
Creating Solvable Instances for Unsolved Puzzles
Bernard J. Willemsen

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
b.j.willemsen@student.utwente.nl

ABSTRACT
Procedural grid-world puzzle generation is a fairly well-
studied field with applications both in machine learning as
well as more directly in game development. Most of these
efforts are focused either on Generate-and-test method-
ologies, requiring solvers, or rely on specific mathematical
properties of their games.
Kwirk is a 1989 block-pushing puzzle game [3] that does
not have a solver1, and while while bearing a striking re-
semblance to Sokoban [4], a 1982 puzzle game that has
seen a lot more research in the domain of level generation,
Kwirk violates the properties that the generative meth-
ods researched for Sokoban rely on. In this paper we will
discuss how we adapted one of these Sokoban generation
algorithms to function on Kwirk regardless.

Keywords
Puzzle, Procedural Generation, Level Generator, Kwirk,
Sokoban

1. INTRODUCTION
We will begin with a brief description of Kwirk, discuss
Sokoban level generation practices, and end this section
laying out what separates this research from the work done
before.

1.1 Kwirk
Kwirk is a 1989 puzzle game originally developed for the
Nintendo Game Boy. In Kwirk, the player controls a num-
ber of player characters on a discrete grid who must all
make their way to the level exit. Once there are no player
characters left, the puzzle is solved. Besides simple sta-
tionary wall pieces, the game employs a number of obsta-
cles, including boxes which can be pushed around; Pits
that cannot be navigated over unless filled in with boxes;
and finally rotators, elements with a static core and a num-
ber of orthogonal arms that may rotate around the core
in 90 degree intervals. Lastly it is important to note that
only one of these objects may be interacted with at a time,
so a row of boxes cannot be pushed along collectively, but

1at the time this research was started, a solver was devel-
oped in parallel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
28th Twente Student Conference on IT Febr. 2nd, 2018, Enschede, The
Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Figure 1. A Kwirk level that is essentially a Sokoban level,
requiring the block to be pushed in the hole at (4,3) to be
able to be solved

must be broken up to be moved. For a detailed description
of Kwirk, see section 2.1.

1.2 Established Practices
No literature on the game Kwirk was found. The closely
related grid-world tile-sliding character navigation puzzler
Sokoban has seen a fair amount of research however.

1.2.1 Enter Sokoban
In Sokoban, you control a character in a grid-world, and
using orthogonal movement must push a collection of single-
tile boxes onto marked spaces of the level.
Key to the complexity of Sokoban puzzles is the observa-
tion that a box located next to a wall cannot be separated
from said wall, as that would require a player getting in
between said box and said wall (by this same logic, a box
placed in a corner is simply lost). While some Kwirk lev-
els essentially are Sokoban levels (see figure 1) there are a
number of important differences that will come up as we
discuss applying Sokoban level generation methodologies
to Kwirk.

B. Kegel and M. Haahr suggested the defining factor of a
Sokoban-style puzzle to be the fact that ”no items/characters
are ever lost or added to the board; the solution exists as
a rearrangement of the original configuration.” [6], effec-
tively categorizing Sokoban as variation of a sliding block
puzzle.
Between players leaving levels and blocks sliding into holes
in the floor to create new floor Kwirk violates this require-
ment. While it could be argued that this is analogous to
boxes pushed into corners being lost, level generation for
Kwirk must violate this property, since according to Kegel
and Haahr, Kwirk would be classified as a Maze [6].
The importance in viewing Kwirk as a maze puzzle over a
Sokoban-style one is that a sliding-block-puzzle generator
may be given a solved level to be un-solved, where a maze
generation algorithm is required to generate the maze it-
self. Or in other words: a Kwirk level generation algorithm
must itself be able to place obstacles in the player’s way

1



that are not part of the input.

Kegel and Haahr outlined two main approaches for proce-
dural content generation across games: Constructive and
Generate-and-test. Constructive algorithms generate con-
tent as they go along, ensuring solvability along the way;
Generate-and-test-algorithms generate randomized output
that is then evaluated and in case of insolvability discarded
[6].

1.2.2 Generate-and-test
The first foray into automatic Sokoban problem construc-
tion by Murase, Matsubara, and Hiraga utilizes a Generate-
and-test approach. They first used templates to construct
an empty level and placed goal states, then placed the
player and boxes randomly. Then using attributes of the
solution such as length, amount of changes in direction and
amount of ”counterintuitive”moves to estimate how ”inter-
esting” a level is [8]. While Generate-and-test approaches
are still used for learning algorithms [7], Bhaumik, Khal-
ifa, and Green found that a search-based constructive ap-
proach may outperform an evolutionary method [2]. Fur-
thermore Bento, Pereira and Levi successfully used a con-
structive approach to superhuman performance in terms of
difficulty for a solver [1]. As such, along with the need for
a solver in order to function we elected for a constructive
approach over a Generate-and-test approach for generat-
ing Kwirk levels.

1.2.3 Constructive approaches
The first documented use of backwards generation is de-
scribed by Taylor and Parberry [9]. They used a similar
approach to Murase, Matsubara and Hiraga for generating
the base levels, and for each possible start state (brute-
forced) used an un-informed iterative deepening approach
to find the most ”interesting” of the farthest states from
the given start state [9]. The main problem with adapting
this approach to Kwirk is in the non-deterministic nature
of the desired input format. The location of the player in
the initial state of a Sokoban level given the position of
the boxes the position of the player poses a similar non-
deterministic input problem, but Taylor and Parberry did
also not place the player explicitly. They instead repre-
sented the player by the currently accessible region, mini-
mizing the amount of start states to be separately evalu-
ated [9]. For Kwirk however we do not want to require the
interactable elements to already be placed, and even the
walkable area optimization while possible, becomes chal-
lenging to implement with multiple players. Other players
block attempts to move objects, and one player’s region
could be bisected by the action of another player (pushing
a block into the other player’s path for instance). This
would lead to a single action generating multiple prede-
cessor states.

Bento, Pereira and Levi build on the work of Taylor and
Parberry with a particular focus on the farthest state search
process. Using a backward greedy best-first search with
heuristics for conflicts and novelty derived from pattern
databases -known solution lengths for small randomly cho-
sen subsets of boxes present- [1]. This approach appeared
to be successful as Bento, Pereira and Levi claim it is the
first Sokoban level generation system with superhuman
performance in terms of level difficulty for a solver. The
cost and method of populating the pattern databases for
each input level was not reported however, so it is pre-
sumed these were created by solver, making the approach
unavailable for generating Kwirk levels.

1.3 Proposed Solutions
In this paper, we suggest using the backwards search algo-
rithm in [1], but not defining a level as a set of values, but
rather a set of constraints on the potential values of all
tiles in the level geometry. In actions, by Bento, Pereira
and Levi defined as a vector a = 〈Pre, Post〉 , containing
two collections of defined variables where one must match
and be overwritten by the other to generate the prede-
cessor/successor state [1], this means that Post defines
constraints that must be a subset of the constraints in the
target region, and Pre must define a function changing
these constraints to ensure that the intended game input
is possible. A series of actions then, when composed and
given some start state, ensure that any matrix of defined
tiles(a tilegrid) matching the level’s constraints will allow
for a series of inputs such that a state matching the start
state is reached. We will investigate the capabilities of
various heuristics to replace the pattern database, as well
as an optimization to furthest state searching based on
detecting proper sub-sets of constraints besides merely an
exact match for the purposes of finding the furthest state
from the start state. Since puzzle generation for Kwirk
specifically is a new field that techniques from Sokoban do
not map onto perfectly, the main goal of this paper is the
following:

GOAL: develop an algorithm for generating Kwirk levels.

To this end we will attempt to answer the following re-
search sub-questions:

RQ1: With this adaptation, what kind of new affordances
does this level generation algorithm provide?

RQ2: what level/algorithm state features can be used ef-
fectively for generating kwirk levels?

2



Figure 2. A 3x1 box being pushed, partially overlapping a
hole and thus not falling in.

2. IMPLEMENTATION
In this section we will provide detailed descriptions of the
game, requirements and generation algorithm as imple-
mented in order to collect the results in 3.

2.1 Kwirk, a detailed description
Kwirk is a game that takes place on a discrete grid without
any dynamic elements devoid of player input, effectively
making the game turn-based.

2.1.1 Players, Walls, Floor and the Exit.
As previously mentioned, A Kwirk level starts with one
or more players (largest number observed in the original
game is four) all of whom need to make their way to the
exit tile. Once a player reaches the exit tile, they are
removed from the game. As a result, a Kwirk level is
considered ’solved’ once there are no more players on the
board. Only one player may be moved each turn, but
which player character is to be moved may be chosen freely
each turn. Besides changing the active player, the only
game-related input is for orthogonal movement. If the
tile next to the active player in the chosen direction is an
empty Floor tile, the player will move over to that tile,
leaving an empty Floor tile behind. If that tile is the level
exit, the player is removed; if the tile is a Wall or Pit
nothing happens; if the chosen tile is a floor tile with a
box or rotator arm on it, the player attempts to interact
with the element. With this means will be discussed below
for each element. The level exit and inactive players are
treated as walls while checking collision.

2.1.2 Pits
Pits similar to Walls restrict Player movement, except that
in addition a pit tile may be additionally occupied by an
overhanging box or rotator arm. If this is the case, this
element cannot be interacted with via this tile.

2.1.3 Boxes
Boxes are defined by a rectangular region of one or more
tiles. If a player attempts to move into a box, if a column
or row of tiles in the opposite direction contains exclu-
sively empty Floor or Pit tiles the player may move into
the square next to them and the box region is moved to
accommodate(see figure 2). If there is no space for the box
to be moved into, the player’s action simply fails. If after
a turn every tile the box’s region occupies is a Pit tile, all
tiles in the region are converted to Floor tiles and the box
is removed(see figure 3).

2.1.4 Rotators
A rotator exists of a core, which behaves similarly to a
wall, with any layouts of orthogonal single-tile protrusions,
that attempts to rotate as a singular entity around its core
when interacted with (see figure 4). Just as the Boxes, ro-

Figure 3. A 3x1 box being pushed into a hole.

Figure 4. T-shaped Rotator, being pushed

tator arms may hang over either Floor or pit tiles and
may only be interacted with if it is the former. Two non-
obvious rules apply to rotators. First, as mentioned, while
they only rotate in 90 degree intervals, if the diagonal an
arm would partially pass through contains some blocking
entity, interacting with the rotator will fail (see figure 5).
Second, if the tile the player would move into after ro-
tation would contain an arm after rotation, the player is
moved an extra square to the diagonal(see figure 6), if this
diagonal is a pit, the interaction fails.

2.2 Requirement adaptations
The one requirement for this generator is tied to the fact
that until near completion of this research no solver for
Kwirk existed, as such the generator may not require one
to function. Furthermore, the algorithm will be given an
input level along with an hour of runtime. In order for the
best output after that runtime to be considered ”success-
ful” it has to pass the following requirements:

• De-tours required: The minimum solution length must
exceed the minimum path distance from the player
to the goal ignoring Boxes, Pits and Rotators. That
is to say, if the player just walked over to the goal,
the must not solve the level ”by accident”.

Figure 5. T-shaped Rotator, Failing to be pushed

3



Figure 6. T-shaped Rotator, skipping a tile

• No mazes: There must not be a path between the
player and the goal that does not cross any Pits,
Boxes or rotators. This is to say, the player must in-
teract with some dynamic elements in order to solve
the level.

2.3 The Search algorithm
First, we will discuss the base version of the search algo-
rithm, akin to that suggested in [1], then we will discuss
the various adaptations as they become relevant when dis-
cussing the heuristics.

2.3.1 Base
Aside from the move over to stochastic variables, under
most conditions the search algorithm is no different from
that suggested in [1]. Consisting of a heap called Open,
and a set Closed. Each cycle the top of Open is taken,
all previous states are calculated, all states not already
in closed are evaluated, and those are then added back
into Open and Closed. If one is evaluated better than the
current best, it is printed and saved, giving this algorithm
the ”anytime” property, allowing the algorithm to be run
for an arbitrary amount of time, be terminated and have
some usable output.

2.3.2 Heuristics
The following Generation heuristics were tested.

• Element Count (Ec): Simply the number of discrete
Boxes and Rotators in the Level

• Just A (As)*: Ignoring Boxes,Rotators and Pits, the
sum of the distances of the shortest paths between
each player and their closest exit.

• A*: Crossed Elements (Ce): Using the path gener-
ated by A*, the number of tiles crossed that contain
Pits, Boxes or Rotators.

• A*: Minimum Crossed Elements (Mce): A*: Crossed
Elements, but before calculation each tile containing
a Box, Rotator or Pit is given an additional weight
exceeding the maximum path length in the level.
The heuristic counts the amount of Box, Rotator or
Pit tiles that were passed anyway.

• Random (Rn): Simply a random number, n indicates
the seed used.

• Tree Depth (TdFF): In line with the reasoning by
Taylor and Parberry, attempt to find the state that
is the most steps away from the goal state [9]. This
heuristics requires a number of changes to the algo-
rithm, as a collision (finding a state that has already
been found) may mean a short-cut to that state has
been found (also implying a short-cut from this state
to the goal state when playing), at which point the

version in the Closed set may need to be adjusted,
and then also needs to be re-explored in order to
propagate the adjustment to its predecessor states.
To aid in this process two optimizations where im-
plemented.

1. propagating adjustments (TdFT): The first op-
timization involves propagating tree-depth heuris-
tic adjustments. Every state in the ‘closed‘ set
also links to it’s successor, allowing to recur-
sively search the Closed set until the tree-depth
values for the entire predecessor tree has been
adjusted for a new-found short-cut.

2. encapsulation filtering, or subset testing (TdTF):
The second optimization makes use of the change
in the representation to stochastic tile values.
Each level is constructed with a ”canonical” so-
lution in mind (the temporally ordered, com-
posed list of taken backward actions), ensur-
ing that for each tilegrid that satisfies the con-
straints said ”canonical” solution is possible. As
a result, if a certain level L1 is a proper subset
of another level L2 (i.e. all tilegrids matching
L1 also match L2, if they are equal it is a colli-
sion), we know for a fact that the canonical so-
lution to L2 is also applicable to L1. This opti-
mization in this case would recursively prune L1
and all of it’s predecessors from the search tree.
Given enough time this optimization should en-
sure that the canonical path through a given
level is the minimal solution path, allowing for
search tree depth to be an accurate description
of solution length.

2.4 previous state generation
In the algorithm, a state is defined by two parts, a tilegrid
and an elementset. Since boxes and rotators can hang
over pits, they are defined separately in the elementset.
The tilegrid is a matrix matching the level dimensions,
where each unit exists of either an explicit Tile, or an ab-
stract list of tiles. This list contains the values the tile may
have, as well as whether or not the tile may have the prop-
erty ”blocking”, for the purposes of rotator and box fitting
(saving if a tile needs to currently be free for an action we
have already decided we will take later). For the purposes
of requirement fitting, a ’compiled’ version of the level is
used, where all tiles containing parts of elements (except
for, if applicable, an element we are trying to re-use) are
replaced with walls. Upon printing, all abstract tiles are
collapsed, preferring Floor tiles.

For boxes, a list of applicants is created, consisting of exist-
ing boxes next to the player; boxes that could have existed
already (detected by the ”blocking” property) and boxes
that could have just fallen into a region of pits to form
floor. All these applicants are then tested whether a valid
push action may have applied to them, in which case they
are un-pushed, and added as previous states.

4



Figure 7. The first level, original and as input for the algo-
rithm

For other actions, there exists a list of pattern-delta pairs,
the first a matrix of functions returning Boolean values,
the second a matrix of functions returning tiles, each tak-
ing tiles (either explicit or abstract) as input. These pairs
are then flipped and rotated for every applicable symme-
try(symmetry groups D4 or C4, depending on the action,
as described in chapter 16 of [5]) , adjusted for the posi-
tions or their origin tiles(in most cases, one of these func-
tions will only match an explicit player tile), and if all
pattern functions return True the delta functions are ap-
plied and the resulting level is added as a predecessor.

3. RESULTS
A complete systematic exploration of all state combina-
tions was not possible within the timescale of this project,
so the following describes an exploratory look into the per-
formance of the various heuristics.
We started with running all heuristics individually on an
empty version of the first level in the game(see figure 7).
Table 1 shows for each heuristic setting for the algorithm
(random was run using the seeds zero until four, mean
and standard deviation are reported), set to generate a
one-player level, the size of the Closed set at the time the
level was generated(does not reflect size of Closed set upon
termination, and the treedepth algorithm with subset fil-
tering prunes the Closed set.), the amount of steps it takes
to solve the generated puzzle, and the puzzle coefficient,

defined as
steps to solve puzzle

length shortest path from player to exit
, the

latter ignoring puzzle elements. As such, unless mentioned
otherwise, a puzzle with a puzzle coefficient of 1 fails the
”de-tours required” clause. If a level fails the ”no mazes”
clause it is prepended with an ’ !’. Finally, here was an
issue in test automation, likely leading to an amount of
progress by the algorithm being lost. In these instances
the last recoverable result is used, and the affected rows
are marked with an ’*’ at the end of the setting name.

It seemed likely that the bad performance of the subset
optimization might be due to the order of exploration.
To test this it was ran alongside A* and Element Count,
which had shown remarkable performance in previous rounds
of testing (see table 2). The ones using EC as a negative
have the heuristic weighted at -1.1, reasoning that we only
want elements to be added when they would increase the
necessary steps to solve. In all others EC is weighted to
0.1, just like A* against the 1 of tree depth. Note that the
solution to 1-player Tree-depth fully optimised with A*
costed and Element Count discounted may not be mini-
mal (see figure 9).

In addition, the more promising heuristics were tested for
a maximum of four players (see table 3).

Figure 8. The best performing puzzle of the initial first
level batch

Figure 9. The best performing puzzle of the second first
level batch

To provide some variation in context, a number of Gen-
eration settings were also run on the fourth level of the
game, a similar, but far more spacious level (see figure 10,
table 4).

Notable here is the under-one performance of 4-player El-
ement Count, where a direct path to the exit skips over
several tiles due to rotators under the right circumstances
moving the player an extra space.
Furthermore the performance of 4-player Tree-depth with
Element Count weighted negatively, the resulting levels
contained no intractable elements whatsoever, since the
search algorithm prioritized merely moving the players to
all available squares first, and with the increase in level
area of the fourth level over the first one this means that
the algorithm is terminated before the area was fully ex-
plored.
Lastly, the steps-to-solve for 4-player tree-depth unopti-
mized, while we know for sure the level is solvable. The
level can be solved with a number of different strategies
all involving different action dependencies between several
player-characters. As a result we were not able to come
up with a definitive solution path, let alone one approach-
ing the minimum solution path (see figure 11). Lastly, to
further test the capabilities of the algorithm two custom
levels were entered: 3x3, a 3x3 grid of 3x3 rooms with
single-tile doorways between them and the exit in the cen-
tral room; and an 9x9 empty room with the level exit in

Figure 10. Level 4, original and as given as input (note
miscount in the size of the level, though it should not affect
the algorithm significantly)

5



Table 1. 1-Player Results for Level 1. (Names indicate number of players followed by heuristics used. Random was run five-
fold, as such the mean and standard deviation are reported. TdTT refers to Tree depth with both proposed optimizations)

name Closed set size Steps to solve Puzzle coefficient
originial None 36 2.25
1pAs 1360 17 1
1pCe 34842 17 1
1pEc 19680 14 1
1pMce 39920 17 1
1pR(0-4) 20326.2(9489.9) ≈12.2(≈3.66) 1
1pTdFF 1100 20 ≈2.86
1pTdFT 1100 20 ≈2.86
1pTdTF 17966 11 1
1pTdTT 17949 11 1

Table 2. Additional 1-Player Results for Level 1
name Closed set size Steps to solve Puzzle coefficient
1pTdTT-Ec-As 26006 19 ≈1.27
1pTdTT-Ec+As 23557 15 1
1pTdTT+Ec-As 16078 47* ≈2.94*

Table 3. 4-Player Results for Level 1, the summations show steps-to-solve separated by player.
name Closed set size Steps to solve Puzzle coefficient
4pCe 1403 2+2+17=21 1
4pEc 28856 2+2+14=18 ≈1.56
4pTdFF* 6386 1+2+2+16=21 1.4
4pTdFT 6548 1+2+2+24=29 ≈1.81
4pTdTF 1668 1+2+2+18=23 ≈1.10
4pTdTT* 1329 2+1+1+16=20 1
4pTdTT+Ec-As* 6092 1+2+15=18 1
4pTdTT-Ec+As 15849 16+17+17+16=66 ≈1.27
4pTdTT-Ec-as* 8588 1+2+3+4=10 ≈1.11

Table 4. Results for Level 4, steps to solve for 4pTdFF unknown but estimated (see figure 11)
name Closed set size Steps to solve Puzzle coefficient
original - 24 ≈1.85
1pTdTT* 16246 26 ≈2.17
1pTdTT+R(0-4)* 5674.4 (4274.5) 16.0(2.45) ≈1.08(≈0.11)
4pEc 7654 2+2+13=17 ≈0.81*
4pTdFF* 7012 ∼60?* ∼2.4?
4pTdFT* 19499 2+19+18+20=59 ≈1.74
4pTdTF* 848 2+2+2+9=15 1
4pTdTT* 1125 2+2+3+9=16 1
!4pTdTT-Ec+As 17058 2+9+16+16=43 1
!4pTdTT-Ec-As* 11465 1+1+2+2=6 1
4pTdTT+R0* 5034 1+5+11+18=35 ≈1.09

6



Figure 11. 1pTdFF for Level 4, where we were not able to
find the steps-to-solve

Figure 12. The 3x3 and open levels, as given as input

the center(see figure 12). Both designed specifically to test
the algorithm’s ability to box the player character in, as
both allowed for numerous potential routes to attempt to
circumvent parts of the puzzle (see tables 5 & 6).

As expected, the open level performed noticeably worse
than the 3x3 grid level, and punishing adding elements in
the hopes of aiding exploration made it so that no elements
were ever added to the levels. In the open level, 1-Player
Element Count fails the no mazes requirement not by fail-
ing to add elements, but by being entirely agnostic to the
player’s position, and ultimately placing them the tile next
to the exit.

Figure 13. The best performing puzzles of the 3x3 & open
batches

Table 5. Results for 3x3 Level
name C.s.s. Steps to solve P.c.
1pEc 5363 8 1
1pTdTT+R0* 7379 10 1.25
1pTdFF 585 6 1
1pTdTT+Ec-As 14671 17 ≈2.43
4pTdTT+R0* 2486 23 ≈1.44
4pTdTT+Ec-As 4558 13 1
!4pTdTT-Ec-As* 9024 12 1

Table 6. Results for Open Level
name C.s.s. S.ts. P.c.
!1pEc 3535 1 1
1pTdFF 16630 6 ≈1.5
1pTdTT+R0* 6608 7 1.4
1pTdTT+Ec-As 14482 6 1
4pEc 600 14 ≈1.08
4pTdTT+R0* 5039 16 ≈0.89
4pTdTT+Ec-As 4292 14 ≈1.08
!4pTdTT-Ec-As* 30306 8 1

3.1 Observations
A few interpretive notes on the data which will inform the
conclusions drawn.

First, it should be noted that every setting tested has at
least one result with a puzzle coefficient equal to, or less
than one, failing the ”De-tours required” requirement.
We also believe that the excellent, though inconsistent
performance of the Element Count heuristic to be sig-
nificant as this heuristic is entirely agnostic to the so-
lution path. It shows that with this generation method
merely blindly adding obstacles may provide positive re-
sults. This also provides a reason for the lacking perfor-
mance of the subset-testing optimization compared to its
unoptimized version. We speculate this is because in the
runtime required it fails to gain control over the minimum
solution. Having the optimizations effect be a decrease in
the amount of obstacles that are ”unneeded” from the al-
gorithms point of view, with the success of Element Count
showing these ”unneeded” obstacles may still have made
for more difficult puzzles.

7



4. CONCLUSION & DISCUSSIONS
RQ1: We suggested a pruning algorithm based on the
adaptation in level representation which is supposed to
take control of the generation path in order to have the
canonical solution also be the minimal one. In practice
however it was outclassed by its unoptimized counterpart
in most comparative tests. We believe the order of state
exploration to be a major factor in this. As a result, we
would suggest investigating this approach in combination
with an iterative deepening search algorithm rather than
a depth-first search.

RQ2: In the initial round of tests we found that tree-
depth and Element Count both gave rise to interesting
levels. Both of these have proven inconsistent however
be they on their own, summed or subtracted. Ultimately
we were not able to find a setting that reliably generated
levels with solutions more complicated than the shortest
route straight to the exit.

To conclude, we believe that the larger goal for this project
ultimately was successful. Using this algorithm we are able
to reliably generate solvable, not somehow obviously ab-
horrent looking Kwirk levels. We were not able to have
the levels reliably be interesting or difficult however. But
we believe that with further research into various heuris-
tics, pruning policies and search algorithms generation of
reliably difficult levels should be possible.

5. REFERENCES
[1] D. S. Bento, A. G. Pereira, and H. L. Levi.

Procedural generation of initial states of sokoban.
IJCAI International Joint Conference on Artificial
Intelligence, 2019-August:4651–4657, 2019.

[2] D. Bhaumik, A. Khalifa, M. Green, and J. Togelius.
Tree search versus optimization approaches for map
generation. Proceedings of the 16th AAAI Conference
on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2020, pages 24–30, 2020.

[3] S. Englhart. Puzzle boy. Power Play, 25, 1990.

[4] S. Englhart. Sokoban. Power Play, 25, 1990.

[5] R. P. Grimaldi. Discrete and Combinatorial
Mathematics. Pearson Education, 2003.

[6] B. Kegel and M. Haahr. Procedural puzzle
generation: A survey. IEEE Transactions on Games,
PP:1–1, 05 2019.

[7] A. Khalifa and J. Togelius. Multi-objective level
generator generation with marahel. ACM
International Conference Proceeding Series, 104,
2020.

[8] Y. Murase, H. Matsubara, and Y. Hiraga. Automatic
making of sokoban problems. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 1114:592–600, 1996.

[9] J. Taylor and I. Parberry. Procedural generation of
sokoban levels. 6th International North-American
Conference on Intelligent Games and Simulation
2011, Game-On ’NA 2009, 3rd International North
American Simulation Technology Conference,
NASTEC, pages 5–12, 2011.

8


