MAXSTEPS and expanding it to go past MAXSTEPS =
100 until a clear trend arises.

For the comparison between the processing of models gen-
erated by the MODEST TOOLSET and STORM we refer to
Table 2. As is visible in this table, the DT resulting from
the MODEST TOOLSET scheduler contains considerably
less decision node than the DT resulting from the STORM
scheduler.

This result, however, had to be obtained by using the
default preset, instead of the MaxFreq preset. This is
because the MaxFreq was not applicable to the sSTORM
schedulers. Due to this we can’t say for sure that the
findings are actually representable of the effectiveness of
DTCONTROL on these schedulers. To be able to say any-
thing on this topic there needs to be analasys of both
the schedulers using the MaxFreq preset. So for now,
nothing can be said about the effectiveness of DTCON-
TROL on schedulers produced by respectively the MODEST
TOOLSET and STORM.



9. CONCLUSION

We have presented a dataset loader for the schedulers
produced by the MODEST TOOLSET for the processing
tool DTCONTROL. As shown in Section 7 dtControl can
correctly represent schedulers produced by the MODEST
TOOLSET, so the answer to the first subquestion posed in
Section 2 is yes, DTCONTROL can correctly process sched-
ulers produced by the MODEST TOOLSET. However, to
answer the second subquestion in Section 2 on how effec-
tive DTCONTROL is when making schedulers produced by
the MODEST TOOLSET more compact compared to other
types of datasets, more analysis needs to be performed.
We recommend to focus on finding a way to apply the
MaxFreq preset to the scheduler produced by sTORM. To
answer the main research question posed inm Section 2;
yes, it can be concluded that DTCONTROL is an effective
tool to use in making schedulers produced by the MoD-
EST TOOLSET more compact, as the number of decision
nodes is only a fraction of the number of state-action pairs
in the original scheduler, and thus vastly increasing the
readability for humans.
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