
Lightweight Image-based Key Point Tracking For
Real-Time Bridge Monitoring With Smartphones

University of Twente
PO Box 217, 7500 AE Enschede
The Netherlands

ABSTRACT
Key point detection has become more relevant in many
industries. From maintenance to development of materials. The
usage of this technology is not equally distributed. Some sectors
have been more integrated with this technique than others. The
bridge maintenance sector still uses IMU(Inertial movement
unit) sensors for their inspection of critical points on bridges.
This is quite outdated since for large bridges many IMU sensors
are needed. We made an application which can estimate the
movement of critical points using a video taken from a
smartphone. This will aid in more efficient performance and
lower the cost of bridge maintenance. Since less to no IMU
sensors will be needed to perform the check up. As IMU
sensors can take a couple of hours to be placed and removed
from the bridge. Their data needs to be progressed and
calibrated which could take a couple. In the future, this
application could replace the IMU sensors completely and
result in efficient and less time consuming bridge maintenance.

Keywords
Bridge detection, key point detection tool, IMU sensors and
keypoint movement.

1. INTRODUCTION
Bridges have been around for centuries. The use of the bridge
has not declined in recent years. The digital revolution has not
completely integrated into every sector of the bridge, from
design to production to maintenance. The maintenance part of
the bridge especially on the estimation of movement on the
critical points can be improved.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 33rd Twente Student
Conference on IT July 3rd, 2020, Enschede, The Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science

Currently IMU sensors are used for the estimation for the
critical points movement. The IMU sensor is placed on a
specific point of the bridge. After turning the sensor on. It
measures the vibration of the object using the built in
accelerometer and gyroscope. The data is saved inside the IMU
sensor. The data can be used to check the vibration over the
entire object and the key points. This is quite an outdated
practice. Since large bridges need a large number of IMU
sensors and time to place them. For example a large bridge
needs multiple IMU sensors placed on the bridge. In order to
measure the movement. The sensors need to be placed. To place
and retrieve the sensors may take a couple of hours or more or
less depending on the object. Afterwards the IMU sensors need
to be retrieved to read out the data. The data from the IMU
sensors need to be processed and calibrated with the computer
in order to read the data. Which could take an extra couple of
hours. This new era grants more possibilities to decrease the
time spent on the task.
If a mobile phone were able to process a video of a bridge to
determine the key points movement. Time can be spared on
placing and retrieving the IMU sensor as the application only
requires the video. Which improves the efficiency to complete
the task immensely. There are some algorithms and functions
made to track the individual components of the application For
example Optical Flow is used to track key points in videos. Key
points selection can be done with the use of object detection.
Key point detection can be done using the Shi Tomasi Corner
Detection.
For the creation of the application each segment was turned into
a goal:

● Goal 1: To create a key point detection tool, which
can process the first frame of the video and place the
key points.

● Goal 2: To filter the key points from goal 1. So, only
the bridge key points remain. Goal 1 output will be
used.

● Goal 3: To create a python function which will track
the movement of the key points and return the
movement.

● Goal 4: To create a program to separate the
movement of the camera and the movement of the
bridge.

In order to complete the goals the following research questions
were made for our project:

● Research Question 1:
What kind of keypoint detection tool is needed to
detect the key points in the image?

● Research Question 2:
What kind of operation is needed to filter the key
points of the image so that the key points of the
bridge remain?

● Research Question 3:
How to estimate the bridge keypoints movement per
frame?

● Research Question 4:
How to check if the application estimations are
correct?

● Research Question 5:
What kind of implementation with the use of a fixed
point chosen by the user in the first frame is needed to
stabilize the video?

Our research contributes in the field of key points detection and
movement tracking for maintenance of bridges. The result is an
application which can track the movement of a bridge key
points and determine the max movement.

The structure of this thesis has been divided into sections.
Section 2 will show related work in the department of keypoint
selection, object detection, keypoint tracking and camera
calibration. Section 3 will explain the methodology for each
research question. Section 4 explains the result in detail. Section
5 will give a conclusion of the research. With a short discussion
about the research in section 6.

2. RELATED WORK
The following section will show related work in image
alignment or key point detection.

In 1994 a paper for an improved Harris Corner Detection by J.
Shi and C. Tomasi was introduced. The paper showed an
improved version of the Harris Corner detection which
improved the corner detected by changing the formula inside
the Harris Corner Detection. The resulting corners were better
to track from frame to frame.[17]

In the paper Consistent image alignment for video mosaicing
published online in 2011. A new method of image alignment for
mosaicing is proposed. With the use of homography. The result
of this research was a globally consistent and accurate image
alignment.[18]

Pattern Recognition and Image Analysis was published in 2013.
The book contains information about the analysis of image
recognition and pattern analysis.

In 2017, research was performed to make key point detection in
videos more efficient to estimate poses.[14] The result of their
research was an efficient method to make human keypoint in
videos.

In 2017 a book was published to process an image to a
geometric view. The result view is beneficial for the computer.
Since it reduces information to a core minimum.[16]

In 2018 research was performed to propose a new key frame
selection method.[13] In order to view the key points of videos
within a certain time frame.

Research was published in 2018 to detect key components of
existing bridges in point cloud datasets.[15] By automating the
modelling of existing bridges will improve efficiency and cost.

In 2019 a research paper was published for advanced selective
key point detection techniques.[11] The researchers tried to
create an advanced selective key point detection from a
combination of hypotheses of the subject.

In 2020 Yolov4 paper was released for object detection. The
researchers improved the previous version of Yolov3. The
improvement was enough to be called the successor of
Yolov3[12] .

3. METHODOLOGIES
This section will be used to describe the steps which were taken
to create the application.
As explained in the introduction the app will first calibrate the
camera removing the movement of the hand. Afterwards it will
detect the key points of the video. The first frame of the video
will be used to detect the key points. Afterwards the key points
need to be filtered. With the use of object detection. The bridge
is detected and the bounding box edges are saved in a .txt file.
These will be used to filter the keypoints. The remaining key
points after filtering are on the bridge. Afterwards the
movement of the keypoints is tracked using the Optical Flow
algorithm. The movement per keypoints is afterwards displayed
in the app. The app will be tested by using a wooden bridge
video made at the University of Twente. Where Imu sensors are
placed.
Due to time constraints it was not possible to have an advanced
application with self made code. Certain parts of the project
were made using code available on github and online tutorials.
The application was made using primarily Python.

3.1 Data Source
The following photos of bridges were collected from the
website.[10] The photos are free usable images. Around 200
photos were collected from the site. Image augmentation was
used to create an additional 300 photos. The augmentation
photos differ from the original by applying the following
operation: rotating, cropping or/and grayscaling. The images
were collected and saved as .jpg files. For annotating the
images a labeling website was used to create the annotation for
yolov4 format.[2] For training the model AlexeyAB repository
was used from github.[6] For object detection and conversion of
the yolov4 weights to tensorflow lite the following github
repository was used.[7]

3.2 Dataset
The total photos set contains 500 images. Where 300 images
were created using data augmentation on the original 200
bridges. Every photo contains its a .txt file with the bounding
boxes for the object detention. For either training or testing. The
.txt files were created from the labeling website.[2] The dataset
was split into a training and testing data set. The data for
training contained augmented images while the other dataset
contained non-augmented images.

3.3 Research Question 1
After some comparing algorithms online. The method
goodFeaturesToTrack() was chosen. The method is an opencv
python library function to detect the key points in the first frame
of the video.[5]
The function originates from the opencv library. The function
implements the Shi-Tomasi corner detection. The Shi-Tomasi is
an improvement of the Harris Corner detection. The Harris
Corner Detector filters the points if they are a corner, an edge or
flat region.[4]
The following parts explain the Harris Corner Detection. The
function in Figure 1 is used to calculate the variation intensity
of in the window w(u,v).[4] The window function is either a
rectangular window or a Gaussian window which gives weights
to pixels underneath. [4] Afterwards to maximize the function
E(u,v) the second term needed to be maximized. With the use of
Taylor expansion the following equation in Figure 2 can be
derived. The function M is defined in Figure 3. Where Ix and Iy
are image derivatives of x and y directions. Finally the main
equation in Figure 4 is used to determine the score of the point.
Where:

- det(M)=λ1λ2,
- trace(M)=λ1+λ2

The regions of approval can be observed in Figure 5.
Shi-Tomasi improved the function by rewriting the R from
Harris Corner Detector displayed Figure 6.[5] To the function R
observed in Figure 7. Which results into a different region of
approval as shown in Figure 8:
Compared to the other corner if λ1 and λ2 are above the λ
minimum the value is a corner. The corners which are below a
certain quality λ are rejected. This will result in the best corners
also known as key points to track for Optical Flow.[5]

3.4 Research Question 2
For the operation for filtering the key points. Only the key
points of the bridge should remain. Yolov4 was used to filter the
key points. Yolov4 is an object detection algorithm which draws
bounding boxes on the image on the object. Due to the fast
processing speed Yolov4 was chosen for training the custom
object detection for the bridge. The results of the custom object
detection training were the weights. These were converted to
tensorflow lite weights. Since object detection on smartphones
is better run on tensorflow lite since it takes less computing
power. The function works as follows. An image is put in with a
bridge or not. If the application detects the bridge. A bounding

box is drawn as shown in Figure 9. If no bridge is detected no
bounding box is drawn.

3.5 Research Question 3
After determining the key points. The key points needed to be
tracked. The Optical Flow algorithm was used to track the
movement of the bridge. Since Optical Flow is well suited for
tracking small movements. This is quite important since the key
points which are detected from the bridge only move a small
distance. Therefore Optical Flow was ideal for the application.

3.6 Research Question 4
The application output needed to be tested. We tested the
application by comparing the results with IMU sensors on a
wooden bridge at the University of Twente.We compared the
IMU sensor data with the application output.

3.7 Research Question 5
The stabilization of the video is done using a reference point
chosen by the user. The user chooses a reference point to focus
the video. The video will be calibrated when it films using this
reference point. By comparing the movement per frame with
the first frame. If the movement is higher than the reference
point. Then the frame is translated with the difference of the xy
coordinates. The frames are afterwards merged into a stabilized
video.

4. RESULTS
In this section the results are shown after performing the
research. Most of the programming code is written in Python
and a bit of Kivy.
The first task which needed to be done was finding the best and
time efficient function to detect and filter the key points. The
objection detection model was trained using Yolov4.[6] After
the training and testing was completed the Yolov4 weights have
been created. The weights were converted to tensorflow lite.[7]
The repository was used for object detection.[7] Afterwards the
function for keypoints selection and keypoint tracking were
combined. The application is now able to filter the key points of
the bridge using the bounding box area made by TensorFlow
Lite. Furthermore it is able to track the movement of the key
points with the use of the Optical Flow algorithm. The
movement separation is done by image translation. The video
will be calibrated using the chosen point as reference. The video
will be calibrated using that point. The resulting video will
contain almost no mobile phone motion.

4.1 Application
The application is made using Kivy, a Python framework. The
Python script can be converted to an android application. The
application contains three functions. The detection of the
bridge, the key points detection of the bridge and the movement
estimation of the bridge key points. For the bridge detection and
key point detection an image of a bridge is needed as input.
For the movement of the key points a bridge video is needed
without frames of other videos or images mixed in. The user is

expected to add the files for object, keypoint detection and key
point tracking inside the folders of the app.
The application works as follows:

1. Figure 17 is the homescreen. Press start to be
navigated to the option screen

2. Figure 18 is the option screen. Here the user is able to
choose to detect a bridge or the bridge keypoints
using an image. Or detect the movement of the
keypoints using a video as input. Press back to return
to the option window.

3. Figure 19 is the option Image upload screen where the
name needs to be ticked in and afterwards pressed to
send the data for the bridge detection or keypoint
detection of the bridge. Press back to return to the
option window.

4. Figure 20 shows the result of the objection detection
and the option to download the result. Press back to
return to the option window.

5. Figure 21 shows the video input screen where the
name of the video needs to be put in. Press back to
return to the option window.

6. Figure 22 the user can submit the custom keypoint for
stabilization and the width of the bridge separated
with a comma. Press back to return to the option
window.

7. Figure 23 shows that the video has been progressed
and the results of a text file with the movement of the
keypoints and the coordinates can be downloaded.
Press back to return to the option window.

8. Figure 24 shows the result of the keypoint detection
of the bridge. Press back to return to the option
window.

The application was finished to be exported to an Android
package. However, due to conversion issues the application was
not able to be converted to an Android package.

4.2 Research question 1
The keypoint detection tool used for detecting the key points in
the first frame is named:”goodFeaturesToTrack'' from the
opencv library. After some testing with the function on different
images. The results were satisfactory. The key points selected
are the best to track for the Optical Flow algorithm. Since the
function has chosen the best key points to track.

4.3 Research question 2
By defining the key points the application should filter the key
points. So that it only contains the key points on the bridge.
This is done using the Yolov4 algorithm.[6] The training and
testing were split in a ratio of 90:10 of the 500 images. The
training consists of 400 images and the testing 100 images.
After training the custom object detection. The following mean
average precision was generated as shown in Figure 10. The
mean average point(mAP) is at 86.1 percent. The Intersection

over Union(IoU) threshold is set at 0.5.The result implied that
the bounding box generated on the bridge is 86.1 percent
accurate. It is determined by the IoU which checks per image if
the bounding box generated by the model overlaps at least 50
percent with the bounding box coordinates predetermined by
the user. If the overlap is 50 percent or higher than the model
correctly drew the bounding box on the image. An example of
the IoU threshold calculation can be found in figure 11.
A confusion matrix of the model can be generated by running
the following command in Anaconda:
“darknet.exe detector map data/obj.data yolov4-obj.cfg
backup\yolov4-obj_last.weights”. The result can be observed at
Figure 14. The following confusion matrix can be drawn using
the results of Figure 14.

Positive Negative

Positive 48 (TPs) 4 (FPs)

Negative 8 (FNs) 52 (TNs)

Table 1. Confusion Matrix

The following formulas are used to calculate the recall,
precision and accuracy:

Recall 𝑇𝑃𝑠/(𝑇𝑃𝑠 + 𝐹𝑁𝑠)

Precision 𝑇𝑃𝑠/(𝑇𝑃𝑠 + 𝐹𝑃𝑠)

Accuracy (𝑇𝑃𝑠 + 𝑇𝑁𝑠)/(𝑇𝑃𝑠 + 𝐹𝑃𝑠 + 𝑇𝑁𝑠 + 𝐹𝑁𝑠)

Table 2. Recall, Precision and Accuracy formulas

Utilizing the formulas in Table 2 and the results in Table 1. The
recall is around 0.86, the precision is around 0.92 and the
accuracy is around 0.89. The accuracy differs from the maP rate
due to the fact that the maP checks if the bounding box drawn
on the object is within a certain threshold given by the user.
Which results in an extra condition added to the TPs. This
explains the different result.
Since only one bridge needed to be detected in an image the
results were adequate. The weights were afterwards converted
to Tensorflow Lite. Since Tensorflow Lite requires less
computational power compared to Yolov4. An image is put
inside the tensorflow detector to detect the bridge. If no bridge
is inside the picture no bridge will be drawn. As seen in figure
9. The bounding box coordinates are saved inside a .txt file. The
coordinates were used to filter out the key points. The bounding
box coördinates are saved in a .txt file. The file will be used to
filter the key points from research question 1. The remaining
keypoints are on the bridge. The filtering can be viewed in
Figure 12 and 14. Figure 12 displays the unfiltered key points.
After applying the filter method with the bounding box in

Figure 13. Most of the key points outside of the bridge have
been filtered out. There are some points not on the bridge due to
the large area of the bounding box. However it has filtered out
most of the wrong key points. So the result was sufficient.

4.4 Research question 3
The bridge movement estimation was performed by the Optical
Flow algorithm.[3] The Optical Flow algorithm was used to
track and calculate the movement. The Optical Flow parser the
video first frame and uses the goodFeaturesToTrack to
determine the keypoints. The keypoints are filtered if they
remain in the bounding box using the coordinates in the .txt file.
Optical Flow draws the movement per keypoint on the frame.
This can be used to calculate the movement of the bridge. The
code was rewritten to save the initial key points. The original
key points coordinates are saved into a list. For each loop the
Optical Flow algorithm will track the movement of the
keypoints. The movement will be registered. With the use of p1
the new coordinates of the points. With the use of saved original
key points. The distance calculation is done using the distance
formula: .𝑑 = √((𝑥_2 − 𝑥_1)² + (𝑦_2 − 𝑦_1)²)
With the formula the distance is calculated per pixel. If the
distance of the next keypoint is greater than the previous
distance the old distance will be replaced with the new distance.
Afterwards the distance is multiplied by the scale given by the
user. The scale is calculated with the use of the bounding box
coordinates. The width is given by the user as input in
centimeters. Afterwards the bounding box width is calculated
by subtracting the right most corner minus the left most corner.
The original width of the bridge is divided by the width of the
bridge in pixels. Which results in the pixel scale to centimeters.

4.5 Research question 4
In order to validate the results obtained. The applications
needed to be tested. The four IMU sensors were deployed on
the bridge at the University of Twente. They were turned on
when the person gave the signal which is seen in the video. The
length of the video is around three minutes. In the video people
walked over the bridge. The four IMU sensors had some
connection issues. So, there is a spike in the data captured in
Figure 16A,B and C. This is due to the connection loss.
As seen in Figure 16A,B and C. The spike of length was
detected when the people walked over the bridge as seen in
Figure 16A,B and C. IMU sensors detected will be looked at to
determine the motion due to the fact that my application only
returns the highest motion. The accelerometer with x,y,z data
was used to estimate the displacement of the bridge. We used a
displacement calculator.[1] The following inputs were used for
after comparing it with the data in the .itlog file:

- X
u = 0.001
a = 0.002

t = 8
- Y

u = 0.001
a = 0.002
t = 8

- Z
u = 0.001
a = 0.006
t = 8

The results for x and y are around 6.48 cm displacement and for
z around 19.28 cm. Compared to our application a similar
displacement was measured in one of the keypoints. A
displacement of 5.15 in cm. With the bridge width being given
as 2,5 meters. The measurement is almost on par with the IMU
sensor. So, the measurement is quite okay.

4.6 Research question 5
The stabilization of the video was done using a point chosen by
the user. The video is calibrated by using the chosen point as the
main focus point.[9] The data gathered will be used to stabilize
the video. The points are chosen on the bridge to limit the
keypoint possibilities. The key point is tracked frame by frame
using Optical Flow. For each frame the movement is compared
to the first frame. After the video key point differences have
been read. Each frame is run again. To create a stabilized video.
The video is created by translating the image with the xy
coordinates saved in a .txt file. The first frame is taken as the
origin coordinates. Every deviation from frame 1 to the original
frame will be translated accordingly. For example if the image
were shifted with 50 pixels for the x and for the y 50 pixels the
frame will be translated as seen in Figure 15.
The motion of the mobile is almost completely removed. Which
resulted in more accurate tracking of the key points of the
bridge.

5. CONCLUSION
The research had four main objectives:

- To create a key point detection tool, which can
process the first frame of the video and place the key
points.

- To filter the key points from goal 1. So, only the
bridge key points remain. Goal 1 output will be used.

- To create a python function which will track the
movement of the key points and return the movement
in cm.

- To create a program to separate the movement of the
camera and the movement of the bridge.

Every main objective was finished. The application is able to
detect the key points in the image using the
goodFeaturesToTrack(). The points are afterwards filtered using

the bounding box coordinates of the Tensorflow Lite. The
movement is calculated using Optical Flow per keypoint. The
separation of the movement of the phone and the bridge using
the fixed point is finished. The video is stabilized by tracking a
custom point and checking the movement deviation from the
first frame. The other keypoints movement from the first frame
will have their movement subtracted with the custom point.
This results in the separation of the phone movement and the
bridge movement.
The application was not completed. The object detection,
keypoint detection and download button for the results have
been finished. The key point tracking suffers from heavy
computation time. Due to the high memory consumption, due to
the Optical Flow algorithm. The application is able to progress
smaller videos with a lower fps rate and duration time and there
are some bugs with image loading.

6. DISCUSSION
There are quite some points which should be addressed in this
research paper.
The key points detected are the best points for the Optical Flow
to track. However, they are not necessarily the best key points
to track for the bridge movement. Since the structural points of
the bridge can be different from the key points selected by the
goodFeaturesToTrack() function. This can be improved by
adding an extra layer to the object detection. The interest points
can be used to define them.
Second, the filter for the key points can be improved. The
bounding box of the object detection removes almost all key
points which are not on the bridge. However, there are some
key points selected which are not on the bridge. Since the
bounding box is not completely accurate since it is either a
square or rectangle. Image segmentation should be able to
resolve the issue. Since every pixel is color coded if it is a
bridge or not. This can be done for example with image
segmentation where every part of the bridge is filled in with the
same color. This can be used to improve the filter.
Third, the bridge movement estimation can be improved. The
implementation is quite well done. The measuring of the
movement change in distance can be improved. Since the
distance is measured by pixel. However, the scale of the pixel is
not accurate enough.
Fourth, the application only runs on the pc. It should be able to
run on Ios and Android. However, due to time constraints and
conversion errors. It was not possible to arrange other options.
Fifth, the application can be improved on the efficiency of
tracking the keypoints. The computation time for large videos
requires more memory resources than available on the
smartphone. This can be done by creating a variation of Optical
Flow with low memory usage.
Sixth, the testing can be done more thoroughly for the results.
Due to some issues with reading out the data and converting the
estimated acceleration to speed. The testing part of the

application is not on par. The test needed to be more thorough
and precise.
Finally, the mobile and bridge separation can be improved. The
separation focusses on a fixed point of the user. The assumption
is that the fixed point will not move. However, this can happen.
Which can result in slight deviation in measurements.

7. REFERENCES

[1] URL
https://www.calculatorsoup.com/calculators/physics/displa
cement_v_a_t.php

[2] URL https://cvat.org/

[3] URL
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.ht
ml

[4] URL
https://docs.opencv.org/4.5.2/dc/d0d/tutorial_py_features_
harris.html

[5] URL
https://docs.opencv.org/4.5.2/d4/d8c/tutorial_py_shi_tomas
i.html

[6] URL https://github.com/AlexeyAB/darknet

[7] URL
https://github.com/haroonshakeel/tensorflow-yolov4-tflite

[8] URL mAP (mean Average Precision) for Object Detection
| by Jonathan Hui | Medium

[9] URL
https://streng20.wixsite.com/structuralengsite/post/measuri
ng-bridge-vibrations-and-deflections-with-a-camera-impro
ved

[10] URL https://unsplash.com/

[11] Amein, A., & El-Tanany, A. H. (2019). Advanced selective
key point detection techniques. Journal of Engineering
Science and Military Technologies, 3(2), 61–69. DOI:
https://doi.org/10.21608/ejmtc.2019.13509.1121

[12] Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020).
YOLOv4: Optimal Speed and Accuracy of Object
Detection. http://arxiv.org/abs/2004.10934

[13] Gao, Z., Lu, G., Lyu, C., & Yan, P. (2018). Key-frame
selection for automatic summarization of surveillance
videos: a method of multiple change-point detection.
Machine Vision and Applications, 29(7), 1101–1117. DOI:
https://doi.org/10.1007/s00138-018-0954-7

https://www.calculatorsoup.com/calculators/physics/displacement_v_a_t.php
https://www.calculatorsoup.com/calculators/physics/displacement_v_a_t.php
https://cvat.org/
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/4.5.2/dc/d0d/tutorial_py_features_harris.html
https://docs.opencv.org/4.5.2/dc/d0d/tutorial_py_features_harris.html
https://docs.opencv.org/4.5.2/d4/d8c/tutorial_py_shi_tomasi.html
https://docs.opencv.org/4.5.2/d4/d8c/tutorial_py_shi_tomasi.html
https://github.com/AlexeyAB/darknet
https://github.com/haroonshakeel/tensorflow-yolov4-tflite
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://streng20.wixsite.com/structuralengsite/post/measuring-bridge-vibrations-and-deflections-with-a-camera-improved
https://streng20.wixsite.com/structuralengsite/post/measuring-bridge-vibrations-and-deflections-with-a-camera-improved
https://streng20.wixsite.com/structuralengsite/post/measuring-bridge-vibrations-and-deflections-with-a-camera-improved
https://unsplash.com/
https://doi.org/10.21608/ejmtc.2019.13509.1121
http://arxiv.org/abs/2004.10934
https://doi.org/10.1007/s00138-018-0954-7

[14] Girdhar, R., Gkioxari, G., Torresani, L., Paluri, M., &
Tran, D. (2017). Detect-and-track: Efficient pose
estimation in videos. ArXiv, 350–359. DOI:
https://doi.org/10.1109/cvpr.2018.00044

[15] Lu, R., & Ioannis, B. (2018). Detection of Key
Components of Existing Bridge in Point Cloud Datasets.
3(June), 111–115. DOI:
https://www.doi.org/10.1111/mice.12407

[16] Peters, J. F. (n.d.). Intelligent Systems Reference Library
124 Foundations of Computer Vision Computational
Geometry, Visual Image Structures and Object Shape
Detection. DOI:
https://doi.org/10.1007/978-3-319-52483-2

[17] Shi, J., Tomasi, C. (1994). Good Features to Track.
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.p
df

[18] Xu, Z. (2013). Consistent image alignment for video
mosaicing. Signal, Image and Video Processing, 7(1),
129–135. DOI: https://doi.org/10.1007/s11760-011-0212-1

https://doi.org/10.1109/cvpr.2018.00044
https://www.doi.org/10.1111/mice.12407
https://doi.org/10.1007/978-3-319-52483-2
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
https://doi.org/10.1007/s11760-011-0212-1

APPENDIX
A. PRELIMINARY RESEARCH

[4]
Figure 1. E(u,v) function

[4]
Figure 5. Region of approval

[4]
Figure 2. Taylor expansion E(u,v)

[4]
Figure 6. Harris Corner R
function

[4]
Figure 3. M function defined

[5]
Figure 7. Shi-Tomasi redefined R
function

[4]
Figure 4. Final R function

[5]
Figure 8. Region of approval Shi-Tomasi

B. RESULTS

Figure 9. Map rate of Yolov4 custom bridge weights Figure 13. Filtered Keypoints

Figure 10. Map rate of Yolov4 custom bridge weights Figure 14 Recall and precision results

[8]
Figure 11. IoU threshold example

Figure 15. Translated Image by 50 by 50 pixels

Figure 12. Keypoint detected

Figure 16.A A-axis accelerometer

Figure 16.B Y-axis accelerometer Figure 16.C Z-axis accelerometer

C. PAGES OF THE APPLICATION

Figure 17: Home Screen Figure 19: Image upload screen

Figure 18: Option Screen Figure 20. Result Object Detection

Figure 21. Video name input screen Figure 23: Key point tracking result
screen

Figure 22. Choose key point screen Figure 24. Result page keypoints detection
bridge

