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ABSTRACT
We aim to implement a data structure that stores a set
of elements in such a way that we can efficiently query
whether some element is a member of that set. This re-
search limits itself to sets containing integers in Java. The
research examines the setup time, execution time, and
memory usage of existing data structures and finds that
bitmaps and hash tables offer the best performance. Ad-
ditionally, we show that altering van Emde Boas trees by
replacing the lowest layers with a bitmap improves their
performance in the context of this paper. Furthermore,
we propose a new data structure: the hash table bitmap.
It combines the efficient memory usage of the hash table
with the fast experiment time of the bitmap.
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1. INTRODUCTION
Determining whether some element is a member of some
set is a common problem in computer science and as such,
data structures that facilitate efficient membership queries
have been around for many decades [10, 13, 32, 33]. The
problem involves a subset S of the universal set U — this
subset is stored in the membership data structure and al-
lows the user to query whether an arbitrary element of U
is also contained in the subset S. The formal definition of
the problem can be found in Definition 1.1 [7].

Definition 1.1 (Membership Problem). A universe
U = {0, 1, 2, . . . , u−1} ⊂ N and a set S ⊆ U where |S| = n
are given; we want a data structure that can determine ef-
ficiently for an arbitrary x ∈ U whether x is contained in
S. We assume that u ≤ 2b, in which b is the CPU word
size, permitting the usage of bit operations. In the static
membership problem, the set S does not change. In the
dynamic membership problem, we also require efficient
insertion and deletion into and out of S.

As stated above, many researchers have suggested data
structures that can solve the membership problem in O(1)
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time and O(n) space [8, 32, 33]. These complexities are
theoretical and therefore the size of constant factors is ig-
nored. However, these constant factors can greatly influ-
ence real-world performance [18]. This research will there-
fore examine the performance of various membership data
structures on real-world benchmarks. We will examine
data structures such as hash tables, bitmaps, van Emde
Boas trees, binary tries, and RedBlackTrees. Additionally
the paper will propose two new data structure: The hash
table bitmap and the van Emde Boas bitmap.

Related work on performance evaluation [14], statistics [17,
19, 20, 24] data structure implementation and optimiza-
tion [1, 3, 4, 4, 6, 8–10,12,15, 18,21,22,25,33] and member-
ship problem solution attempts [7, 9, 11, 13, 16, 23, 26, 32]
is referenced throughout the paper whenever appropriate.
Section 2 gives a detailed description of the benchmarks
used to evaluate the performance of various data struc-
tures. Sections from 3 onwards, each contain experiments
with a different focus. Section 3 aims to determine which
kind, or family, of data structures is best suited to the
membership problem. This is followed by Section 4 on
a new data structure that combines the hash table and
the bitmap. The following section investigates possible
improvements to the vEB-tree through bitmaps. We con-
clude with a closer look at hash tables — more specifically,
we look at perfect hash tables and different methods for
collision resolution.

2. BENCHMARK METHODOLOGY
At the heart of our experiment lie benchmarks. A bench-
marks evaluates some aspect of performance of a specific
data structure (i.e. run-time or memory usage) under
reproducible circumstances. To compare multiple data
structures against each other, we will run the exact same
benchmark for those data structures and analyze the re-
sults.

2.1 Layout of a Benchmark
Each benchmark consists of two phases: The setup phase,
during which the data structure is filled with a generated
set of integers, called the setup set. This is followed by the
experiment phase. During this phase, we test the per-
formance of a data structure on the static or dynamic
membership problem. In the static case, we perform 220

isMember queries. If we are instead interested in the per-
formance for solving the dynamic problem, we perform
b220/3c insert, isMember and delete queries — these
different kinds of queries are randomly interleaved. We
perform these queries with the numbers contained in the
so called experiment set. The choice of 220 as a large num-
ber of experiments is not entirely arbitrary — through
trial and error, we found this number as an amount that
does expose the differences in performances between the

1

https://github.com/marten-voorberg/membership-datastructures
https://github.com/marten-voorberg/membership-datastructures


data structures but is not of such a size that running ex-
periments becomes unpractical due to large run-times.

During a benchmark, we measure the run-time of both
phases, respectively called the setup time and experiment
time. Additionally, we measure the memory usage after
the setup phase, as it does not change in the static prob-
lem, and is roughly constant in the dynamic problem as
the number of insertions is the same as the number of
deletions.

2.2 Generation of Setup and Experiment Sets
Each benchmark is based upon two pre-generated sets of
integers. The first set, called the setup set, contains the
integers used to fill the data structure during the setup
phase. The second set, called the experiment set, con-
tains tuples consisting of the integer to be queried and
the type of query (i.e. isMember, insert, and delete).
These two sets are generated independently in Python us-
ing the scipy [3]‘package — some numbers in the setup set
will by chance be in the experiment set and some won’t.
Data sets differ from each other in the number of elements
inserted during the setup phase (n), whether we only per-
form membership queries or insertion and deletion queries
too, and how the elements in the data set are distributed
— the data can either be normally (according to some µ
and σ) or uniformly distributed. These distributions were
chosen as we expect most real-world sets to be distributed
either uniformly or normally. For instance, a set of ran-
dom user IDs is most likely uniformly distributed whilst
a set of dates will oftentimes be clustered around some
mean.

2.3 Performance Measurements
2.3.1 Setup and Experiment Time

We measure the execution and setup time of a benchmark
using the System.currentTimeMillis method in Java [5].
It is essential to consider the measured execution time is
not only dependent on the used data structure but is influ-
enced by a range of non-deterministic factors — namely,
the scheduling of that specific thread by the operating
system, garbage collection (GC), and Just In Time (JIT)
compilation [14].

The first thing we do to reduce this non-determinism is to
run benchmarks many times. The idea is that the non-
determinism factors will even out over the course of a lot
of runs. To reduce the effect of JIT compilation on our
benchmarks, we call each method we use inside the bench-
mark 1000 times without measuring the performance—the
JIT compilation then occurs during these runs and not
during the benchmark. GC also has an effect on the ob-
served times, but we do not alter our experiments to mit-
igate this effect. In this experiment, we do not want to
completely remove all influences of GC — after all, how a
data structure performs in relation to GC is an important
part of performance. This does leave us with GC related
to the operations surrounding the experiment (i.e. writing
and reading from files). It is impossible to prevent such
garbage collection from occurring. Instead, we simply run
our experiments so many times that each evaluated data
structure is equally affected by this ‘external’ GC.

2.3.2 Memory Usage
The measurement of the amount of memory used by data
structures is done using the jcmd utility [2] — the utility al-
lows you to get a per class breakdown of the memory usage
of your Java program. Running this utility has a notable
impact on performance and as such a benchmark either

Figure 1. Histogram of observed experiment times for a
division based hash table (n=219), normally distributed.

0 10 20 30 40 50
Execution Time (ms)

0

10

20

30

40

50

Am
ou

nt
 o

f (
ex

pe
ct

ed
) O

bs
er

va
tio

ns

invgamma
norm

measures memory usage or setup and execution time, not
both at the same time.

For many data structures, the jcmd utility provides you
with a very accurate memory usage estimate. For data
structures that rely on classes defined in the Java standard
library, the data structure class itself only stores a pointer
to the standard library class instance. The actual memory
usage is attributed to this standard library class. This
complicates matters as this class may be used by other
classes running in the background which we are not trying
to benchmark. An example of this is the bitmap – the class
itself stores just a pointer to an int array, which contains
232 bits. Since the bitmap is not the only data structure
using int arrays, the measurement provided by the utility
is skewed. In these situations, we manually compute the
memory usage of the data structure. For instance, we
know that a bitmap storing a universe of size u requires u

8
bytes.

2.4 Statistical Analysis
The experiments conducted in this research usually com-
pare two to six data structures for ten or more values of
n. Traditional, hypothesis-based statistical tests would be
impractical as the amount of time needed to conduct and
evaluate the tests would be disproportionate to the time
spent on the remainder of the research. Instead, we com-
pute 95%-confidence intervals (CI) for each data structure
at each value of n. A CI provides an upper and lower
bound — for a 95% CI, we can state with 95% confidence
that the actual variable we measure lies between the up-
per and lower bound [17, p.444]. In the Figures in the
remaining sections, shaded areas represent CIs.

To compute a CI, we need to know the distribution of our
data. Visual analysis of a histogram suggests our data did
not adhere to a normal distribution and a Shapiro Wilk
test confirms this hypothesis [24]. The histogram seen in
Figure 1 clearly shows an asymmetric distribution with a
high peak — it has very few values to the left of it, but
quite some to the right of it. This shape makes the in-
verse gamma distribution a likely fit [19]. We then fit a
distribution to our data using scipy’s fit function and con-
duct a KS test [20] — it showed that most experimental
results are distributed according to an inverse gamma dis-
tribution. Unfortunately, the used fit function sometimes
produces poor, statistically insignificant fits, and in those
cases, the computed CI is needlessly large but still techni-
cally accurate. This does make some of the results slightly
cluttered, but we can still draw conclusions from them.

2



3. PERFORMANCE OF DATA STRUCTURE
FAMILIES

The first experiment aims to determine which family of
data structures offers worthwhile performance for the dy-
namic and static membership problem. The data struc-
tures that perform well in this experiment will be exam-
ined more closely in the next sections.

3.1 Choice of Data Structures
The data structures we will evaluate are listed below,.
Each data structure reprsents a ‘data structure family’.
The RedBlackTree represents the family of balanced search
trees; the vEB-tree was chosen as a representative from
the O(log log u) query time data structures such as y-fast
tries [32]; the hash table family is represented by a hash
table that resolves collisions through chaining and uses a
division based hash function. These act as probes: if a
representative from a family does not perform well, it is
highly unlikely for another data structure from the same
family to perform significantly better.

1. RedBlackTree [6, 15] [8, p.308]. Binary search trees
(BST) provide O(n) space complexity and O(h) time
complexity, where h is the height of that tree. The
RedBlackTree is one of many balanced BSTs. These
balance the tree in such a way that the height h is
limited to the order of log(n). Balanced BSTs there-
fore achieveO(logn) query time complexity andO(n)
space complexity.

2. BinaryTrie [12]. A binary trie is a type of tree. Each
branch decision is made based upon a bit of the el-
ement. Since each element consists of b bits and by
definition 2b = u, the binary trie achieves O(log u)
query time.

3. Van Emde Boas Trees [8, 10] (vEB-trees) belong to
the class of data structures that offer O(log log u)
query time. This query time is achieved by recur-
sively splitting the value into chunks of O(

√
u).

4. Bitmap. Each element x ∈ U belongs to a specific
bit in the bitmap. This bit is a 1 if x ∈ S and 0
otherwise. Through clever use of bit masking and
shifting operations, you can perform queries in O(1)
time, but at the cost of O(u) space complexity.

5. Division based, chained Hash Table [8, p.253]. Hash
tables allow queries in O(1) average time whilst only
using O(n) space complexity. Many variants of hash
tables exist — we will firstly examine a division based
hash table which uses chaining to handle collisions.
We will give hash tables a size of 8n unless explicitly
mentioned otherwise. This size is a trade-off between
the likelihood of collisions and the memory usage and
is more closely examined in §6.2.

3.2 Experimental Design
We aim to determine the performance of the selected data
structures for solving the dynamic and static membership
problem and how this performance scales as the size of the
set S increases. n will take on the values 210, 211, . . . , 220.
For each of those values, we generate four data sets (static
or dynamic; normally or uniformly distributed values) and
conduct benchmarks as described in Section 2.

3.3 Results, Discussion, and Conclusion
The result of the experiment on uniformly distributed data
for the dynamic membership problem can be found in Fig-
ure 2, the memory usage experiment can be found in Fig-
ure 3, and the other results are very similar [30]. It is

immediately obvious that the RedBlackTree and the Bina-
ryTrie have much larger setup and experiment times than
the other data structures. The bitmap and hash table per-
form best, both in terms of setup and experiment time.
The performance of the vEB-tree is close to that of the
bitmap and hash table, but slightly worse. Memory usage
is a different story: here the bitmap has extremely high
memory usage; the vEB-tree and binary trie are slightly
better, but still rather poor; the best memory usage is
observed for the RedBlackTree and hash table.

The poor performance of the RedBlackTree in terms of
setup and experiment time is because for large values of
n, balanced BSTs that scale with O(logn) can simply not
compete with the O(1) scaling of bitmaps and hash tables.
The RedBlackTree does have very good memory usage be-
cause exactly one node is needed for each element. The
fact that the binary trie has to branch b times to deter-
mine membership causes it to be outperformed massively
in terms of experiment time by the bitmaps and hash ta-
bles as they have to do much fewer instructions. The mem-
ory usage of the binary trie is also poor. This is because
storing a single element, requires a node for each bit in
that element. This may result in the adding of 32 nodes
when one element is added. The experiments showed that
the hash table and bitmap perform very well in terms of
experiment and setup time. This was expected due to
their O(1) time complexities. Another experiment which
examined values of n larger than 220, found the bitmap
had an edge in terms of experiment and setup time. On
the other hand, the hash table has much better memory
usage than the bitmap — this is because the bitmap al-
ways has to store one bit for each element in U , whilst the
memory usage of the hash table scales linearly with n.

4. HASH TABLE BITMAP
In Section 3, we concluded that the bitmap and the hash
table outperformed all other membership data structures,
both in the dynamic and the static case, across all distribu-
tions. The bitmap is the fastest of the two, but this comes
at a hefty trade-off as its memory usage is extremely poor
— the bitmap is worthwhile only when the set S is very
dense. The idea of the Hash-Table-Bitmap (HTB), a sim-
plified version of the data structure proposed by Brodnik
et al. [7]1, is to partition the set S and store these parti-
tions as bitmaps when they are very dense and otherwise
in a hash table.

4.1 Semi-Static Membership
We will first discuss the HTB in the context of the semi-
static membership problem — it is possible to perform
insert and delete operations, but the HTB will not al-
ter its structure after initialization. This means that if
some part of the universe is very dense at initialization
and stored as a bitmap, and this entire partition is subse-
quently deleted, it will still be stored as a bitmap despite
being very memory inefficient. A HTB is defined in terms
of some partition-value π. Based upon π the universe U is
uniformly divided into 2π partitions of size u

2π
, henceforth

denoted as Π. We denote the lower and upper bound of
a partition denoted by lp and up, respectively. We then
compute the sparseness rp for each partition p using Equa-
tion 1. We store a partition p as a bitmap if rp is larger

1The data structure described by Brodnik et al. [7] is im-
practical to implement as it relies on using less than b
(CPU word size) per elements in a hash table. This tech-
nically possible using bit packing, but it would be very
difficult to implement and it would likely harm perfor-
mance.
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Figure 2. Execution time of various membership data structures performing 220 queries as n grows.

0.0 0.2 0.4 0.6 0.8 1.0
n 1e6

0

100

200

300

400

500

E
xp

er
im

en
t T

im
e 

(m
s)

RedBlackTree
BinaryTrie
Bitmap
vEBTree
ChainedDivisionHashTable

Figure 3. Memory usage of various membership data struc-
tures performing 220 queries as n grows.
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than some threshold value r∗ — otherwise, we store it in
the hash table.

rp =
|{x ∈ S : lp < x ≤ up}|

Π
(1)

The HTB is designed upon the principle that storing an
element in the bitmap will perform better than storing
that element in a hash table. With this idea in mind,
we will pick π such that the total amount of elements
to be stored inside bitmaps is maximized. Equation 2
shows that the maximum value π can take on is 5. This
is because there is an overhead attached to each partition
— by limiting π, we limit the number of partitions and
subsequently the overhead.

π = arg max
π′∈{2,3,4,5}

2π
′
−1∑

p=0

f(p) (2)

f(p) =

{
|{x ∈ S : lp < x ≤ up}| if rp > r∗

0 otherwise

The value of r∗ is also significant. If we make this value
too small, we risk wasting memory due to storing very
sparse partitions as bitmaps. Should we make this value
too big, we lose performance as elements are more often
stored in a hash table instead of a bitmap. We will firstly

determine r̂: the value at which the memory usage is the
same for the bitmap and the hash table. A bitmap always
stores Π elements, requiring that amount of bits. A hash
table storing np elements needs to store the actual integer
and a pointer to the next bucket, requiring 64 bits. Since
Π = 64np, we get r̂ = 1

64
. We can conclude that rp 6 r̂,

otherwise we would be wasting memory and have inferior
query time compared to a hash table — the worst of both
worlds. We could choose to make rp even smaller than r̂.
In this case, our memory usage will see a minor increase
compared to the hash table, but we will likely see better
query times.

Algorithm 1 shows the algorithm for performing a query
on the HTB data structure. As the used functions all
have an average or worst-case time complexity of O(1), it
is self-evident that queries on the HTB have an average
time complexity of O(1) too.

Algorithm 1: HTB Query — Perform an arbitrary
query (i.e. isMember, insert, or delete) on the HTB.

p← partition(x)
if bitmaps[p] 6= NIL then

x← x− lowerBound(p)
return bitmapQuery(bitmaps[p], x)

else
return hashTableQuery(x)

end

4.2 Dynamic Membership
To adapt the HTB to the dynamic membership problem,
we have two additional requirements. (1) If we insert an
element into the HTB and the size of the appropriate par-
tition increases beyond some threshold, we want to convert
that partition into a bitmap. (2) We also want the reverse:
If we delete an element from a specific partition stored as
a bitmap and the size of that partition decreases below
some threshold, we want to remove the bitmap and insert
its members into the hash table. Performing a membership
query is identical for the dynamic and semi-static versions
of the HTB.
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To facilitate (1), we store a doubly-linked list for each
partition (See Figure 4 for a schematic overview). This list
contains all elements stored in the hash table belonging to
a particular partition. We use a doubly-linked list here
because it allows for deletion in O(1) time provided we
have access to the node we are deleting. If the threshold is
exceeded, we iterate over the elements of the linked list for
that partition, remove the elements from the hash table,
and put them into the linked list instead (see Algorithm
2). Analysis of this algorithm proves an amortized time
complexity of O(1) [27].

Figure 4. A schematic overview of a dynamic HTB. The
bi-directional black and red edges represent the hash table
linked lists and partition linked lists respectively. T is an
array storing the heads of the linked list used for collision
resolution through chaining. P is an array storing the heads
of the partition linked lists.
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When, following many deletions, there are too few ele-
ments in the bitmap, its memory usage is too large to be
worth the slight increase in query time. Therefore, we
want to take all elements remaining in the bitmap and in-
sert them into the hash table. To that end, we iterate over
all bits in the bitmap, recompute its value, and insert it
into the hash table. Since the bitmap contains Π bits, this
deletion operation has a worst-case complexity of O(Π).

Algorithm 2: Insertion into a dynamic HTB

p← partition(x)
increment partitionCount[p]
if bitmaps[p] 6= NIL and
partitionCount[p] ≥ insertThreshold then
bitmaps[p]← new bitmap
node← partitionListHeads[p]
while node 6= NIL do

bitmapInsert(bitmaps[p], node.value)
node← node.partitionNext
/* Delete from bucket linked list */

node.buckNext.buckPrev ← node.buckPrev
node.buckPrev.buckNext← node.buckNext

end
bitmapInsert(bitmaps[p], x)

else if bitmaps[p] 6= NIL then
bitmapInsert(bitmaps[p], x)

else
hashTableInsert(x)

end

4.3 Experimental Design
To evaluate the (dynamic) HTB we use the benchmark
methodology laid out in Section 2. In the experiments, we
generate all data according to a normal distributed with
µ = 220 and σ = 218. We do not conduct an experiment
on uniformly distributed data as there would be no dense
partitions and the (dynamic) HTB would perform exactly
like a hash table.

4.3.1 Static Performance
We compare the HTB to the bitmap and hash table on the
static membership problem. In our experiment, n takes on
the values 210, 211, · · · , 222. Since we are only interested
in the static membership problem, we do not consider the
setup time, but instead only focus on the execution time
and the memory usage.

Figure 5. Memory usage and execution time of the HTB,
bitmap and hash table on the static membership problem.
For the sake of clarity the memory usage of the bitmap
is excluded—memory usage is approximately 500 million
bytes for any n.
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4.3.2 Dynamic Performance
In order to evaluate the performance of the Dynamic Hash
Table Bitmap (DHTB), we perform two experiments. In
the first, we start with an empty data structure and fill
it up to n. We do this for the usual values of n from 210

to 220. In the last experiment, we first fill it up to n and
subsequently delete those n elements, and we only measure
the time taken for deletion. We compare the performance
of the DHTB, the bitmap, and the division based, linked
list chained, hash table.

4.4 Results, Discussion, and Conclusion
4.4.1 Static Performance

Figure 5 shows the result of the static performance exper-
iment. We can see that the performance of the HTB is
solid compared to the hash table. Its memory usage and
query times are the same as the hash table for smaller n.
Once n grows larger, the memory usage of the HTB be-
comes much better. The query time is also becomes much
better for larger values of n. This happens because the
elements in certain partitions start to get stored inside a
bitmap. In short, on normally distributed data, for large
values of n, the HTB provides query times just as fast as
the bitmap but uses even less memory than the hash table
to achieve this. For smaller values of n, the performance
is akin to that of the hash table.

4.4.2 Dynamic Performance

Figure 6. Performance of DHTB compared to the bitmap
and hash table on normally distributed data.
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Figure 5 shows the results of the experiment in which only
insertions. The results show that for e smaller than 16,
where n = 2e, all data structures perform roughly the
same [28]. At e = 16, the DHTB converts a partition to a
bitmap, and at that point, the HTBs performance is the
worst out of the three. This is the case because we per-
form an expensive operation to optimize future insertions,
but there are few future insertions. As e increases beyond
16, we can see that the DHTB starts to outperform the
hash table. This occurs as there are many insertion oper-
ations into a bitmap instead of into a hash table, causing
an increase in performance. The results of the deletion
experiment show that for values of e smaller than 16, all
data structures again perform identically [28]. We clearly
see that the DHTB performs the worst out of the three
as e grows beyond 16. This is because, at this point, a
bitmap must be converted to a hash table, and the mas-
sive cost (O(Π)) causes it to perform worse than both the
hash table and the bitmap.

5. VAN EMDE BOAS TREE VARIANTS
In Section 3 we concluded that vEB-trees outperform bal-
anced search tries and binary tries but hash tables and
bitmaps, in turn, outperform vEB-trees. This section will
investigate alterations to the traditional vEB-tree and see
whether these improve query time or memory usage for
solving the membership problem.

5.1 van Emde Boas Bitmap
A vEB-tree V contains an attribute u storing the universe
size of the tree, min and max storing the smallest and
largest number stored in the tree, and children which is
an array of vEB-trees. In order to determine the member-
ship of x in a traditional vEB-tree, x is compared against
the explicitly stored minimum and maximum, and if un-
equal, the correct child is recursively queried [8, p.550].
The recursion ends either when explicitly stored minimum
or maximum value matches x or when the universe size of
the queried vEB-tree is equal to 2. A traditional vEB-
tree that stores a universe of 16 elements has up to 12
descendants and, in the worst case, needs to perform two
recursive calls to determine the membership of x.

We propose a variant to the vEB-tree: The van Emde
Boas Bitmap (vEBB) alters the traditional bitmap — it
does not store the min or max, but instead stores an in-
teger named bitmap. A vEBB where u = 16 requires no
further recursive calls to perform membership queries and
has no descendants. Algorithm 3 shows the isMember al-
gorithm — insertion and deletion are defined analogously,
with different bit operations. We expect that the elimina-
tion of the descendants will improve the memory usage of
the vEBB, and the elimination of the recursive calls will
improve the query time a little. The vEBB does not im-
prove upon the theoretical space and time complexities —
it merely aims to improve the constant factors.

Algorithm 3: vEBB membership query.

Input: vEBB V, integer x
if v.u = 16 then

return (V.bitmap ∧ (1� x)) 6= 0
else

return isMember(V.children[high(x)], low(x))
end

5.2 Experimental Design
This section outlines the experimental design used to com-
pare execution time, setup time, and memory usage, of
vEBB to those of the traditional vEB-tree. To evaluate the
memory usage, we consider the amount of memory stored
for various values of n ranging from 210 up to and includ-
ing 220, both when this data is normally and uniformly
distributed. We conduct these experiments according to
the methodology outlined in Section 2.

5.3 Results, Discussion, and Conclusion
Figure 7 shows the memory usage of the vEBB, the vEB-
tree, and the vEBB with a cached minimum for uniformly
and normally distributed data. Interestingly, the vEBB
uses more memory than the vEB-tree for uniformly dis-
tributed data. We hypothesized this is due to min-caching
in the vEB-tree — the minimum is explicitly stored and
not inserted fully into the appropriate subtree. When the
data is uniformly distributed, many branches in the vEB-
tree only contain one element. In that situation, the vEB-
tree can store that element explicitly as the minimum, but
the vEBB has to generate the entire branch and store the
element in the bitmap. Figure 7 supports this hypothe-
sis — by adding an explicit minimum to the vEBB, its
memory becomes better than that of the vEB-tree.

On normally distributed data, we can see the vEBB using
much less memory than the vEB-tree. This reduction oc-
curs as most elements belong to just a few branches if the
tree is storing normally distributed data. Therefore min-
caching does not cause a significant reduction in memory
usage. The elimination of the last two layers of the vEB-
tree through a bitmap does improve memory usage here.

Figure 7. Memory usage of various vEB-tree variants as n
increases. The dashed and solid line show uniformly and
normally distributed data respectively.
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The results of the experiment show that the experiment
time of the vEBB and the vEB-tree is very similar for
smaller values of n [29]. As n increases, we can see that
the vEBB outperforms the traditional vEB-tree, both on
uniformly but especially on normally distributed data, for
solving the static and dynamic membership problem. The
first reason is that the vEBB has to do fewer recursive
calls due to replacing the last two layers with a bitmap.
Additionally, we likely see the vEBB perform better for
the dynamic problem due to the much-simplified insertion
and deletion algorithms.

Based upon these experiments, we can conclude that the
vEBB outperforms the traditional vEB-tree for solving
both the dynamic and the static membership problem.
It provides better query time for both the dynamic and
the static problem, both for uniformly and normally dis-
tributed data. Its memory usage is much better than that
of the vEB-tree if the elements are normally distributed.
However, if the elements are uniformly distributed, the
vEBB uses slightly more memory than the vEB-tree.
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6. IMPROVING HASH TABLES
It became clear in Section 3 that hash tables offer excellent
performance for solving the membership problem. Due to
this performance and their widespread use, hash tables
have been the subject of extensive research. We will ex-
amine the performance of perfect hash tables for solving
the static membership and compare the performance of
various collision handling methods.

6.1 Perfect Hash Tables
Perfect hash tables earn their name because of their stellar
space and time complexity, namely O(n) and O(1) worst-
case, respectively [8, p.278]. The usage of traditional per-
fect hash tables is limited to the static dictionary problem,
and thus to the static membership problem2. The idea be-
hind perfect hashing is to first use some hash function h,
but instead of resolving collisions by a traditional method
such as a linked list, we use a smaller hash table Sj with
its own hash function hj . However, this in and of itself
does not guarantee our stellar O(n) and O(1) complexi-
ties. To achieve those, we first pick the first hash function
h uniformly at random from a universal hash family H.
We then compute the memory usage, and if it is too big,
we simply choose another h uniformly at random, until
we find one that satisfies our space complexity. We take
a similar approach for each smaller Sj : We pick hj ∈ H
uniformly at random until we find a hj that does not have
any collisions. All of this may seem like a lot of random-
ization but if we pick our hash function family well, both
theoretical analysis and real-world experiments show this
approach to be feasible.

6.1.1 Experimental Design
The performance of the perfect hash table (PHT) will
be compared against that of Bitmap, ChainedDivision-
HashTable, ABHashTable. To get an idea of the perfor-
mance difference between non-perfect and perfect hash-
ing we include the ABHashTable and the ChainedDivi-
sionHashTable. The bitmap, the data structure with the
best experiment times, is included as a baseline.The PHT
and ABHashTable will use hash functions from the uni-
versal hash family Hpm = {hab|a ∈ Zp, b ∈ Zp} where
hab(k) = ((ak + b) mod p) mod m, p is prime, and m is
the size of the hash table [8, p.269].

We compare the memory usage and experiment time for
two data sets of size 2e where e ∈ {10, 11, · · · , 20} — one
set’s values are normally distributed (µ = 220, σ = 218)
and the other is uniformly distributed. We conduct these
experiments in accordance with the methodology outlined
in Section 2.

6.1.2 Results, Discussion, and Conclusion
In Figure 8 we can see the experiment times for the uni-
formly distributed data. We can clearly see that the PHT
performs equally as well, or worse than the other data
structures, despite having no collisions. The same results
were seen on normally distributed data [31]. This is prob-
ably because the improvements you would expect to see
in execution time due to a lack of collisions are balanced
by bigger constant factors — namely, when computing the
first hashed value, retrieving the second hash function and
table, and then computing the second hashed value. Ad-
ditionally, the PHT has much higher setup times which is
obviously due to the randomization in the setup phase [31].

2Dietzfelbinger et al. [9] did create a data structure called
dynamic perfect hashing that has the same complexities
except that the insert and delete complexities are amor-
tized.

The PHT also has higher memory usage for normally and
uniformly distributed data [31]. This is due to the need
to explicitly store the used hash function hj for each Sj .
We can conclude that PHTs, despite their perfect theoret-
ical complexities, do not perform better, and sometimes
perform worse, than standard hash tables in experiment
time, setup time, and memory usage.

Figure 8. The performance of the PHT compared to other
data structures on uniformly distributed data.
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6.2 Improved Collision Resolution
When for two different values x1 and x2 in our hash table,
we have h(x1) = h(x2), we have a collision. For hash ta-
bles to be correct, we must resolve this collision. The most
basic method of resolving collisions is linked list chaining:
We store a linked list for each slot j and we will denote the
length of this list as lj . The performance of this method is
good as long as this list is not too long. If due to a poorly
chosen hash function or a small table size, this list starts
growing, the performance of your hash table will become a
lot worse. We could improve this scalability by using some
form of a balanced binary search tree, such as a RedBlack-
Tree. A balanced BST would offer a O(log lj) query times,
and your hash table’s performance would scale much bet-
ter than a linked list in the case that lj becomes large. A
slightly more complicated version of this approach is used
in the OpenJDK HashMap implementation [22, line 158].

There are also methods of resolving collisions that avoid
chaining altogether. In open-addressing, each element in
the set is stored directly in the table, instead of in some
other data structure [8, p.269]. We extend the hash func-
tion to take an additional parameter: the probe num-
ber. Insertion, membership checking, and deletion happen
by computing h(k, 0), h(k, 1), · · · until we either find an
empty slot or the desired element. We will only consider
linear probing, in which h(k, i) = (h′(k)+i) mod m where
m is the size of the hash table [8, p.273]. We limit ourselves
to the collision resolution methods outlined above, though
it must be stated that there are many methods for colli-
sion resolution, making this subsection easily expandable
into another paper.

So far, we have not given too much thought to the size of
the hash table, m. So far we have usually set it to m = 8n
— this has been possible as we always know the value
n in our experiments. For reasoning about the size of the
table, we usually use the load factor α = n/m: the average
amount of elements stored in a table slot [8, p.258]. Since
open-addressing stores each element directly in the table,
α can not exceed 1. When using chaining, α can exceed 1
— in such cases, the choice of chaining data structure (in
our case, a RedBlackTree or linked list) starts to become
a significant part of the performance. We do not consider
the possibility of resizing the hash table in this paper.
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Figure 9. Box-plots of experiment times, solving 220 membership queries where n = 220, for various collision resolution
methods, for various load factors.
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6.2.1 Experimental Design
We will compare three kinds of collision resolution: open-
addressing, chaining with a linked list, and chaining with
a RedBlackTree. Each of these hash tables will use the
same hash function. We will fix n = 220, examine α ∈
{0.125, 0.875, 8}, and perform 220 queries on the static
problem. The open addressing collision resolution method
does not work for α > 1 and is thus excluded from the
experiment where α = 8.

6.2.2 Results, Discussion, and Conclusion
The results of the experiments can be seen in Figure 9. For
α = 8, there will be chains of considerable size. The hash
table that stores chains as a RedBlackTree then greatly
outperforms the linked list based chaining due to the im-
proved scaling (O(log lj) versus O(lj)). For α = 0.875 we
can see that the list-based chaining performs best. The
list probably performs better than the RBT-chain as lj is
usually rather small and the smaller constant factors of
the linked list matter more than the better scalability of
the RedBlackTree. Open addressing performs very poorly
since 7/8 positions are taken. When using open address-
ing, all operations end once an empty address is found —
it then makes sense that when there are very few empty
addresses, these operations take significantly longer. For
α = 0.125, all three solutions perform similarly. Although
the data would suggest that the list-based chaining works
best, the observed times are so similar that should not be
considered more than a mere suggestion.

Based upon these experiments, we give some guidelines for
the choice of collision resolution depending on how accu-
rately α can be estimated. If there is a possibility of α
taking on values larger than 1, it is impossible to use open
addressing. In such cases, it may be wise to use collision
resolution through chaining with a balanced binary search
tree, such as the RedBlackTree, due to improved scalabil-
ity if the chains get very large. If you do not expect values
much larger than 1 and you trust your hash function to
evenly distribute the elements, it is impossible to go wrong
with chaining through a linked list. This approach is very
easy to implement and performed well in our experiments.

7. CONCLUSION
In Section 3, we have shown that the data structures whose
complexities suggested would perform the best — namely
the Bitmap and the HashTable — also performed best in
our benchmarks. The bitmap had a slight edge in terms of
experiment and setup time, but its memory usage is very
poor. The findings of this section, and the work of Brod-
nik et al. [7], served as inspiration for the creation of a
new data structure: The Hash Table Bitmap (HTB) — it
is a normal hash table except that really dense partitions,
if there are any, are stored in a bitmap. The experiments
showed that the hash table bitmap combines the best as-
pects of the bitmap and the hash table — it performs
similarly to the hash table, except on dense, normally dis-
tributed data. For such data, the HTB takes on the excel-
lent performance of the bitmap, whilst using less memory
than the bitmap or the hash table.

We also found that the performance of vEB-trees can be
improved for the membership problem by ending the re-
cursion in a bitmap. The vEBB has better setup and
experiment time than the vEB-tree for solving both the
dynamic and the static problem, both on normally and
uniformly distributed data. Its memory usage on normally
distributed data is better than the vEB-tree, though its
memory usage for uniformly distributed data is slightly
worse.

Lastly, we looked into possible improvements to hash ta-
bles — namely perfect hash tables and other methods
of collision resolution. Suprisingly, we found that the
performance of perfect hash tables was worse across the
board than their imperfect counter parts. Additionally
we showed that collision resolution by chaining using a
linked-list, performed very well for load factors below 1.
Once load factors got a lot larger than 1, chaining through
a RedBlackTree performed very well compared to linked
list based chaining.
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