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ABSTRACT

Deep reinforcement learning has been an improvement for
reinforcement learning, in which it allows the learning of
much more complicated environments. However, the issue
of catastrophic forgetting is present in deep reinforcement
learning. Catastrophic forgetting is a situation where the
agent of deep reinforcement learning forgets past experi-
ences. Experience replay is introduced following this is-
sue, by allocating a buffer to store past experiences and
to sample from them in the process of learning. A notable
downside of experience replay lies in memory usage. Hav-
ing the possibility of consuming a huge memory space, re-
duces the scalability of deep reinforcement learning. This
research explores the alternative of experience replay in
the form of generative replay. Generative adversarial net-
work, a generative model, is implemented in combination
with deep reinforcement learning to assess its performance
in comparison to experience replay.
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1. INTRODUCTION

Reinforcement Learning (RL) is one of the leading fields
in Artificial Intelligence. RL is a trial-and-error process to
discover the actions that give the most reward by exploring
their environment. States and actions, given by the frame-
work of the Markov Decision Process (MDP), are recorded
by the learner as an indication of the current situation of
the learner at a given time [12]. Q-Learning, one exam-
ple of RL, records state-action pairs in a form of a lookup
table to which the learner can refer when needed[12, 1].
However, this proves to be a limitation to RL as most
real-life problems can have an incredibly high state count,
rendering it inefficient, especially in terms of memory, as
the learner must record each of such states. This leads to
a more sophisticated version of RL, Deep Reinforcement
Learning.

Deep Reinforcement Learning (DRL) in its essence is a
combination between RL and Deep Learning [1]. DRL
utilizes neural networks for approximation of the state-
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action pairs. This allows DRL to work in more compli-
cated environments compared to regular RL. An example
of DRLframework is the Twin Delayed DDPG [3]. This
will be the main DRL framework used in this research and
more on this will be explained in the related works section.
Neural networks, however, have a downside in which they
tend to forget past knowledge and experience. This is re-
ferred to as Catastrophic Forgetting [2, 6]. In tackling this
issue, Experience Replay was introduced.

The term Experience Replay (ER), firstly described byLin,
1992 [7], allows the learner of DRL to recall past experi-
ence. With this, the learner can from time to time use
samples of past experiences stored through ER as input for
its learning process. Again, however, similarly to the men-
tioned limitation of RL regarding memory, where ER may
use a very large memory space as the environment becomes
more complicated, thus reducing scalability. Studies were
conducted on this issue in which the use of Generative
Replay is suggested in a supervised learning environment
[10].

At the time of this writing, there have been studies that re-
searched the implementation of Generative Replay in ma-
chine learning. Generative Replay methods on supervised
learning [10] and unsupervised learning [8] have all shown
great potential in replacing ER. Furthermore, there has
been very little research on the application of the Gener-
ative Replay method in DRL. One such study is the use
of variational autoencoders in DRL [5]. Based on the pre-
viously explained issue, we will explore the possibility of
Generative Replay in DRL, in particular the generative
model of Generative Adversarial Networks (GAN).

The paper aims to answer the main question:

Main Research Question : How does GAN performs in

comparison to ER in DRL?

In order to further understand the performance of GAN
in DRL, the following sub-question is to be answered:

Sub-Question 1 Which aspects of GAN improve its per-
formance in DRL?

This research results in showing the performance of im-
plementing GAN in DRL, to find whether it is suitable in
replacing ER. GAN algorithm is explored in order to test
which aspects help improve its performance in combina-
tion with DRL. Through this research, it as well might
give further insights into the exploration of this topic, es-
pecially for future research on this field.

2. BACKGROUND

2.1 Reinforcement Learning
Reinforcement Learning (RL) has been a staple to the Ar-
tificial Intelligence field. RL is learning what to do in
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order to maximize rewards. The agent (the performer of
actions) is not told what actions to take but to explore
the environment (an area of observation that is impacted
by the agent) it is in and determining themselves the best
course of actions [[12]]

Mathematically, RL is represented as follow. At any given
timestep ¢, an agent situated in state s € S (S denotes the
state space of the environment) is able to choose an action
a € A (A denotes the action space of the environment)
resulting in the agent arriving in the new state s’ and re-
ceiving reward r. Through repeated exploration, the agent
can then develop a policy 7 : S = A, in choosing action a
given state s. A transition tuple formed as (s, at, S¢41,7¢)
acts as a representation the previously explained interac-
tion of an agent in each timestep.

The essence of RL is to maximize the rewards gain as a
result of taking an action a in state s []12]} One such
algorithm of RL is Q-Learning. [Figure[I]shows the process
of Q-Learning. A state-action pair is utilized and stored in
a lookup table in a form of Q(s, a) mapped to the potential
reward r to be received. Through such a method, the Q-
Learning agent can determine which action is best to be
taken regarding the state it currently is in. Though it
is very effective, the lookup table can easily grow almost
infinitely given a complex environment.

To address this issue, algorithms such as Deep Q-Network
(DQN) were implemented. DQN utilizes Neural Networks
(NN)[[1] to approximate the state-action pairs, the Q(s, a)
of Q-Learning in this case, thus making a lookup table no
longer necessary. As NN is applied, catastrophic forget-
ting [[2[]6]] the issue in which past experiences tend to be
forgotten in comparison to the newer ones is present as
well.

In addressing the issue of catastrophic forgetting, Experi-
ence Replay was introduced first by Lin et al [[7]] It refers
to the buffer that stores past experiences where it can be
used to sample those past experiences in the effort to "re-
fresh” the agent’s memory.

3. RELATED WORKS

3.1 Twin Delayed Deep Deterministic Policy
Gradient
Twin Delayed Deep Deterministic Policy Gradient (TD3)
is the expansion of the original algorithm Deep Determin-
istic Policy Gradient (DDPG) by Silver et al[[L1]} DDPG
is an actor-critic algorithm, in which the algorithm is built
around two Q-Functions. The ’actor’ determines the ac-
tion be taken given a state, hence shaping the policy of the
algorithm. Meanwhile, the ’critic’ determines the value of
such policy produced by the ’actor’. Introduced by Fuji-
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Figure 2. A representation of the GAN training scheme

moto et al []3ﬂ, TD3 implemented three additional features
to the original DDPG.

First, it applies two ’critic’ functions instead of one and
uses the smaller Q-values of the two functions to avoid
overestimation in determining the best policy. Second,
it applies a ’'delayed’ update to its policy resulting in a
higher quality of policy updates as this makes sure that un-
changed policies are not updated. Last, noise is added to
estimate the policy, making the exploitation of Q-function
errors much harder. TD3 is one of the best state-of-the-
art algorithm{l in the field of DRL and is one of the main
reasons for applying it to this research.

3.2 Generative Replay

Generative Replay refers to the generation of new and rel-
evant experiences based on past experiences, and it is be-
coming apparent in the field of Artificial Intelligence. Nu-
merous researches are present on Generative Replay with
examples on the application in continual learning[[10]} un-
supervised learningu8[| and DRL |]5ﬂ Applying Generative
Replay to DRL proved to pose challenges as experiences
to be generated by Generative Replay need to be perfectly
fitted for DRL to receive positive outcomes. As such, ex-
ploration on the topic of Generative Replay in DRL is close
to none leading to the reason for conducting this research.

3.3 Generative Adversarial Networks

Generative Adversarial Network (GAN) is a generative
model introduced by Goodfellow et al [[4]] and is a gen-
erative model. GAN;, in its essence, is a zero-sum game,
consisting of a generator G and a discriminator D where
the loss of one is the gain of another. The task of the dis-
criminator D is to learn the distribution of data py and to
determine such data to be the real data. Meanwhile, the
generator G is tasked with generating data in hopes to fool
the discriminator D into determining that the generated
data is the real data. Both are trained simultaneously,
where the generator G feeds its generated data to the dis-
criminator D, resulting in G learning to generate data that
greatly resembles the real data while D learning in better
distinguishing real and generated data. The visual rep-
resentation of the GAN framework can be seen in Figure

4. METHODS

This section describes the contribution as well as the meth-
ods of experiment conducted in this research.

'Benchmark tests on different DRL algorithms can
be found here https://spinningup.openai.com/en/
latest/spinningup/bench.html.
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Figure 3. The process of TD3 learning with GAN

4.1 Combination of TD3 and GAN

The combination of both TD3 and GAN algorithm was
done by replacing the replay memory in [Figure[I]into that
of the GAN algorithm. As the main difference, the new
architecture consists of GAN receiving the transition tu-
ple as training data and generating a new batch of ex-
perience using the generator of GAN. This new architec-
ture is shown in Figure[3] The code can be accessed from
https://github.com/DionLudjen-13/GAN-TD3.git

4.2 Explored Aspect of GAN

Alterations to the original codes were done in order to
gauge and explore which aspects of the GAN affect its
performance in DRL. There are a total of three methods

of alteration conducted in this research. The results is
discussed in

4.2.1 Buffer Size for GAN

The main reasoning for applying Generative Replay on
DRL is to avoid applying large-sized buffers such as Ex-
perience Replay. Thus it would be most interesting to
explore whether a certain buffer size performs better than
other sizes. Of course, only a small-sized buffer will be
applied for GAN to be in line with the target of avoiding
Experience Replay in DRL.

4.2.2  Sample Type

In order to learn, the discriminator of GAN requires 'real’
experiences as a baseline in distinguishing the 'real’ expe-
riences and the ’fake’ experiences produced by the genera-
tor of GAN. These 'real’ experiences are retrieved from the
buffer in two different methods: randomly chosen samples
from the buffer, and the whole buffer as it is.

4.2.3 Buffer Type

Understanding that GAN observes and learns the distribu-
tion of the input it was given, the thought of implementing
an additional buffer, the Optimal Buffer, besides the orig-
inal one was considered. As the name implies, it refers to
the experience buffer on the previous best episode. In total
there are two metrics in determining an Optimal Buffer,
an episode’s reward and the final state of an episode that
is closest to the finish state. The goal of this method is
to explore whether specifying GAN in learning a specific
buffer would produce better results.

Figure 4. The Gym "MountainCarContinuous-v0” environ-
ment

S ling T
100 ampling Type

75
50
25
E
g 0
]
o
25
=50
—75 ER
—— No-ER
=100 T T T T
o 20 40 60 80 100

Episode

Figure 5. Experience Replay in comparison with limited
buffer capacity

S. EXPERIMENTAL SETTINGS

5.1 Environment

The environment applied to the experiment is the "Moun-
tain Car Continuous-v0” (Figure of the Gym Classic
Control Environment. The goal of the agent (the car) is
to climb up a hill to reach the finish line. The agent ob-
serves the position its currently in as well as its velocity.
Based on this observation the agent decides the accelera-
tion it should take (continuous value in the range [-1,1],
-1 indicates accelerating to the left and 1 accelerating to
the right). The environment provides a challenge as the
agent could not simply accelerate fully to the finish from
its starting point, but rather gain momentum by acceler-
ating backward followed by accelerating forward with that
momentum. In addition, the reward system of the environ-
ment is more complicated in the sense that if an episode’s
reward is better than the previous, it might not necessarily
mean that the agent performed better. To start with, the
agent will be rewarded 100 points if it managed to reach
the finish point where this is the only possible method of
resulting in a positive reward accumulation of an episode.
In each action taken, the agent will be deducted points
determined by the number of movements the agent took.
Simply said, if the agent decided to move a lot it will be
deducted more points than if it decided to not move at
all. Thus, based on this characteristic of the environment
the reward accumulation per episode of both high negative
and positive reward is valued more, although the latter is
preferred the most. For every episode, the environment
has a total reward range of [-100, 100].
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Figure 6. Buffer Size of GAN on sizes 128, 256, 512, 1024, 2048

5.2 GAN

The framework Pytorch was utilized for the implemen-
tation of GAN. This built-in neural network function of
Pytorch allows to implementation of GAN in a simple
manner. The GAN observe an experience tuple of 7 fea-
tures both for the Generator and the Discriminator model.
These features are determined by the information observed
by the environment "MountainCarContinuous-v0”, consist-
ing in order of two features for states, one for both actions,
two for the next states, one for the reward collection, lastly
followed by a boolean if the episode is completed. The rep-
resentation of the experience tuple are as follow where s
and ns denotes state and next state respectively:

[so0, 51, action, nso, ns1, reward, done|

(1)

Definition [1 The visual representation of the experience
tuple states mass equivalence relationship.

5.3 TD3

The original implementation of the TD3 was provided by
Fujimoto et al[3]|in their GitHub pageﬂ In order to train
the TD3 algorithm, a replay buffer is necessary, in which
the replay buffers applied will be Experience Replay, a reg-
ular buffer with limited capacity (a total of 256 experience
tuple is stored at a time), and lastly the implementation
of GAN. Initially, the performance of Experience Replay
and a regular limited buffer will be compared to gauge the
effectiveness of Experience Replay and is shown in figure
Bl This figure describes that Experience Replay performs
significantly better than with a limited buffer.

6. RESULTS

This section describes the experiment result of the pre-
viously mentioned method of experiments. In order to
make all the experiments feasible, different alterations and
methods used on the GAN algorithm applied the baseline
parameters. Describing those parameters specifically, the

Znttps://github.com/sfujim/TD3

baseline size for the buffer of GAN is 256, the sampling
type is the whole buffer in the training process, and lastly,
for the buffer type, the original buffer is used. In all of
the experiments, the episode limit was 100 episodes per
experiment.

6.1 Buffer Size of GAN

The result on this method of experiment is given in[f} The
buffer size of GAN explored are on size 128, 256, 512, 1024,
and 2048. It would seem that the buffer size of GAN did
not give any significant improvement on the performance
of GAN in DRL. Buffer size of 128 showed a promising
result as it manages to reach a positive reward but then
followed by a high negative reward. As a reminder due
to the reward system of the environment, high negative
reward implies that the agency conducted a lot of move-
ment. The steep fall from positive reward to high negative
reward indicates that the agent tried to climb up the hill
but did not manage to reach the finish line. The result
seemed apparent as well in the buffer size of 256 and 2048
showing that the agent does regress after a series of the
episode trying to climb up the hill, indicated by the high
negative reward, with the difference being no positive re-
ward were achieved. Interestingly enough, the buffer size
of 512 and 1024 showed that the agent made considerable
movement continuously without regression but still cannot
reach the finish line.

6.2 Sampling Type

The experiment on this alteration produced interesting re-
sults. [Figure[7] shows that both sampling types proved to
at least allows the GAN to provide samples that in return
convince the agent that moving is better rather than stay-
ing still, although given that moving might result in worse
rewards. Out of the times, this alteration is conducted,
this particular result on both random sampling and the
whole buffer sampling shows the most promising outcome.
Random sampling over the times almost always shaping
the TD3 policy’s into choosing that moving is better, but
regretfully still cannot reach the finish line. Meanwhile,
with whole buffer sampling, the agent managed to reach
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the finish line once followed by a regression of constantly
moving without being able to finish. Based on this, al-
though random sampling shaped the TD3 policies to that
of always choosing to move, whole buffer sampling gives
the outcome as it received a positive reward.

6.3 Buffer Type

As previously described, the Optimal Buffer applies two
types of parameters in deciding which buffer is more opti-
mal, by evaluating the state of the agent in each episode
and by evaluating the rewards per episode. This evalua-
tion is done inline as the agent explores the environment,
and each Optimal Buffer is replaced by a better one if any
is found to be present. In regard to the condition of the
reward system, a constraint was added. Through obser-
vation, the agent showed considerable movements if the
resulting reward of the episode is either positive reward or
in the range [-100, -10] for negative reward.

After multiple runs on the types of parameters, very sur-
prisingly both types of parameters performs incredibly
well in one of their instances, more so than the original
buffer used in the previous experiments and is shown in
Figure[§] One such reasoning for this result is perhaps due
to the fact that GAN learns the distribution pattern of the
buffer, and if such buffer is the result of the most optimal
episode (the Optimal Buffer), GAN would learn to gener-
ate batches of experience that resembles the buffer. Even
if previously the Optimal Buffer does not achieve positive
rewards it is possible for GAN to generate some experi-
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ences that can cover what the previous Optimal Buffer
could not do.

6.4 Comparison between Experience Replay
and GAN

Figure |§| shows the direct comparison on the performance
of the agent in the environment. It can be seen that Expe-
rience Replay still managed to perform considerably better
than GAN. Experience Replay manages consistently, from
the first instance of receiving a positive reward, to keep
achieving positive reward without any regression whatso-
ever. Though the result of this comparison is heavily on
the side of Experience Replay, at around episodes 80-100
it shows that GAN really does have potential in rivaling
Experience Replay, in particular with the implementation
of Optimal Buffer. Perhaps if the regression happening
after each positive reward, which is likely caused by the
agent missing that last couple of steps from the finish line,
could be reduced by introducing new parameters and al-
teration GAN can prove to be promising in replacing Ex-
perience Replay. In addition, GAN still performs better
than a random agent as shown in [Figure[T0] GAN has the
capabilities of actually achieving positive rewards while a
random agent produced some movements but not to the
extent of reaching the finish line.
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7. CONCLUSION

7.1 General Conclusion

In this research, GAN is implemented in place of Experi-
ence Replay and a total of 3 aspect exploration of GAN
were introduced to the algorithm to gauge the effectiveness
of GAN in DRL. Answering the sub-question, the results
show that improvement can be seen considerably in re-
placing the buffer type used for training the GAN from
the original buffer to the Optimal Buffer. Altering the
buffer size of GAN as well as sampling type does improve
the GAN but not to the level that replacing the buffer type
manages to do. Onward to answering the main research
question, regretfully GAN did not perform well in compar-
ison to Experience Replay. Experience Replay manages to
achieve positive rewards and never regress, in which the
GAN was not able to do the same. Overall, this research
shows that in comparison to ER, the performance of GAN
still falls short. However, GAN did show that Generative
Replay has potential in its implementation in combination
with DRL, especially as a replacement for ER in GAN.

7.2 Weaknesses and Future Works

A weakness of this research lies in the computational capa-
bilities of the computer used in this experiment. Overall,
the episode was capped to 100 episodes as it took around
45 minutes in order to run each one of the experiment
instances. Due to this episode limitation, the quality of
the observation is reduced as a few instances of the ex-
periment began to show promising results close the 100
episode count limit (an example is on the performance of
Optimal Buffer in Figure [§). Another weakness of this
research is the nature of GAN in comparison to the envi-
ronment used in the DRL. In nature, GAN observes and
learns a distribution, which then results in the capabil-
ity of producing data differently for each batch but with
the same distribution. It seems that this does not fit per-
fectly well in the environment "MountainCarContinuous-
v0” used in this research as although GAN managed to
learn the distribution of the buffer of experience, the gen-
erated data of that distribution might not necessarily be
the best course of action in order to achieve the maximum
possible reward.

In regards to the weakness of the environment, this leads
to a possible future work of exploring a different environ-
ment that considers data distribution as an action to be
more important rather than an environment that only con-
siders action on singular data points for each timestep.
Another possible future work on this research is the incor-
poration of GAN learning in TD3. In this research, both
GAN and TD3 learn independently. GAN learns as its
buffer is filled by experiences while TD3 learns as it sam-
ples from the generation result of GAN. As TD3 learns on
creating the best policy for the agent, incorporating the
results of GAN learning in TD3 learning might further
improve the generator of GAN, in a sense that the newly
generated data would be more fitting to the policy of TD3.
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