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ABSTRACT

The application of machine learning models in multiple
fields where data comes into play is increasing. However,
for some models, there is no real justification or expla-
nation for the decisions made by the model. This is a
so-called black box model. The data simply gets fed into
the model, which returns a prediction. This makes it dif-
ficult to verify the behaviour and robustness of a model.
Several studies have been done on improving model ex-
plainability, however there are unexplored areas in this
field. This paper looks into a novel approach for gaining
insight into a model’s robustness: feature sensitivity and
dependency analysis. A feature is sensitive when a small
change in the feature’s value leads to a major change in
the predicted outcome. This research defines a strategy to
calculate and display feature sensitivity and explores the
influence of feature dependency on feature sensitivity. The
techniques presented in this paper have shown to give in-
sight in the robustness and the decision making process of
machine learning models. This contributes to increasing
the interpretability of black box models.
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1. INTRODUCTION

Machine learning (ML) is increasingly used in all kinds of
fields that store data. Based on that data, a model can
be trained which can predict an outcome. For example,
machine learning can be used for diagnosis in hospitals
[11].

Overall, machine learning can be used to interpret a new
data entry based on a training set of similar data en-
tries. This training set is used to train a model. Each
data entry has several features, on which interpretation
is based. The size of the datasets that are being used
for machine learning is increasing and so is the number
of features of the data. Having too many features causes
problems, because it risks overcomplicating the model [2].
A complicated model has the potential of being a so-called
”black box” model. A black box model is a data-mining
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and machine-learning obscure model, whose internals are
either unknown to the observer or they are known but un-
interpretable by humans [7]. The input data is fed into the
algorithm, which produces a prediction of the output vari-
ables. During the process, there is no justification for the
decisions made by the algorithm. This makes the model
hard to interpret for humans.

This inexplicability of models can be a major issue, for
example in clinical decision making. One of the biggest
problems of applying machine learning in the clinical field
is that some machine learning algorithms are black box
models [20]. In order to apply machine learning in health
care, the workings of the algorithm should be understood
by medical professionals and explainable to patients.

In order to gain new insights into the underexplored field
of explainability for model robustness, this paper examines
a new approach to analyze machine learning algorithms:
Feature sensitivity. A feature is sensitive, when a small
change in its value, leads to a large change in the predic-
tion. Feature sensitivity works with continuous features.
We explore and document the advantages of using fea-
ture sensitivity analysis for gaining insight in the decisions
made by a model.

Another aspect of machine learning is feature dependency.
If there is a correlation between feature A and feature
B, then these features are similarly useful for the model.
However, feature A could be more sensitive than feature
B, which is an argument to pick feature B as a predictor
for more robustness. Furthermore, the value of feature B
could influence the sensitivity of feature A. These under-
lying dependencies in a dataset can be difficult to uncover.
There has been prior research into feature dependencies,
but it has not been linked to sensitivity analysis. This
paper examines what the influence of underlying depen-
dencies is on the sensitivity of a feature.

The two most important types of machine learning prob-
lems can be identified as classification and regression. Re-
gression can be used to predict a numerical output vari-
able based on a new data entry, whereas classification can
be used to classify a new data entry into a certain cate-
gory. The focus of this research is on regression problems.
Three datasets from the UCI machine learning repository
are used (Section 4.2.1), which are representative datasets
containing a sufficient amount of continuous features.

1.1 Contribution

This paper examines the usage of feature sensitivity to
improve model robustness explainability and to provide
justification for the decision making process of regression
models. Together, this will make black box machine learn-
ing models more interpretable. Furthermore, it examines
the influence of feature dependency on feature sensitivity.



2. PROBLEM STATEMENT

The lack of interpretability and robustness explainability
of black box machine learning models leads to the following
research question:

"How can feature sensitivity and dependency analysis be
used to gain insight in the robustness of regression mod-
els?”

In order to answer this question, we divide it into multiple
subquestions.

2.1 RQ1

"How can feature sensitivity be determined?”

The first part of answering the main question is defining
a generic way of calculating and visualizing feature sensi-
tivity.

2.1.1

"What is the optimal segmentation parameter (p) for de-
termining feature sensitivity?”

In this paper’s feature sensitivity measurement technique,
there is a parameter for segmentation which influences the
outcome and computing time of the algorithm. In order
to find the optimal solution, we investigate the influence
of this parameters on the outcome.

22 RQ2

"How can the influence of other features on feature sensi-
tivity be determined?”

Once the generic scoring system for feature sensitivity is
established, we look into the influence of other features.
The sensitivity range of a feature might depend on another
feature’s value. For example, if feature A is in the range
(A1 — Ay), then feature B is highly sensitive in the range
(B1 — B2). If however feature A is in range (As — Au4),
then feature B might be highly sensitive in a totally dif-
ferent range. This dependency of features is investigated
in this subquestion.

3. RELATED WORK

3.1 Sensitivity and dependency analysis

One of the first studies into applying sensitivity analy-
sis has been done by Firuz Kamalov [10]. Kamalov has
used this technique to implement a hybrid-based sensitiv-
ity analysis approach for feature selection and applied it to
SVMs (Support Vector Machines), RF (Random Forest)
and NN (Neural Networks). This study used an approach
where a model would first be trained on all the features.
Then, for each feature, the total sensitivity index would be
calculated. A subset of features would be chosen based on
this TSI-score. This approach proved to reach an equal ac-
curacy as a wrapper-based RFE (Recursive Feature Elimi-
nation) approach, but with less computational complexity.

Another study has shown an example of how important
features can be identified [12]. This study used sensitivity
analysis in order to detect mobile malware. Using sensitiv-
ity analysis, they defined the features that were most fit to
detect malware on android phones. Furthermore, feature
dependency as a method for determining feature impor-
tance has been researched. Prior study has shown that
feature dependency analysis can be used to select a close
to optimal subset of features which enhances the accuracy
of classifiers [3].

These studies show that a feature sensitivity analysis and
a dependency analysis can be beneficial for analyzing ma-
chine learning algorithms. However, these approaches have

not been combined into one approach yet. Neither have
they been used for model explainability.

3.2 Explainable ML

A lot of prior studies have been done in the field of ex-
plainable ML. Most of these studies use different tech-
niques on bridging the gap between models and humans.
One study tried to make a Deep Tensor neural network
interpretable by visualising a knowledge graph [6]. This
knowledge graph displayed the path that was traversed in
a neural network with accompanying information at each
edge. Machine Learning models are used in multiple do-
mains. Another study examined the usage of explainable
AT in the medical domain [9]. It stressed that making mod-
els explainable is necessary in order to use these models
in the medical domain under the new GDPR. This new
GDPR makes the usage of black box machine learning
models in the medical domain difficult, because of their
lack of explainability.

In 2020, a study has defined two core aspects of explain-
able AI: Transparency and Interpretability [14]. A model
should be transparent, which means the decisions made by
the model should be clear. The output results a model pro-
duces should be interpretable. Together, these two factors
lead to explainability of machine learning models. This re-
search closely relates to our proposed method, because it
defines the aim of interpretability as presenting properties
of a machine learning model in understandable terms for
humans. Our novel method serves exactly that purpose.

These literature on explainable ML underlines the impor-
tance of model explainability and interpretability. How-
ever, the approaches presented do not look into sensitivity
and dependency analysis.

4. METHODOLOGY
4.1 Tools

The regression algorithm used in this paper is Random
Forest Regression (RFR) [1]. RFR is an ensemble learn-
ing algorithm that uses a combination of decision trees in
order to make predictions. RFR takes a certain amount of
these decision trees, called estimators, and feeds the new
data point to these decision trees. The resulting predic-
tions of the decision trees are averaged, which leads to a
general prediction. RFR is suited for this paper, as it is
often viewed as a black box machine learning algorithm.

The data from the datasets is analysed using the program-
ming language Python [19]. The scikit-learn library [13]
is used to train the models. Scikit-learn is a widely used
tool to train machine learning models in Python. It accom-
modates multiple regression and classification algorithms,
including RFR.

4.2 Environment
4.2.1 Datasets

To define a method to measure feature sensitivity and de-
pendency, three datasets from the UCI machine learning
repository [5] are used. The datasets contain continuous
numerical features, which makes them fit for sensitivity
analysis. Furthermore, they are representative datasets
containing a sufficient amount of features. The response
variables are also numerical and continuous, which makes
it possible to measure differences in output.



e The first dataset consists of information about mul-
tiple red wines [4]. The features give information on
the chemical composition of the wine. All the fea-
tures are numerical, which makes sensitivity analysis
possible. The response variable is the quality of the
wine, which is expressed in a range of one to ten.

e The second dataset that is used in this research con-
tains information on crime rates in different com-
munities [15, 16, 18, 17]. The dataset consists of
numeric features on the state of the community. For
example, demographic statistics, level of unemploy-
ment and level of schooling in the community. To-
gether, these features can be used to predict a couple
of numerical response variables related to crime.

e The third dataset used in this research consists of
data on superconductors [8]. The features are nu-
merical and provide information on elemental prop-
erties of chemicals. Using these properties, the su-
perconducting critical temperature (7¢) can be pre-

dicted.
ID Dataset Name Instances Features Responses
D1 Wine quality 1599 11 1
D2 Communities and crime 2215 101 18
D3 Superconductors 21264 81 1

Table 1. Datasets used to perform research

4.2.2 Data preprocessing

The data in the datasets is not ready to be used. Some
features from the datasets had a great number of unknown
values. To make sure that applying RFR on the data is
feasible, some data preprocessing is used, which results in
the removal of some features with a lot of unknown values
from the datasets.

4.3 Experiments
43.1 ROI

We define feature sensitivity as the amount of influence a
small change in the feature value has on the outcome. A
feature has a sensitive range, if in that range, the influence
on the outcome prediction is high.

In regression problems, the influence on the output can be
easily measured, because the output is numerical. In order
to generate information about the sensitivity of a feature
and the influence the feature has on the predictions made
by the model, we make small steps in a feature’s value,
whilst keeping all the other values equal. By comparing
the difference in output when taking a small step, we can
measure the influence of that step. In this process, we
define a parameter: Segmentation

The segmentation parameter defines the amount of steps
the algorithm takes in the sensitivity measurement pro-
cess. The stepping process starts at the minimum value
of a feature and ends as soon as the maximum value is
reached.

To determine feature sensitivity, we created an algorithm
which measures the influence of small steps in a feature’s
value on the outcome of the prediction. To get a predic-
tion from the model, there should be an entire data point,
not just a value for the feature that needs to be measured.
The data for the other values needs to be randomised. In
this algorithm, the data is split into a training set (Dirain)
and a test set (Dtest). Dirain is used to train the model.

In order to calculate sensitivity, the data points in Diest
are used as bodies for the different values of the target fea-
ture. The data points from the test set are used, because
they give the model a representative data point which is
realistic. The value for the target feature is inserted in
this data point.

F:{f17f27f37"'vfn} (1)

The set of features F' can be denoted as shown in eq. (1)

d = (v1,v2,v3, ..., Un) (2)

A data point is defined as a vector of values, one for each
feature. This can be denoted as shown in eq. (2).

_ mazx (t) — min (t)
I, = B E— (3)

The interval I; for the target variable ¢ can be calculated
using eq. (3). The difference between the maximum value
and minimum value for the target variable found in the
dataset is divided by the level of segmentation p.

Vi={min(t)+z- L |z €(0,1,2,...,p)} (4)

All the values for the steps that are taken in calculating
the sensitivity for the target variable ¢ can be calculated
using eq. (4). Each segment has it’s accompanying value
for ¢t.

(Ul,...,Un) @1 v = (’U17 ceey Vi—1, U, UVi41, ...,Un) (5)
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Once the values (V;) are calculated, they can be inserted
in the data points from the test set (Diest). In eq. (5)
an operator @; is defined, which sets the value v in the
provided vector (v1, ...,v,) at place ¢. Using this operator
in eq. (6), the values calculated in eq. (4) are set in the
data points from the test set (Diest), which results into
a set of data points. The resulting set of data points is
grouped by p, their original data point from the test set,
in order to compare the predictions within these groups.

Ry ={(z) = [M (dzt1) — M (do)| | dx € D,z € Vi}

)
The next step in the algorithm is calculating the sensitivity
by taking small steps in the target variable, which is done
in eq. (7). The amount of small steps is determined by
the segmentation parameter (p). The algorithm uses the
regression model (M) to predict data point d, and data
point d;4+1. The absolute difference between the two data
points is stored as the sensitivity for that step. This results
in a set of mappings R, from the target feature’s value x
to a sensitivity value. There is a mapping for each data
point in the test set (Dsest).

DiDyestl

1
Ve e Vi, Gy = —- R 8
T t ¢ = (z) [Deest] d:ZD:O a(z) (8)



In order to average the influence of other features, the
resulting mappings from all data points from the test set
are averaged in eq. (8). For each feature value z, the
average sensitivity value of all the data points in the test
set is used as a final sensitivity value. This results into a
final mapping (G:), which maps each value from V; to an
average sensitivity score.

P

S, = % > GulVi) 9)

The total sensitivity score (S¢) of a feature can be calcu-
lated using eq. (9). It sums the sensitivity scores for each
value and divides it by the level of segmentation.
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Figure 1. [Example of a feature sensitivity diagram
(Dataset: D1, Feature: chlorides, Test set size: 0.2 ; 320
data points, p: 100)

The mapping from eq. (8) can be used to plot a diagram as
shown in Figure 1. This visualization provides information
on the sensitive ranges of features. The X-axis displays
the value the feature has. The Y-axis shows the absolute
influence on the prediction if a small change is made at the
value of the feature. This graph is defined as a sensitivity
diagram.

432 RQII

In the algorithm defined in the previous section, there is
a parameter for the sensitivity analysis: Segmentation.

Segmentation

The segmentation parameter determines the amount of
small steps the algorithm takes per feature. In order to
determine the optimal value for these, we first plot multi-
ple sensitivity diagrams with different levels of segmenta-
tion in one diagram. This gives insight into the influence
of the segmentation level on the sensitivity diagram. For
this experiment, the superconductors dataset is used.

Afterwards, we compare the sensitivity level of multiple
features for different levels of segmentation. This shows
how the segmentation level influences the total sensitivity
score Si.

433 RQ?2

In order to determine the influence of another feature on
the sensitivity of a feature, looking at the sensitivity score
does not give sufficient information. The sensitivity score
could be equal, whilst the sensitivity diagrams are to-
tally different. Therefore, there needs to be a baseline

of the sensitivity diagram, which functions as the measur-
ing point for the new sensitivity diagrams. This baseline
can be created using the algorithm displayed in RQ 1.

{d Q4 va Qp vp} (10)

Using this baseline as a standard, the influence of a fea-
ture on another feature’s sensitivity can be measured. An
example: We want to test feature A’s dependency on fea-
ture B. In order to measure this, a sensitivity diagram of
feature A will be calculated for n values of feature B. Us-
ing the operator defined in eq. (5), the new data points
in the algorithm are constructed by eq. (10), where A is
the target variable and B is the variable that is checked
for influence. v4 and vp are the values for respectively
feature A and feature B.

Feature B’s influence can be measured by comparing these
new sensitivity diagrams to the baseline. There are two
stages in this comparison.

The first stage is the numerical comparison. For each point
in the sensitivity diagram, an absolute error compared to
the baseline is calculated. The total absolute error is cal-
culated for each of the influential feature’s values. This
can be plotted into an influence diagram.

The second stage is the visual comparison. In the visual
comparison, multiple sensitivity diagrams are plotted in
a single diagram, where each value of the influential fea-
ture has a different color. The visual comparison can be
used to gain more insights in the influence displayed in the
numerical comparison.

5. RESULTS
51 RQl
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single data points
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Figure 2. Sensitivity diagrams for 5 data points (Dataset:
D3, Feature: wtd_range_atomic_radius, p: 100)

The algorithm presented in the methodology averages out
all the diagrams generated per data point. Figure 2 shows
the sensitivity diagrams for 5 single data points. There
is influence of other features on feature sensitivity, be-
cause there is difference in the sensitivity for different data
points. A more in depth research on this phenomenon is
done in RQ2.

The diagrams for all the different data points in the test
set are averaged into one diagram, in order to get a generic
diagram.



wtd _range_atomic_radius(estimators = 100, segmentations =
100, time = 3485.3207051)
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Figure 3. Sensitivity diagrams for entire test set (Dataset:
D3, Feature: wtd range atomic_radius, Test set size: 0.2 ;
4252 data points, p: 100)

There are m different data points, where m = | D¢est|. This
results into the diagram displayed in Figure 3. Together,
these figures show the importance of using the entire test
set to create a generic result.

5.1.1

"What is the optimal segmentation parameter (p) for de-
termining feature sensitivity?”

householdsize sensitivity analysis diagrams
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Figure 4. Difference in feature sensitivity diagram for seg-
mentation levels (Dataset: D2, Feature: householdsize, Test
set size: 0.2; 443 data points, Response variable: burglar-
ies)

As shown in Figure 4, the level of segmentation has influ-
ence on the feature sensitivity diagram. The diagram gets
more detailed when the level of segmentation rises. From
the figure, one can observe that the height of the diagram
gets lower. This is logical behaviour, because the steps
the algorithm takes are smaller, as the amount of steps it
takes get larger. This leads to smaller influences on the
output and therefore to lower peaks.

As shown in Figure 5, there is quite a difference between
a segmentation level of 5 and the rest of the segmentation
levels. The y-axis represents the sensitivity score S: as
defined in eq. (9). The sensitivity score increases as the

Sensitivity levels per segmentation level
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Figure 5. Sensitivity scores for different levels of segmenta-
tion (Dataset: D2, Features: [medIncome, PctNotHSGrad,
PctNotSpeakEngWell, PopDens], Test set size: 0.2 ; 443
data points, Response variable: burglaries)

segmentation level grows, because the sensitivity diagrams
get more and more detailed. However, this effect shrinks
as the segmentation level rises.

52 RQ2

"How can the influence of other features on feature sensi-
tivity be determined?”
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Figure 6. Example of an influence diagram (Dataset: D1,
Target feature: chlorides, Influence feature: Free sulfur
dioxide, Test set size: 0.2; 320 data points, p = 100)

Figure 6 shows the influence of the feature total sulfur
dioxide on the sensitivity of the feature chlorides. The
influence diagram shows that when the total sulfur level
rises above 50, the influence of the total sulfur dioxide on
the sensitivity of the chlorides increases. When the level
reaches approximately 110, the influence stabilizes.

Figure 7 shows the two sensitivity diagrams for two values
of free sulfur dioxide. It shows that the baseline (Figure
1) and the graph for total sulfur dioxide = 50 are almost
equal. The graph for total sulfur dioxide = 150 shows a
different sensitivity pattern, especially at chlorides = 0.1.
It does not show the same spike in sensitivity that the
baseline shows at that point.
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Figure 7. Visual comparison (Dataset: D1, Target feature:
chlorides, Influence feature: Free sulfur dioxide, Test set
size: 0.2; 320 data points, p = 100))

The combination of the numerical comparison and the vi-
sual comparison shows an influence of total sulfur dioxide
on the sensitivity of chlorides. This insight is useful for
future data points.

6. CONCLUSION

The role machine learning models play in society is grow-
ing. The decisions made by machine learning models are
increasingly significant. Models used in daily life should
be explainable and validated for robustness. By exam-
ining new possibilities in the domain of sensitivity and
dependency analysis, this paper has shown that feature
sensitivity and the influence of feature dependency can be
calculated and visualized. Furthermore, it has shown that
these new strategies can be used to gain insight in a re-
gression models decision making process and to validate
its robustness. These techniques contribute to increasing
the interpretability of black box machine learning models.
In the future, deepening this research and using sensitiv-
ity and dependency analysis for these purposes will lead
to more interpretable models. Furthermore, it can assist
in analysing models for applicability in complex domains.

7. FUTURE WORK

Firstly, future research could apply the techniques pre-
sented in this paper to other types of regression models.
This would lead to more insight in the applicability of the
techniques in the broader domain of regression models.

Secondly, more research could be done on applying the pre-
sented techniques in the domain of classification models.
Research in this direction will need different visual rep-
resentations for the sensitivity of a model, as the output
influence cannot easily be measured numerically. However,
applying the techniques in this domain might be interest-
ing.

Lastly, the influence diagrams are now generated pair wise,
which is inefficient. In further research, a strategy can
be developed in order to select the right features for the
influence diagrams. This will speed up the process, as less
unnecessary calculations will be done.
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