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ABSTRACT
The widespread adoption of digital whole slide scanners
in fields like histopathology has introduced computer as-
sisted into whole slide image (WSI) analysis. Machine
learning (ML) techniques have successfully automated la-
borious tasks such as cell detection in WSI analysis. Un-
fortunately, various types of image corruptions tend to be
introduced during the WSI creation process such as out-
of-focus (blurry) regions. Out-of-focus corruptions can
degrade ML accuracy - decreasing the reliability of au-
tomated analysis. In the literature, convolutional neural
networks (CNNs) have shown positive results in cell de-
tection and focus quality assessment tasks. So far, no
paper has combined both approaches for blur resistant
cell detection in WSIs. This paper intends to combine
both approaches for an accurate and robust cell detection
method by developing a novel pipeline utilizing two dif-
ferently trained models and a blur classifier. The pipeline
was developed using two different CNN types: image seg-
mentation (represented by Unet models) and object detec-
tion (represented by Yolov4). The novel pipeline showed
no appreciable performance difference in the cell count-
ing task between a control model trained on both in-focus
and out-of-focus images. The output of image segmenta-
tion models required additional processing to derive cell
counts, the method used for this step was naive and pro-
vided poor results. This meant that object detection based
pipeline substantially outperformed the image segmenta-
tion based pipeline. However, the control models trained
on both in-focus and out-of-focus images provided over-
all reasonable performance indicating that some degree of
robustness against blur could be achieved through the in-
clusion of blurry images into model training datasets.
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1. INTRODUCTION
Digital whole slide imaging allows for the creation of a
high resolution digital image of a tissue sample (usually
called a whole slide image or WSI), which can then be
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interacted with on a workstation computer as if it was
viewed through a microscope [7].

One use case of WSI’s are for histopathological analysis,
that is tissue sample analysis for medical diagnosis. E.g.
a cancer diagnosis or cancer sub-type can be established
via WSI analysis of a tissue sample taken from a patient
[25].

Digital whole slide imaging has seen substantial growth
over the last couple of decades in fields such as histopathol-
ogy. There are many factors contributing to the adop-
tion of digital whole slide imaging such as: workflow im-
provements, cost savings, performance, access to services
in under-resourced locations [7].

Besides the above benefits, WSI digitization also brings
about the possibility semi-automated or fully-automated
WSI analysis [7]. Semi-automated analysis might allow
pathologists to mark areas of interest in the WSI to per-
form certain tasks automatically, such as cell counting and
or identification [21], the results of the task may then be
used by the attending pathologist to make diagnostic de-
cisions. While in fully automated WSI analysis a (simpli-
fied) analysis pipeline might, for example, automatically
identify regions of interests [15], perform cell identification
and counting [21] in these regions and predict a diagnosis
based on the results [22].

Convolutional Neural Network (CNN) based approaches
have proven successful in automatedWSI analysis - match-
ing or even exceeding the accuracy of professional pathol-
ogists when asked to evaluate the same data set of whole
slide images [25, 22].

However, during the slide (thin glass plate and covering to
hold the sample) preparation and scanning process various
batch effects (non-biological factors that affect the WSI)
can be unintentionally introduced into the resulting WSI
[5]. Batch effects can present themselves as various image
artifacts: pen markings on the slide, cracked slide glass,
contrast and hue variations, image blurriness, etc. [10].
This can make automated analysis by machine learning
algorithms less accurate, as the algorithms can become
biased if they have to model batch effects [5].

Blurring in WSI’s can occur because sample tissue may
slightly vary in height within a slide - this can lead to cells
in the sample being noncoplanar [20]. To account for this
a set of focus points at different focal planes (z-depths),
which are properly aligned with the tissue height in the
given region of the sample, are necessary to produce a
sharp WSI [20]. If an incorrect focal plane for the height
of the tissue in a given region of the sample is chosen - the
entire region can become blurry in the final WSI [20]. An
example of this type of blurring can be seen in Figure 1.

The current approach to dealing with blur artifacts in a
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(a) In focus cell nuclei (b) Out of focus cell nuclei

Figure 1: Example images from the Broad Bioimage
Benchmark Collection image set BBBC006 showing the
difference between (a) in-focus and (b) out-of-focus U2OS
Hoechst stain images of cell nuclei [12].

WSI is to detect these blurry regions and to not evalu-
ate the blurry regions [10]. If too many blurry regions
are present - it might be necessary to discard the entire
WSI [10]. But this approach can be problematic in cer-
tain pathological analyses. E.g., in lung adenocarcinoma
histopathological analysis, the spacial distribution of cells
throughout the tissue can convey important information
[23]. In S.Wang et al. this is referred to as the tumor
micro-environment [23]. If the blurry regions of the WSI
are not numerous enough for it to be discarded but suffi-
ciently pervasive to ignore important regions for analysis,
it could lead to incorrect diagnoses. This example shows
that the current method of dealing with blurry regions in
WSI’s of excluding blurry WSI regions from analysis can
exclude important information from analysis. As such a
different approach to WSI region analysis that is robust
against blur is needed.

Several CNN models have been successfully applied in au-
tomated WSI analysis [25, 22]. These studies have demon-
strated that CNN models can achieve performance on
par with human pathologists when evaluating the same
dataset.

There are models that have been shown to perform well
in the cell detection and counting tasks, such as Unet [16]
which produces an image mask that indicates the pres-
ence of a cell. The object detection model Yolov4 has also
demonstrated good performance in the cell detection and
counting task [11].

CNN based approaches to blur detection have been devel-
oped. C. Senaras et al. [20] developed a CNN that is ca-
pable of classifying WSI’s as either in-focus or out-of-focus
(binary classification). S.J. Yang et al. [26] developed a
CNN capable of classifying a WSI patch into 11 absolute
blur levels. Non-machine learning approaches also exist,
such as the Laplace matrix approach used in HistQC [10],
the laplace matrix approach provides a binary classifica-
tion of in-focus or out-of-focus for a patch of a WSI.

An approach that is robust to blur was performed by J. Lu
et al. [14] and was found to achieve performance on par
with a human. However, The approach in J. Lu et al. re-
lies on having multiple different WSIs of the same slide at
different z-depths to construct the sharpest possible WSI
for the classification task. The sharp WSI constructed
by the following method: a cell nucleus is first detected
at the central focus level (middle z-depth), the location
of the detected nucleus is then used to cut out the same
image coordinates in all the WSI’s, then the average pixel
value in each cutout is computed, this is then used to com-
pute the variance between all neighboring (z-depth wise)
cutouts. The pair of cutouts with the highest variance
between is then selected, as the idea is that the largest
variance between z-depths will be observed when an image

Figure 2: Image Segmentation Pipeline

moves between being in focus or being out-of-focus. Next,
the in-focus image in the pair needs to be determined, a
method developed in J. Guan et al. [8] called Edge Model
based Blur Metric (EMBM) is used to determine which
image in the pair is the in-focus one. The in-focus cutout
then replaces the cell in the middle z-depth WSI. This
process is then repeated for all detected cells. It should
be noted that reconstruction is only done after cell nu-
clei detection to improve cell classification reliability, not
detection reliability.

2. METHODOLOGY
Currently in the literature there exists an approach for
blur robustness that relies on taking several images of the
same slide at different z-depths [14]. While more resistant
to blur artifacts, it makes the slide imaging more cumber-
some due to the need of several WSI’s of the same slide.

We propose an easier approach without the need for multi-
ple WSI’s of the same slide at varying z-depths. The pro-
posed approach is a pipeline that can be described as such.
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Figure 3: Object Detection Pipeline

First, a CNN that is capable of detecting blur in images
will be used to classify the input-image as either blurry or
sharp, this CNN will be referred to as the classification-
CNN. Second, depending on the result of the classification-
CNN one of two other CNN’s will be chosen to (indirectly)
predict the cell count of the image, these CNN’s will be
referred to as the detection CNN’s. Each detection CNN
model will be trained on a different dataset. The first de-
tection CNN (referred to as the sharp-detection-CNN) will
be trained with a dataset consisting only of images deter-
mined to be in-focus. The Second detection CNN (referred
to as the blurry-detection-CNN) will be trained with a
dataset consisting only of images determined to be out-of-
focus. Which of the detection CNN’s is used to predict
the cell count in the image is decided by the classification-
CNN, that is: if the classification-CNN classifies an im-
age as sharp (in-focus) the sharp-detection-CNN will be
used to predict the cell count in the input-image, or if the
classification-CNN classifies an image as blurry (out-of-
focus) the blurry-detection-CNN will be used to predict
the cell count in the input-image. Consider the follow-
ing example of the pipelines operation: consider an input-
image A (an image of a region of a WSI), the input-image
is first provided to the classification-CNN that processes
the input-image and classifies it as either sharp or blurry,
if the input-image was classified as sharp it is then given
to the sharp-detection-CNN for cell detection, or if it was
classified as blurry it is then given to the blurry-detection-
CNN for cell detection, then the output of the detection-
CNN is used to determine the number of cells in the image.
It should be noted that the detection-CNN output may re-
quire additional processing to extract the cell count from
the output of the detection-CNN depending on the type of
model used for the detection-CNN’s, e.g. a object detec-
tion CNN’s outputs are bounding boxes- so the number of
cells in the image can be derived by simply taking the num-
ber of bounding boxes that represent a cell class object,
while with an image segmentation CNN, which outputs an
image mask, may require additional processing to derive
the number of cells in the image- extending the pipeline.

To avoid confusion further in the paper, the above pro-

posed cell detection pipeline will be referred to as the dual-
model pipeline from this point-onward.

Additionally, two different CNN types will be used for the
detection-CNN’s in the dual-model pipeline: object detec-
tion CNN (represented by Yolov4 model [1]) and an image
segmentation CNN (represented by a Unet model [17]). To
clarify, the CNN types (object detection, image segmenta-
tion) will not be mixed in the dual-model pipeline, but two
different dual-model pipelines will be built using different
model types, e.g. one using only the Yolov4 models for the
detection-CNN’s and a second one only using Unet models
for the detection-CNN’s. The diagram of the dual-model
proposed pipelines can be seen in Figures 2 and 3.

In total six models will be trained: Yolov4-Sharp, Yolov4-
Blurry, Yolov4-Combined, Unet-Sharp, Unet-Blurry and
Unet-Combined. The -Sharp models will be used as the
sharp-detection-CNN’s in the dual-model pipelines, these
models will be trained only with in-focus images. The -
Blurry models will be used as the blurry-detection-CNN’s
in the dual-model pipelines, they will be trained only
with out-of-focus images. The -Combined models will be
trained with both in-focus and out-of-focus images and
will act as a control group to compare the dual-model
pipelines against to see if the dual-model pipeline is more
robust against blur than a single model trained with both
in-focus and out-of-focus images.

3. RESEARCH QUESTIONS
In this paper we seek to answer the following research
questions:

1. What are the cross-evaluation (all models and all
dual-model pipelines compared against all other
models and all other dual-model pipelines) results?

2. Is the performance of the dual-model pipeline com-
parable to the performance of existing cell detection
techniques?

3. How does the performance of the segmentation based
model (Unet) compare against the object detection
based model (Yolov4) performance?

4. EXPERIMENTS
4.1 Dataset
The BBBC006 dataset from the Broad Bioimage Bench-
mark Collection [13] was selected as the dataset to be
used to train and validate the models and dual-model-
pipelines as the BBBC006 dataset contains a set of WSI
region images at 34 different z-depths (focus planes) with
some z-depths being in-focus and others being out-of-
focus. This allows for the sharp-detection-CNN’s and
blurry-detection-CNN’s to be trained on essentially the
same images except for the blur levels. Z-depths between
11-23 are considered to be in-focus, while z-depths of 0-10
and 24-33 are considered to be out-of-focus as a ground
truth. Z-depth of 16 is considered to be the optimal focus
plane. Each z-depth indicates a difference of 2m of the
focal plane from neighboring z-depths, preceding z-depths
are below the focal plane by 2m, while succeeding z-depths
are 2m above the focal plane for a given z-depth. The
dataset also provides ground truth cell counts for the WSI
images and ground truth cell segmentation masks are also
provided, an example of WSI image and its corresponding
mask can be seen in Figure 5.
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Figure 4: MAPE values for each z-depth for Unet models and image segmentation based dual-model pipeline. The
calculations are based on bounding box derived TP, FP, FN values.

(a) Sample Hoechst stain
image

(b) Corresponding ground
truth mask

Figure 5: Example image (a) from the BBBC006 dataset
and the corresponding cell segmentation mask (b). The
Ground truth mask (b) is not binary as each individual
cell nuclei in the image has a unique shade of gray associ-
ated with it to allow easier segmentation of individual cell
nuclei.

4.2 Data Pre-processing
The dataset consists of two types of images Hoechst and
phalloidin stains, the phalloidin stains were excluded from
the dataset as phalloidin stains primarily provide infor-
mation about the structure of a cell rather than nuclei
counts.

Additionally, during the examination of the dataset a
discrepancy was discovered between the cell count and
mask ground truths. Eight images had non-zero cell
counts listed in the cell count ground truth, but had com-
pletely blank mask ground truths. These images and their
ground truths were excluded (across all z-depths) from the
dataset.

After the dataset cleaning there were 25840 images re-
maining in the dataset across 34 z-depths (760 images per
z-depth).

Two separate versions of the dataset were created - one for
training Yolov4 models and one for training Unet models
as they require different ground truths for training. The
Yolov4 models required cell bounding boxes as a ground
truth, while the Unet models required cell segmentation
masks as ground truths.

To create the Unet training dataset the ground cell seg-

mentation masks in the dataset were thresholded so that
all non-zero pixel values in the mask became one- this was
done to make the problem that the Unet model was trying
to solve a binary classification problem (is the cell present
at a given location in the image or not).

To train the Yolov4 model bounding boxes for the cells
needed to be created as they were not provided as a ground
truth by the dataset. The bounding boxes were created
using an automated method by labeling connected regions
of the ground truth mask and then deriving the bound-
ing box by measuring the properties of the labeled regions
(dimensions) [19], this method of deriving bounding boxes
from a cell segmentation mask will be referred to as the
region properties method from here on. The region prop-
erties method was deemed sufficient for the creation of
bounding boxes. The placement accuracy of the bound-
ing boxes could not be quantified, but visual inspection
of the created bounding boxes indicates that the place-
ment is correct, but there are some issues with separating
clustered cells into individual cells, see Figure 6b. The
mean absolute percentage error (MAPE) was calculated
using the bounding boxes produced by the region proper-
ties method to evaluate the accurate of the region prop-
erties method. MAPE value was calculated to be 1.51%
using the following formula:

MAPE =
1

n

n∑
t=1

|At −Gt

At
|

• At - ground truth cell nuclei count for ground truth
cell segmentation mask with index t

• Gt - number of bounding boxes generated by the
region properties method for ground truth cell seg-
mentation mask with index t

• n - the number of ground truth cell segmentation
masks

In both versions of the dataset the training-validation split
was 90%:10%. The validation training-validation splits
were the also the same across all the It was ensured that
the validation sets across the two different versions were
of the same images.
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(a) Source WSI patch im-
age at z-depth 16 with
ground truth bounding
boxes

(b) Ground truth cell seg-
mentation mask for (a)
with cell bounding boxes
drawn over the mask.

(c) Unet-Combined model
output segmentation mask
for (a) with predicted cell
bounding boxes.

(d) Predicted mask of (a)
at the end of the pipeline
in figure 2 with predicted
bounding boxes.

Figure 6: Example image (a) from the BBBC006 dataset with bounding boxes derived from the ground truth mask (b)
using the region properties method. The ground truth mask (b) is not binary as each individual cell in the mask has a
unique shade of gray assigned to it. The predicted cell segmentation mask (c) is not binary as the output layer on the
Unet is a sigmoid, for further processing the mask is thresholded at a pixel value of 0.5, this mask would be produced at
the Image Mask state in the dual-model image segmentation pipeline, which can be seen in Figure 2. The post-processed
mask (d), is used to determine the cell bounding boxes using the region properties method, however as can be seen by
the bounding boxes the post-processing steps are not able to properly separate clusters of cells and multiple cells end up
with only a single bounding box.

For both datasets the images and masks needed to be re-
sized from 696x520 to 512x512 as both the Yolov4 model
and Unet model had an input layer resolution of 512x512.

Additionally, it was important to also ensure that the same
validation images were excluded across all z-depths to en-
sure that the models did not see ground truth values of the
validation dataset. This is important to produce a good
model as the same image across two neighbouring images
can be extremely similar if not identical, letting the model
memorize the ground truth.

For the Unet model training the data was augmented us-
ing 90°, 180°, 270°rotations of all the training images, the
validation dataset was not augmented. Additionally, the
input images and ground truth masks had their values
normalized to the [0, 1] range. The Yolov4 model dataset
was not augmented using the same image rotations as for
the Unet model due to training time constraints. But the
Yolov4 dataset was augmented using the default darknet
mosaic augmentation (parts from one image being cut into
a different one). The reason for the mosaic augmentation
was that the mosaic augmentation is a default training op-
tion and recommended to be left enabled by the Yolov4’s
model creators guide on how to train a custom Yolov4
model [2]. Additionally, for Yolov4 the original images
were transformed from the TIFF format to JPEG and
normalized between [0, 255] due to the darknet library
preferring JPEG format images [2].

4.3 Unet Model Training
Three Unet models were constructed and trained using
the Tensorflow2 framework following the architecture laid
out in the original Unet paper [17]. The channel number
in each of the convolutional blocks was decreased by four
times. This brought the model parameter size from about
30 million parameters to about 2 million parameters. This
was done to decrease the model training times. Even the
substantially smaller network should have sufficient learn-
ing feature capacity as it is only being trained on a single
type of cell and stain so feature variance should not be
substantial enough to exceed the learning capacity of the
network, that is the dataset is relatively simple.

The network input and output size was adjusted to
512x512x1, that is an image size of 512x512 with a sin-

gle color channel as the images are gray-scale.

The Unet models output layers activation function is the
logistic sigmoid function [18]. The three Unet models
that were trained were: Unet-sharp (Unet model trained
only on in-focus images), Unet-blurry (Unet model trained
only with out-of-focus images) and Unet-combined (Unet
model trained with both in-focus and out-of-focus images).
The Unet-sharp and Unet-blurry models were trained for
use in the proposed approach while the Unet-combined
was trained as a control for evaluating the dual-model
pipeline performance.

The models were trained with binary cross entropy as the
loss function from the Tensorflow2 library. The optimizer
was Adam from the Tensorflow2 library with the default
parameters in Tensorflow2 version 2.5.0. The evaluation
metric was binary accuracy in the Tensorflow2 library with
the default threshold of 0.5. All the Unet models were
trained for only a single epoch as all of them converged
relatively quickly during training and the loss value re-
mained stable after training for only an hour for all mod-
els. The batch sizes for each of the models was different
as in each batch a training image from each z-depth was
included, so the batch sizes were: 13 for Unet-Sharp, 21
for Unet-Blurry and 34 for Unet-Combined.

4.4 Yolov4 Model Training
Three Yolov4 models were trained using the darknet li-
brary [2]. Three Yolov4 models were trained: Yolov4-
sharp (Yolov4 model trained with only in-focus images),
Yolov4-blurry (Yolov4 model trained with only out-of-
focus images) and Yolov4-combined (Yolov4 model trained
with both sharp and blurry images). Similar to the Unet
models, the Yolov4-sharp and Yolov4-blurry models are to
be used in the object detection dual-model pipeline, while
the Yolov4-combined model acts as a control model.

The basis for the Yolov4 models was the yolov4-custom.cfg
template that had certain parameters edited to be ap-
propriate for the custom dataset. The parameters were
adjusted according to the instructions in darknet library
[2]. The maximum number of bounding boxes that the
network can output was changed to 256 boxes to ensure
that the network can output detections for all cells in the
image (the maximum cell count in the listed cell count
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Figure 7: Precision-Recall curve for all Unet model and
dual-model pipeline without the post-processing steps
(called Unet-Approach in the graph) based on the pre-
dicted masks.

ground truth is 176 cells in a single image). The model
input and output size was adjusted to 512x512x3 (that is
a three color channel 512x512 image). The Hue parame-
ter changed from 0.1 to 1 to force the the darknet library
to interpret the images in gray-scale [3] as the framework
reads images with three color-channels even if the images
are gray-scale. The number of classes in each of the yolo
layers was changed to one, since we are training for only
a single class. The number of filters in each of the con-
volutional layers before each yolo layer in the model was
changed to 18.

The darknet library uses stochastic gradient descent with
momentum and weight decay. The optimizer parameters
were kept as default, that is learning rate was kept at
0.001, momentum was kept at 0.949 and decay was kept at
0.0005. Burn in was also kept at the default 1000 batches.

The only training parameters that were adjusted were
the max batches and steps values as they depend on the
dataset size. For Yolov4-Sharp max batches was set to
8892 and step values were set to 7114 and 8003. For
Yolov4-Blurry max batches were set to 14364, while steps
were set to 11491 and 12928. For Yolov4-Combined max
bathes was set to 23256, while steps were set to 18605 and
20930. The reason for these specific values is the dataset
set size, max batches depends on the amount classes being
trained according to the formula:

MaxBatches = max(classes ∗ 2000, T rainingImages)

The models were trained to only detect a single class so
the number of training images always wins in the above
equation. The step values are just simply 80% and 90% of
the max batches value respectively [2].

All the models were trained for 3000 batches with a check-
point being made every 1000 iterations. The checkpoint
with the best evaluation metrics was selected as the final
version of a given model. For Yolov4-Sharp the 2000 batch
checkpoint was selected. For Yolov4-Blurry the 1000 batch
checkpoint was selected. For Yolov4-Combined the 2000
batch checkpoint was selected.

4.5 Blur Detection
For the classification-CNN it was decided to use the blur
classifying CNN developed by S.J. Yang et al. [26] as it
was simple to use and achieved good performance in the
paper. The CNN classifies image into eleven classes of
blur from 0 to 10, with 0 being the sharpest and 10 being
very blurry. Since the dual-model pipeline needs a binary
classification for the blur, classes in the range of [0, 5] were
classified as sharp and classes in the range of [6, 10] were
classified as blurry. The accuracy of this approach was
evaluated per z-depth using the full evaluation dataset by
calculating the percentage of evaluation images that were
incorrectly classified, the results can be seen in Figure 9

4.6 Evaluation
The dual-model pipelines, all Yolov4 models and all Unet
models will be evaluated by bounding boxes that they
produce. For the Unet models this will mean that extra
post-processing steps to derive cell bounding boxes from
the cell segmentation masks will be needed. This process
will be same as the one used in the image segmentation
dual-model pipeline seen in Figure 2 (the post-processing
starts from the Image Mask state). By calculating the per-
centage area overlap of a predicted bounding boxes area
and ground truth bounding boxes area and thresholding
this value at 50% it can be determined whether a pre-
dicted bounding box is a true positive (50% or more of
at least one ground truth bounding boxes area overlaps
with the predicted bounding boxes area) or a false positive
(a predicted bounding boxes area does not overlap with
any ground truth bounding boxes area by at least 50%).
The false negative count can be derived by subtracting the
number of true positives from the total number of ground
truth bounding boxes [9]. These true positive (TP), false
positive (FP), false negative (FN) counts will be used to
derive the following metrics:

1. Mean Average Precision at 50% threshold of In-
tersection over Union for the bounding boxes
(mAP@0.5). Since only a single class of objects is
being detected this is equivalent to Average Pre-
cision at 50% threshold of Intersection over Union
(AP@0.5) and this value is further equivalent to the
Precision-Recall curve Area under the Curve (PR-
AUC) value [27]. This value was computed via nu-
merical integration using the midpoint rule at each
detection [9].

2. Precision-Recall (PR) curve plots [27]. This was
plotted using the precision-recall value pairs at each
detection [9]

3. Precision [27], calculated by the following formula:

Precision =
TruePositives

TruePositives+ FalsePositives

4. Recall [27], calculated by the following formula:

Recall =
TruePositives

TruePositives+ FalseNegatives

5. F1-Score - the harmonic mean of precision and recall
[24], calculated by the following formula:

F1 = 2 ∗ (Precision ∗Recall)

(Precision+Recall)

The mean absolute percentage error (MAPE) [6] was cal-
culated for each model and dual-model pipeline at each z-
depth for better insight into performance at each z-depth.
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Figure 8: MAPE values for each z-depth for Yolov4 models and object detection based dual-model pipeline. The calcula-
tions are based on bounding box derived TP, FP, FN values.
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Figure 9: Classification-CNN misclassification rate per z-
depth. The classification-CNN has difficulty correctly clas-
sifying images at the z-depth border of in-focus and out-
of-focus images. The mean misclassification rate across all
z-depths is 8.9%.

The formula used for MAPE is:

MAPE =
1

n

n∑
t=1

|At − Ft

At
|

• At - ground truth number of cell in image with index
t.

• Ft - the number of predicted bounding boxes
that were classified as true positives according to
IOU@50% rule for image with index t.

• n - the number of images in the validation dataset.

Additionally, the Unet model cell segmentation mask out-
puts will also be evaluated using the same metrics as
above. However, since bounding boxes require post-
processing to retrieve from masks, a different definition
for TP, FP and FN will be needed. TP will be pixels who
have a value above or equal to 0.5 in the predicted mask
and the corresponding pixel in the ground truth mask has
a value of 1. FP will be pixels in the predicted mask with
a value above or equal to 0.5 and the corresponding pixel
in the ground truth mask has a value of 0. FN will be
pixels in the predicted mask with a value below 0.5 and
the corresponding pixel in the ground truth mask has a

value of 1. True negatives (TN) can also be derived but
they are not used in the metric mentioned above. It should
also be noted that with these TP, FP, FN definitions the
mAP@0.5 metric will simply become the PR-AUC met-
ric and the PR curve will have to be derived via logistic
regression.

All models and dual-model pipelines were evaluated on
the full evaluation dataset, that is the evaluation dataset
included images from all z-depths.

5. RESULTS
The metrics derived from the bounding boxes produced
by the models and approaches can be found in Table 1.
The main takeaway from these results is that the proposed
approach appears to function no better or slightly worse
than simply training a single model that is trained on both
blurry or sharp images. There are likely three reasons for
this. First, from Figures 8 and 4 we can see that the
combined models perform almost identically to the sharp
model close to the optimal z-depth, but as we move farther
away from it the sharp models start to perform worse than
the combined models. Second, we can also see that the
combined model appears to actually outperform even the
blurry model in the blurry z-depths. Third, in Figure 9 we
can see classification-CNN does have an 8.9% error rate.
These three factors likely contribute most of the difference
that we observe.

Even with heavy blurring the Yolov4-Combined model
manages to achieve reasonable performance. Additionally,
the sharp models performed the worst- which is not sur-
prising as blur changes the features that the CNN is trying
to learn and these features change under blur.

The performance of blurry models was relatively high,
slightly outperforming the dual-model pipeline, this is
likely down to fact that some of the images in the z-depths
on the sharp-blurry edge are really a mixed bag about how
really blurry-sharp they are. This fact can be in the mis-
classification rate of the classification-CNN seen in Figure
9.

Another takeaway from Table 1 is that the Unet bounding
box predictions perform substantially worse than Yolov4
models, while the precision of the Unet models hovers
around 80% (except for the sharp model) the recall is sub-
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Table 1: Bounding box evaluation results for all trained models and proposed approach using Unet and Yolov4 models

Metric
Yolov4
Sharp

Yolov4
Blurry

Yolov4
Combined

Yolov4
Approach

Unet
Sharp

Unet
Blurry

Unet
Combined

Unet Ap-
proach

mAP@0.5IOU 0.751 0.923 0.936 0.9210 0.549 0.683 0.667 0.666
Precision 0.844 0.902 0.935 0.922 0.716 0.818 0.815 0.813
Recall 0.772 0.899 0.916 0.892 0.530 0.670 0.636 0.662

F1-Score 0.806 0.901 0.925 0.907 0.610 0.737 0.714 0.730

Table 2: Predicted mask evaluation results for Unet mod-
els and Unet approach

Metric
Unet
Sharp

Unet
Blurry

Unet
Combined

Unet Ap-
proach

PR-AUC 0.930 0.992 0.994 0.993
Precision 0.825 0.966 0.945 0.963
Recall 0.888 0.932 0.968 0.949

F1-Score 0.855 0.949 0.956 0.956
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Figure 10: Precision-Recall curve for all the trained mod-
els and dual-model pipelines using the generated bounding
boxes as evaluation metrics.

stantially lower at around 65% (Unet-Sharp models re-
call is even worse at 53%). But an examination of the
Unet mask predictions metrics in Table 2 indicates that
the masks should be accurate- indicating that the issue
is with the method of deriving bounding boxes from the
masks. An examination of the bounding boxes being pro-
duced by the method indicates issues segmenting clustered
cells into individual cells, see Figure 6d for an example.

The Precision-Recall curve of the bounding box evaluation
of all the models and dual-model pipelines can be seen in
Figure 10. The Unet model and modified dual-model mask
based Precision-Recall curve can be seen in Figure 7.

Examining the mean absolute percentage error plots of
each z-depth for each of the models and dual-model
pipelines, seen in Figure 8 for the Yolov4 models and in
Figure 4 for the unet models. The figures show a pat-
tern that the error rate starts climbing quickly below the
z-depth of 5 and above the z-depth of 30. This would ap-
pear to indicate that the models are more easily able to
cope with focusing errors before the optimal focal plane
than with focusing errors after the optimal focal plane.

6. FUTURE WORK
The conclusion that the Yolov4 models are capable of
detecting objects even in blurry images relatively well
if trained with both in-focus and out-of-focus images.
This indicates that models robust against blur could be
achieved by simply including both blurry and sharp im-
ages in the training dataset. However, taking many WSI’s
of the same slide at different z-depths could make the data
acquisition process tedious. If artificial blurring could be
used it would make the process much easier. As such, an
examination whether these properties carry over to artifi-
cial blur might be a future work direction.

7. CONCLUSION
The proposed approach turned out to perform no bet-
ter than simply using a single model trained on both in-
focus and out-of-focus images. However the Yolov4 model
trained on both in-focus and out-of-focus images demon-
strated reasonably good detection metrics indicating that
simply including blurry images in training datasets can
provide a good improvement in model robustness against
blur. While the performance at the heaviest blur levels
is still not satisfactory, it is dramatically improved. With
further improvements to blur robustness satisfactory levels
of performance could be achieved even under heavy blur.

Additionally, there exists a cut off point where the re-
sults start becoming substantially worse, specifically un-
der heavy blur conditions at z-depths of around 5 - about
20 micrometers below the optimal z-depth and at z-depths
of 30 - about 30 micrometers above the optimal z-depth.
This also leads to the conclusion that the Yolov4 model
was able to more easily deal with blur produced by focus-
ing incorrectly too close, than focusing incorrectly further
away from the optimal focus plane.

The closest appropriate comparison for existing cell count-
ing techniques that could be found was S. Chen et al. [4],
this study does perform its evaluation on the BBBC006
dataset and derives the same AP@0.5 metric (equivalent
to Table 1 mAP@0.5IOU), but only a single z-depth subset
(it is unclear, but most likely z-depth of 16) was evaluated
making the comparison not entirely appropriate.

The masks produced by the Unet models were quite accu-
rate, but the further processing required to extract bound-
ing boxes from these predicted cell masks was inaccurate
as it could not properly segment clusters of cells into indi-
vidual cells. If better methods of separating the cells in the
predicted mask could be applies the performance of Unet
models for the cell counting and detection task could be
dramatically improved. But due to the poor bounding box
extraction method the results, based on bounding boxes,
from Unet models are unreliable.

8. REFERENCES
[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao.

Yolov4: Optimal speed and accuracy of object
detection, 2020.

8



[2] A. Buchkovskiy. Darknet framework.

[3] A. Buchkovskiy. Unable to detect object in grayscale
image - darknet.

[4] S. Chen, C. Ding, M. Liu, and D. Tao. Cpp-net:
Context-aware polygon proposal network for nucleus
segmentation, 2021.

[5] Y. Chen, J. Zee, A. Smith, C. Jayapandian,
J. Hodgin, D. Howell, M. Palmer, D. Thomas,
C. Cassol, A. B. Farris, and et al. Assessment of a
computerized quantitative quality control tool for
whole slide images of kidney biopsies. The Journal
of Pathology, 253(3):268278, 2021.

[6] A. de Myttenaere, B. Golden, B. Le Grand, and
F. Rossi. Mean absolute percentage error for
regression models. Neurocomputing, 192:38–48, 2016.
Advances in artificial neural networks, machine
learning and computational intelligence.

[7] F. Ghaznavi, A. Evans, A. Madabhushi, and
M. Feldman. Digital imaging in pathology:
Whole-slide imaging and beyond. Annual Review of
Pathology: Mechanisms of Disease, 8(1):331359,
2013.

[8] J. Guan, W. Zhang, J. Gu, and H. Ren.
No-reference blur assessment based on edge
modeling. Journal of Visual Communication and
Image Representation, 29:1–7, 2015.

[9] J. Hui. map (mean average precision) for object
detection, Apr 2019.

[10] A. Janowczyk, R. Zuo, H. Gilmore, M. Feldman,
and A. Madabhushi. Histoqc: An open-source
quality control tool for digital pathology slides. JCO
Clinical Cancer Informatics, (3):17, 2019.

[11] R. Khandekar, P. Shastry, S. Jaishankar, O. Faust,
and N. Sampathila. Automated blast cell detection
for acute lymphoblastic leukemia diagnosis.
Biomedical Signal Processing and Control,
68:102690, 2021.

[12] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter.
Annotated high-throughput microscopy image sets
for validation. Nature Methods, 9(7):637637, 2012.

[13] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter.
Annotated high-throughput microscopy image sets
for validation. Nature Methods, 9(7):637637, 2012.

[14] J. Lu, N. Sladoje, C. Runow Stark,
E. Darai Ramqvist, J.-M. Hirsch, and J. Lindblad. A
deep learning based pipeline for efficient oral cancer
screening on whole slide images. In A. Campilho,
F. Karray, and Z. Wang, editors, Image Analysis
and Recognition, pages 249–261, Cham, 2020.
Springer International Publishing.

[15] H. H. N. Pham, M. Futakuchi, A. Bychkov,
T. Furukawa, K. Kuroda, and J. Fukuoka. Detection
of lung cancer lymph node metastases from
whole-slide histopathologic images using a two-step
deep learning approach. The American Journal of
Pathology, 189(12):2428–2439, 2019.

[16] R. M. Rad, P. Saeedi, J. Au, and J. Havelock.
Blastomere cell counting and centroid localization in
microscopic images of human embryo. In 2018 IEEE
20th International Workshop on Multimedia Signal
Processing (MMSP), pages 1–6, 2018.

[17] O. Ronneberger, P. Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image
segmentation, 2015.

[18] S. Russell and P. Norvig. Artificial intelligence: A
Modern Approach. Pearson Education Inc., 3
edition, 2010.

[19] scikit image. Label image regions.

[20] C. Senaras, M. K. K. Niazi, G. Lozanski, and M. N.
Gurcan. Deepfocus: Detection of out-of-focus
regions in whole slide digital images using deep
learning. Plos One, 13(10), 2018.

[21] K. Sirinukunwattana, S. E. A. Raza, Y.-W. Tsang,
D. R. J. Snead, I. A. Cree, and N. M. Rajpoot.
Locality sensitive deep learning for detection and
classification of nuclei in routine colon cancer
histology images. IEEE Transactions on Medical
Imaging, 35(5):1196–1206, 2016.

[22] K. S. Wang, G. Yu, C. Xu, X. H. Meng, J. Zhou,
C. Zheng, Z. Deng, L. Shang, R. Liu, S. Su, and
et al. Accurate diagnosis of colorectal cancer based
on histopathology images using artificial intelligence.
BMC Medicine, 19(1), 2021.

[23] S. Wang, T. Wang, L. Yang, D. M. Yang,
J. Fujimoto, F. Yi, X. Luo, Y. Yang, B. Yao, S. Lin,
and et al. Convpath: A software tool for lung
adenocarcinoma digital pathological image analysis
aided by a convolutional neural network.
EBioMedicine, 50:103110, 2019.

[24] T. Wood. F-score, May 2019.

[25] H. Yang, L. Chen, Z. Cheng, M. Yang, J. Wang,
C. Lin, Y. Wang, L. Huang, Y. Chen, S. Peng, and
et al. Deep learning-based six-type classifier for lung
cancer and mimics from histopathological whole
slide images: a retrospective study. BMC Medicine,
19(1), 2021.

[26] S. J. Yang, M. Berndl, D. M. Ando, M. Barch,
A. Narayanaswamy, E. Christiansen, S. Hoyer,
C. Roat, J. Hung, C. T. Rueden, and et al.
Assessing microscope image focus quality with deep
learning. BMC Bioinformatics, 19(1), 2018.

[27] S. Yohanandan. map (mean average precision) might
confuse you!, Jun 2020.

9


	Introduction
	Methodology
	Research Questions
	Experiments
	Dataset
	Data Pre-processing
	Unet Model Training
	Yolov4 Model Training
	Blur Detection
	Evaluation

	Results
	Future Work
	Conclusion
	References

