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Abstract

The Direction of Arrival estimation problem is a common problem in sensor array
signal processing. Many estimation algorithms exist, one such algorithm is the max-
imum likelihood estimator. MLE is a widely used Direction of Arrival estimator and
is suitable for use with non-uniform radar antenna arrays. One of the main disad-
vantages of the MLE algorithm is the fact that its computational requirements scale
exponentially with the number of targets to be estimated. In situations where more
than two targets have to be estimated, MLE can be very expensive and not practical
for use on a low-cost system. More recent research and experiments have shown
that artificial neural networks can be used for the Direction of Arrival estimation.

The computational requirements of neural networks do not depend on the num-
ber of targets to estimate. This causes the networks to have lower required com-
putational power than MLE when a large number of targets have to be estimated.
One disadvantage of using neural networks is the fact that their often large topology
requires a large number of parameters to be stored. These large memory require-
ments make them less practically applicable on a low-cost embedded radar system.
We are unaware of any published research that mentions and addresses this disad-
vantage.

In this report, we have investigated the memory and computational requirements
of different types of neural networks. We also have described techniques to reduce
the large memory requirements of these neural networks. Using simulations, we
show that the required memory of these neural networks can be reduced up to a
factor of 6.8, without losing a significant amount of estimation performance.

These results were obtained using two types of neural networks, specifically a
fully connected neural network (FCNN) and a residual neural network (ResNet).
The reduction in memory usage was obtained by using smaller number formats
than the standard IEEE-754 32-bit float. This change was done on a per-layer basis
on an already trained network. After changing the number format, the network was
evaluated without retraining to ensure that it had no significant impact on estimation
performance.
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Introduction

1.1 Direction of Arrival estimation

In sensor array signal processing one common problem of interest is finding the Di-
rection of Arrival (DoA) of a given signal using a radio antenna array [1]. Algorithms
that attempt to find these angles are called DoA estimators. DoA estimation has
recently become an active problem of interest due to the interest in mapping the
3-dimensional surroundings of an autonomous robot or vehicle [2]. DoA estimators
can be used to both map the azimuth and elevation of obstacles with respect to the
position of the radar [3].

1.2 Classical estimators

There is a lot of research on DoA estimators and there exist a lot of well performing
estimation algorithms. In [1], an overview is provided of the most common classical
estimators. Most of these algorithms can be divided into two categories, namely
spectral based estimators and parametric based estimators. The former category
takes the received power from the radio antennas and uses some mathematical
function to generate a spectrum with peaks at the angles of interest. Parametric
based estimators start with a model of the incoming signal using the angles of in-
terest as unknown parameters in this model. They then try to find values for these
parameters such that the difference between the observed input and the predicted
input using the model is minimal [1].

1.2.1 Common estimators

One of the simplest spectral based estimators is the conventional beamformer. The
idea behind this algorithm is to mathematically ”steer” the antenna array in different
directions and measuring the power of the input signal in each direction. Then a
spectrum is generated and the algorithm finds peaks located at the angles of interest
[1].
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CHAPTER 1. INTRODUCTION 8

Another common spectral based estimator is the Multiple SIgnal Classification
(MUSIC) algorithm. This estimator uses properties from the eigen-structure of the
covariance matrix to reduce the impacts of noise. The algorithm provides a good
balance between computational complexity and estimation accuracy. Arbitrary ac-
curacy can be obtained if data is collected for a long enough period [1].

A commonly used parametric based approach is the deterministic Maximum
Likelihood Estimator (MLE). This algorithm assumes a deterministic model of the
input data determined by the angles of N targets. To find the angles of interest, the
model performs an N-dimensional search for all possible angles, within some range
and using some resolution. The set of N angles that result in the closest match with
the observed input are the most likely output of the estimator [1].

1.2.2 Shortcomings

One of the major shortcomings of a lot of classical estimators is the fact that they only
have a good estimation performance when multiple snapshots of data are available.
Not all applications (e.g. real-time radar systems) have the luxury of being able to
take multiple snapshots before requiring an output of the estimator. It has been
shown that the conventional beamformer and the MUSIC algorithm both require
multiple snapshots to estimate the directions of arrival with acceptable accuracy
[4]. MLE does not have this shortcoming [4], but it does have another significant
disadvantage. The multi-dimensional search that MLE performs gets very expensive
for an increased number of targets [1].

1.3 Artificial Neural Networks for DoA estimation

Recent experiments have shown that artificial neural networks can be used for DoA
estimation even when only a single snapshot of data is available [5]. Like the clas-
sical estimators, neural networks can be implemented in two ways for the DoA esti-
mation. The two types mainly differ in the way they output the angles. Firstly neural
networks can directly output the angles as values in the last layer of the network [5].
Alternatively, the networks can generate some form of spectrum with peaks at the
angles of interest, similar to spectral based estimators [6]. The major advantage of
this spectrum-like output is that it does not directly impose a limit on the number
of targets that can be estimated by the network. The maximum number of targets
that can be estimated using this type of output is limited by the resolution of the
generated spectrum. As shown in [5], the neural network is competitive to the ML
estimator in terms of computational complexity.
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1.3.1 Shortcomings

One of the major shortcomings of neural networks is their often large topologies.
Plenty of research shows that large deep neural networks have better performance
than smaller networks [7], [8]. A popular convolutional neural network (CNN) for
image recognition, AlexNet, for example, has more than 60 million parameters [9].
When standard 32-bit numbers are used to store these parameters this network
requires around 230MiB of storage. The large memory requirements of good per-
forming neural networks make them difficult to implement on a low-cost system.

As described in Section 1.5, these large memory requirements have been ad-
dressed for image recognition problems, however, we were unable to find any pub-
lished research on these memory requirements for neural networks trained for DoA
estimation.

1.4 Research question

In this report, we aim to address the large memory requirements of neural networks
for DoA estimation. The aim of this research is to reduce the large memory re-
quirements, without significantly affecting the estimation performance, of a neural
network trained for DoA estimation, without retraining the network.

1.5 Related Work

Reducing the implementation cost of a neural network has been studied extensively.
One technique is removing weights and/or neurons to reduce the number of pa-
rameters and operations required to evaluate the network. This technique is called
pruning [10]. In [10], a compression rate of 4.1× for AlexNet is shown, and a com-
pression of 13.6× for a network called VGGNet. Likewise, [11] were able to com-
press AlexNet with a factor of 9× and showed similar pruning compression statistics
for other networks used in computer vision.

In [11], multiple compression techniques were combined to find reductions up to
49× in memory usage for neural networks used for image recognition. They found
that the biggest savings came from the quantization of the parameters. Quantization
is also the technique that is explored in this report for networks performing DoA esti-
mation. In contrast to [11], we did not explore retraining the network after quantizing
the parameters.
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1.6 Structure of this report

In Chapter 2, some insights are given in the costs of a neural network with the
operations performed by a neural network described in Section 2.1 and the storage
requirements for the parameters described in Section 2.2. In Chapter 3, we describe
the neural networks that were examined and we explain how we quantized the float-
ing point numbers. In Section 3.3, the assumptions made during the research are
described. In Chapter 4, we show the results of the research, and in Chapter 5,
we point to some directions that should be explored in future research on this topic.
Chapter 6 contains the conclusion of this report.



Theory

In this chapter, we provide an overview of the implementation costs of a neural
network. In this chapter, both the operations and the storage requirements are de-
scribed for both a 1-dimensional convolutional layer and a fully connected layer.

2.1 Operations in a neural network

2.1.1 convolutional layer

A convolutional layer is a layer in a neural network that uses convolution to produce
an output. In the networks described in this report, only one-dimensional convolution
is used.

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (2.1)

The 1-dimensional discrete convolution operation on input f using kernel g is
shown in Equation 2.1. Due to the finite nature of the input of a layer in a neural
network, the input is often padded in such a way that the output has the same size as
the input, assuming a stride of 1. Assuming this form of padding and a stride of 1 the
number of Multiply-ACcumulate (MAC) operations required for a single convolution
is shown in the following equation.

MACconvolution = NK (2.2)

Where N is the size of input f and K is the size of kernel g.
The number of MAC operations in a convolutional layer can then be described

by the following equation.

MAC = Cin
N

S
KCout (2.3)

Where Cin is the number of channels in the input, N is the size of the input, S is
the stride of the convolution, K is the size of the filter used and Cout is the number
of filters used.

11



CHAPTER 2. THEORY 12

2.1.2 fully connected layer

A fully connected layer is a layer in a neural network that simply connects each input
of the layer to each output of the layer using a scalar weighting factor.

If the input has size N and the output has size M a total of

MAC = NM (2.4)

MAC operations are required.

2.2 Storage requirements of a neural network

2.2.1 convolutional layer

In the convolutional layer, there are two types of parameters required, the kernels
used in the convolution and a set of additive bias values. In a single convolutional
layer with Cin input channels and Cout output channels, there are Cin × Cout con-
volutional kernels. Each kernel of size K contains K parameters. For each output
channel, there is also a single bias value that is added to each value in that channel.
This means that, on top of the storage requirements for the kernels, there are also
Cout bias values.

So the total amount of parameters to be stored for each convolutional layer is
given by Equation 2.5.

Parameters = CinCoutK + Cout (2.5)

2.2.2 fully connected layer

Similar to the convolutional layer a fully connected layer, also has two types of pa-
rameters, the weights and a set of bias values. In a layer with N input neurons and
M output neurons, there are N ×M weights and M biases.

The total number of parameters to be stored for a fully connected layer is given
by Equation 2.6.

Parameters = NM + M (2.6)



Experimental Setup

3.1 Examined neural networks

The neural networks examined in this research are similar to spectral based classi-
cal estimators (see Section 1.2). The networks take the input data from the antenna
arrays and convert it into a spectrum-like output, where the peaks of angles of inter-
est can be located. In this research, a model of 8 antennas is used, the locations of
the antennas are shown in Figure 3.1. The complex input values for the network are
split into their real and imaginary parts, the first 8 neurons in the input layer are the
real values of the power and the last 8 neurons are the imaginary values. This gives
a total input layer of 16 neurons.

All neural networks used in this research were created and trained in python
using the Tensorflow library as part of an ongoing unpublished research. After the
networks were trained and it was confirmed that they had satisfactory performance
the parameters were exported to an HDF5 file. This file was then read using c++ and
the parameters were imported into a network of similar structure as the one created
in python.

3.1.1 Fully Connected Neural Network

The fully connected neural network we researched has 9 fully connected layers and
3 batch normalization steps. The biggest layer in the network is the 7th fully con-
nected layer, as it has 1024 inputs and 2048 outputs. The full structure of the net-
work is shown in Figure 3.2. Using Equation 2.6, we can see that the total number

0d 1d 4d 6d 13d 14d 17d 19d

Figure 3.1: Locations of the antenna array
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Figure 3.2: Fully connected neural network structure
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Figure 3.3: Fully connected neural network with an increased number of normaliza-
tion layers

of parameters required for the fully connected layers in the network is 3,395,381 1.
If 32 bit floating point numbers are used for these parameters 3,395,381×4

1024×1024 ≈ 12.95MiB

of storage is required.

Normalization layers

In Figure 3.2 it can be seen that 3 batch normalization layers were used for the fully
connected neural network. We wanted to explore if a network with more normaliza-
tion layers reduced the dynamic range of the parameters of the network. To test this
we also explored the network as shown in Figure 3.3.

3.1.2 Residual Neural Network

The Residual Neural Network (ResNet) we explored contains 12 1-dimensional con-
volutional layers and 3 fully connected layers. The main benefit of ResNets is that
the forward skips of layers ease and improve trainability of deep neural networks [8].
The structure of the ResNet we examined is shown in Figure 3.4. Using Equation 2.5
it can be shown that the total number of parameters required for the convolutional
layers in the network is 437,760. Using Equation 2.6 we can find that the fully con-

1There are more parameters in the network such as the ones used for batch normalization, these
parameters are however not explored as discussed in Section 3.3
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Figure 3.4: Residual neural network structure2

nected layers in this network require 440,501 parameters. Hence the ResNet has a
total of 878,261 parameters in the convolutional and fully connected layers. Using
32 bit floating point numbers this requires 878,261×4

1024×1024 ≈ 3.35MiB of storage.

3.2 Arbitrary floating point number types

To explore the effects of different floating point number formats in C++ the FloatX
library was used. This header only library adds a new templated floating point num-
ber type where the number of bits for the mantissa and exponent can be specified as
template arguments. To easily perform linear algebra operations using these FloatX
floating point numbers the Eigen library was used.

The FloatX library fully conforms to the IEEE-754 standard, hence all numbers
used have special numbers like infinity, -infinity, NaN, and -NaN. The FloatX numbers
also have denormalized numbers [12].

3.2.1 Infinity in neural networks

When reducing the number of bits in the exponent of the floating point numbers,
overflow can occur. In the IEEE-754 standard, infinity and -infinity are used to indi-
cate that a value is outside the range of the used number format. These infinities
cause problems in a neural network. Whenever an infinity occurs, for example in
a fully connected layer, all values in the next layer will either be infinity or -infinity.
This happens because a scalar multiplied with infinity or -infinity will become either
infinity or -infinity. Once all values in a layer are infinity or -infinity a situation like
infinity + (-infinity) is likely to occur. The result of that expression is NaN and at that
point, all information in the values of the network is lost.

2Because this neural network is part of unpublished research, the full architecture is not shown in
this figure.
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3.3 Assumptions

This section attempts to provide a complete list of assumptions made during the
research. The first assumption that was made is that the signals from the sources
have equal power. This is, of course, not very realistic but we suspect that it provides
an acceptable model for testing the influences of compression on a neural network
for DoA estimation. The second assumption is that the storage size for the biases in
the convolutional and fully connected layers, is insignificant compared to the kernels
and weights. Because of this, we have chosen not to compress these parameters.
Similar to the biases, the parameters for the batch normalization layers have also
not been studied and compressed in this research. It is also assumed that the Root
Mean Square Error (RMSE) for 1000 samples and using 50 Monte-Carlo trials is
a sufficient metric for determining if the network has any performance losses. See
Appendix A for more details on the performance metrics used in this report.

3.4 Performed experiments

In this report, two techniques for reducing the memory requirements are explored.
The first technique focuses on reducing the floating point numbers used for all calcu-
lations in the network. This is done by reducing the mantissa size for all calculations
and evaluating the performance of the network.

The second technique focuses on compressing purely the weights and convolu-
tion kernels to reduce storage requirements.

3.4.1 Estimation performance using reduced mantissa size

To test how sensitive the neural networks are to reduced precision numbers the net-
works are evaluated with different sizes for the mantissa. Using the FloatX library the
mantissas are swept from 1 bit to 23 bit in size. For every mantissa size, the RMSE
is calculated using a set of 1000 randomly generated samples, and this RMSE is
averaged over 50 Monte-Carlo trials (see Appendix A). This sweep is done for 15
dB SNR conditions and 30 dB SNR conditions. Both the 2 target and 3 target cases
are evaluated. This RMSE is then plotted against the mantissa size using MATLAB
to find a suitable lower limit for the mantissa size.

3.4.2 Compression of network parameters

To reduce the storage requirements of the neural networks, the kernels of the convo-
lutional layers and the weights of the fully connected layers are quantized to smaller
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floating point number formats. For each layer in the network, the parameters are
quantized in two sweeps, first by sweeping the exponent from 8 down to 1 bit, fol-
lowed by a sweep of the mantissa from 23 down to 1 bit. For each parameter and
quantization, the error introduced by quantizing is calculated using Equation 3.7.

Equantization,i = x̄i − xi (3.7)

Where Equantization,i is the quantization error for the ith parameter in that layer, x̄i

is the ith quantized parameter and xi is the ith original, 32 bit parameter. After
determining the quantization errors for each parameter and a given floating point
format, a root mean square average for each layer is found using Equation 3.8.

RMSEquantization =

√√√√ 1

N

N∑
i=0

E2
quantization,i (3.8)

Where N is the number of parameters in that layer.
After finding the RMSEquantization for each layer and quantization level, a thresh-

old, for both the mantissa RMSE and the exponent RMSE, is used to find a suitable
quantization level. The quantized parameters are then used in an evaluation of the
network again using 1000 samples and 50 Monte-Carlo trials. If using the quan-
tized parameters no significant loss in estimation performance is observed, then the
threshold is increased to increase the compression levels. This process is repeated
until a significant loss in estimation performance occurs.

3.4.3 Overflow and saturation

As discussed in Subsection 3.2.1, infinity, in a neural network, should be avoided.
To achieve this, whenever it was found that a value would overflow to infinity, this
value would be saturated. This saturation was done by finding the maximum finite
possible value for the floating point number type using Equation 3.9.

max = 22SE−1−1 ×
(
2 − 2−SM

)
(3.9)

Where SE is the number of bits in the exponent and SM is the number of bits in the
mantissa. The saturated value was multiplied with the sign of the original value and
then used instead of infinity or -infinity. In the special case, where there is only one
exponent bit, there are only denormalized numbers. In this case, Equation 3.10 was
used.

maxdenormalized = 2 × (2 − 2−SM − 1) (3.10)



Results

4.1 Estimation performance using reduced mantissa
size
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Figure 4.5: FCNN performance with reduced mantissa size

In Figure 4.5, the performance of the FCNN (shown in Figure 3.2) can be seen,
in which reduced precision numbers are used. In this figure, it can be seen that
when mantissas of 3 or fewer bits are used, the estimation performance is reduced
significantly. In the region from 7 up to 23 bit, the performance is similar. For a 7
bit mantissa, on average, a performance loss of 6.15% is observed. Whereas for an
8 bit mantissa, a performance loss of 5.40% is observed and for a 9 bit mantissa
1.15% loss.

In Figure 4.6, the performance of the ResNet (shown in Figure 3.4) is shown.
Compared to the FCNN, it can be seen that the ResNet is slightly more sensitive
to quantization losses. For the ResNet, when using 7 bit for the mantissa in 30 dB

18



CHAPTER 4. RESULTS 19

1 3 5 7 9 11 13 15 17 19 21 23
Mantissa width (bits)

0

2

4

6

8

10

12

14

16

18

20
R

M
S

E
 (

d
e
g

re
e
s)

15dB SNR - 2 targets
30dB SNR - 2 targets
15dB SNR - 3 targets
30dB SNR - 3 targets

Figure 4.6: ResNet performance with reduced mantissa size

SNR conditions with two targets, the network performs 85.36% worse than when
a standard 23 bit mantissa is used. On average, for 7 bit, the network performs
38.11% worse. For 8 bit this is 15.23% and for 9 bit it performs 7.98% worse.

4.2 Compression of network parameters

4.2.1 Compression of the FCNN

To compress the fully connected layers in the FCNN, the parameters were quan-
tized, and for each layer, the Root Mean Square quantization error was found, as
described in section 3.4.2. For the FCNN (shown in Figure 3.2) a threshold of
0.0001 was found for the quantization of the exponents and a threshold of 0.25
was found for the quantization of the mantissas. This resulted in a performance loss
of 8.50%. Using these thresholds, the floating point formats (as shown in Table 4.1)
are obtained. This resulted in a total compression factor of 5.47. Reducing the total
memory required from 12.95MiB to 2.37MiB.

4.2.2 Compression of the FCNN with more normalization layers

In Table 4.2, the results for the FCNN (shown in Figure 3.3) can be seen. In this
case, thresholds of 0.005 and 0.05 were found. This resulted in a performance
loss of 6.63%. It can be seen that the normalization layers allowed the exponent
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Table 4.1: FCNN compression details per layer
Layer Format Bits per parameter Bits Compression
FC 0 1-3-1 5 10,240 6.40
FC 1 1-4-2 7 114,688 4.57
FC 2 1-4-2 7 114,688 4.57
FC 3 1-4-1 6 196,608 5.33
FC 4 1-4-1 6 786,432 5.33
FC 5 1-4-1 6 3,145,728 5.33
FC 6 1-4-1 6 12,582,912 5.33
FC 7 1-3-1 5 2,621,440 6.40
FC 8 1-3-2 6 278,016 5.33
Total 19,850,752 5.47

Table 4.2: FCNN with more normalization compression details per layer
Layer Format Bits per parameter Bits Compression
FC 0 1-3-3 7 14,336 4.57
FC 1 1-4-4 9 147,456 3.55
FC 2 1-4-3 8 131,072 4.00
FC 3 1-4-3 8 262,144 4.00
FC 4 1-3-3 7 917,504 4.57
FC 5 1-3-2 6 3,145,728 5.33
FC 6 1-2-1 4 8,388,608 8.00
FC 7 1-3-1 5 2,621,440 6.40
FC 8 1-3-3 7 324,352 4.57
Total 15,952,640 6.80

to be lower in the large layers, resulting in an increase in compression, with a final
compression factor of 6.8. The total memory requirement after compression for this
network is 1.90MiB.

4.2.3 Compression of the ResNet

Similar to the FCNN, the ResNet was compressed layer by layer. For the ResNet,
both the parameters in the convolutional layers and the fully connected layers were
quantized. For the ResNet (shown in Figure 3.4) a threshold of 0.2 was found for
the exponent and a threshold of 0.05 was found for the mantissa. Notably, these
thresholds are lower than the ones used for the fully connected neural networks.
This means that the ResNet could be quantized less before showing performance
loss. The final floating point formats are shown in Table 4.3. The ResNet reached
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Table 4.3: ResNet compression details per layer
Layer Format Bits per parameter Bits Compression

Conv1D 0 1-3-5 9 864 3.56
Conv1D 1 1-4-4 9 27,648 3.56
Conv1D 2 1-3-3 7 21,504 4.57
Conv1D 3 1-3-4 8 49,152 4.00
Conv1D 4 1-3-4 8 98,304 4.00
Conv1D 5 1-4-4 9 18,432 3.56
Conv1D 6 1-3-4 8 196,608 4.00
Conv1D 7 1-3-4 8 393,216 4.00
Conv1D 8 1-3-4 8 65,536 4.00
Conv1D 9 1-3-4 8 786,432 4.00
Conv1D 10 1-3-4 8 1,572,864 4.00
Conv1D 11 1-3-4 8 262,144 4.00

FC 0 1-1-2 4 1,048,576 8.00
FC 1 1-3-2 6 786,432 5.33
FC 2 1-3-5 9 417,024 3.56
Total 5,744,736 4.88

a compression of 4.88 times resulting in a final memory requirement of 0.68MiB

compared to 3.35MiB when using 32 bit floating point numbers. This compression
resulted in a 5.45% performance loss.



Directions for future work

5.1 Retraining

All experiments that we have performed were done without retraining the network.
To ensure no significant losses in estimation performance, we had to apply all tech-
niques conservatively. Whenever we encountered a level of compression that signif-
icantly reduced the performance of the network we stopped compressing further. As
explained in Section 1.5, other researchers have shown that this might not be nec-
essary. We suspect that higher compression rates can be achieved, with a similarly
small loss of estimation performance, if the network is fine-tuned after quantizing the
parameters.

5.2 Pruning

To achieve higher levels of compression, it should be explored if every weight or
neuron in the network is truly contributing to the final output. By removing weights
close to 0 and storing these weights in efficient sparse data structures, we suspect
that even more compression can be achieved [10], [11]. If this technique is applied
before the quantization of the weights, higher levels of quantization can likely be
achieved. This happens due to the fact that numbers close to zero have a large
negative exponent, which means that, using the described compression technique,
these numbers might have limited the levels of compression. Another major advan-
tage of pruning is that it does not require any additional instructions, and if neurons
in a network could be pruned, it would additionally reduce the number of instructions
to be performed.

5.3 Weight sharing

Another technique that should be explored in the future is the idea of sharing one
weight value for multiple connections in the network [11]. It is unclear, if the weights,
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in the neural networks for DoA estimation, are similar enough to enable this tech-
nique. However we suspect that, this technique combined with retraining the network
after compression can give a significant increase in compression. One disadvantage
of weight sharing is the fact that it requires a lookup process during the evaluation
of the network. This will require additional instructions and thus slow down the esti-
mator.

5.4 Huffman coding

As a last layer of compression, Huffman coding can be used. Since this is a lossless
technique no loss in estimation performance should occur. After all the previous
layers of compression, we do not suspect that Huffman coding will greatly increase
the total compression level. However similar to the networks explored in [11], it
might reduce the memory costs a little bit. One disadvantage of compression using
Huffman coding is the fact that it requires a Huffman decoder.

5.5 Fixed point

To further reduce the memory and computational requirements of the neural net-
works, it might be possible to implement the networks using fixed point numbers.
If the dynamic range of the parameters in the network is sufficiently small, storing
them using fixed point number formats would be beneficial.



Conclusion

The main goal of this work was to explore different techniques to reduce the mem-
ory costs of a neural network trained for the Direction of Arrival (DoA) estimation
problem. The fully connected neural network, that we examined in this report, re-
quired 3.4 million parameters. When using a 32 bit number format this would require
around 13MiB of storage. The residual neural network had 880,000 parameters, and
when 32 bit numbers are used, this would require 3.4MiB of storage. On a low-cost
embedded system, this amount of memory might not be available, making these
networks not feasible to be implemented without a significant reduction in memory
requirements.

In this report, we have described techniques to reduce this large storage require-
ment. The coefficients of each layer have been quantized to smaller floating point
types. This was done by reducing the size of the mantissa and exponent fields. By
doing so, an overall compression factor of 6.8 was achieved for the FCNN with 4 nor-
malization layers, while a compression factor of 5 was achieved for a FCNN with 3
normalization layers. The ResNet was also compressed by a factor of 5. From this,
it can be concluded that extra normalization layers can increase the compression
ratio using our method. All three networks showed no major loss in performance
after this compression.

During this research, we have found that certain layers were more sensitive to
quantization noise. We observed that the first couple of layers and the last layer of
the network required more precision than the layers in the middle of the network. The
large fully connected layers, near the end of both the FCNN and the ResNet, were
quite robust to quantization noise, therefore, it was possible to reduce the number
format for the parameters in these layers to less than 6 bit.

The final memory requirements, using the smaller floating point number formats,
are 1.75MiB for the FCNN and 0.68MiB for the ResNet. These levels of compres-
sion, combined with the reduction in computation time required from using smaller
floating point numbers, make these networks more practically feasible to be imple-
mented on a low-cost embedded system.

We suspect, however, that these optimizations are just a small part of what might
be possible. As discussed in section 1.5, researchers from other fields have shown
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much more impressive numbers regarding the compression of the parameters of
a convolutional neural network. Besides using reduced size floating point number
formats, they have also applied techniques like weight sharing, Huffman coding, and
pruning.

For future research, we propose that these techniques are implemented on neu-
ral networks for the application of DoA estimation. Another potential limitation of this
research is that our techniques were applied quite carefully and conservatively. We
suspect that slightly retraining the network, after applying these techniques, could
compensate for losses in the performance of the network. By doing so, our tech-
niques might be applied more aggressively, thus further reducing the memory and
computational requirements.



Bibliography

[1] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp.
67–94, 1996.

[2] S. Xu, J. Wang, and A. Yarovoy, “Super resolution doa for fmcw automotive
radar imaging,” in 2018 IEEE Conference on Antenna Measurements Applica-
tions (CAMA), 2018, pp. 1–4.

[3] A. van der Veen, P. Ober, and E. Deprettere, “Azimuth and elevation computa-
tion in high resolution doa estimation,” IEEE Transactions on Signal Processing,
vol. 40, no. 7, pp. 1828–1832, 1992.
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Appendix A

Performance metric

To evaluate the performance of the neural networks used in this report a Root Mean
Square Error (RMSE) of a 1000 input samples is evaluated, this is done 50 times
and using those 50 RMSE values an average RMSE value is obtained.

The 1000 input samples are generated from a random set of 2 or 3 target integer
angles and white Gaussian noise is added with a given Signal-Noise Ratio (SNR)
condition. For each input sample the network is then evaluated and a peak detec-
tor function is applied on the output spectrum to find the estimated angles. These
estimated angles are compared to the known input angles to find the error for the
prediction of the network. Using these errors Equation A.1 is used to find the RMSE.

RMSE =

√√√√ 1

N

N−1∑
n=0

E2
n (A.1)

Where N is the number of angles evaluated and En is the error for the nth angle.
As shown in Equation A.2 this process is repeated 50 times to find the final RMSE
used for comparing the networks performance.

RMSEfinal =
1

50

49∑
n=0

RMSEn (A.2)
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