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ABSTRACT
To determine abnormal conditions of the cardiac mus-
cles, medics usually rely upon electrocardiography, a pro-
cess that maps the electrical activity of the heart onto
an electrocardiogram. Classic methods used to read and
classify ECG’s can be sensitive to the difference between
patients or require deep specific knowledge and can be
time-consuming. As an alternative, Machine learning is
often used nowadays to automatize the classification of
ECG signals, mostly for the detection of cardiovascular
diseases. However, this comes with a large computational
cost, usually requiring large and powerful machines to per-
form the classification task. This can be very limiting,
especially in situations where high mobility or low costs
are desired. Since research into the application of efficient
machine learning methods for use in low powered devices
has greatly increased in the last years, here we show an in-
vestigation into the compression of Convolutional Neural
Networks for use in embedded devices for the classifica-
tion of ECG signals. We describe the data we used, the
employed compression techniques, what type of models we
have analysed and finally show the results of our experi-
ments together with possible ways of improving the per-
formance of these models in the future. By the end of this
paper, we’ll have shown how a CNN can be compressed to
sizes of down to under 1 Megabyte and still obtain very
good accuracy in heartbeat classification.
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1. INTRODUCTION
The field of Artificial Intelligence has seen a huge amount
of progress in the last decade. Using machine learning,
electronic devices are capable of achieving tasks previ-
ously considered close to impossible. A particular class of
ML algorithms, called neural networks, have proved very
successful in tasks like image classification, video process-
ing or speech recognition [17]. Convolution Neural Net-
works(CNN) are one such type of algorithm, being capable
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of achieving an accuracy close to or better than humans
in some image recognition tasks [11]. CNN’s have also
been successfully employed in healthcare, specifically for
the task of biological signal analysis [2]. One such type
of signal is Electrocardiogram data, which is used to de-
tect possible heart conditions in patients. Due to the cost
and size of usual ECG machines, as well as the expertise
needed when analysing an ECG diagram, in this paper
we take a look at the possibility of using CNN’s on low
powered devices, by analysing various successful CNN ar-
chitectures, compressing them and seeing how well they
perform on our device of choice.

CNN’s can produce such results due to their feature ex-
traction and codification methods, which capture high-
level relationships in the spatial and temporal dimensions
of the data [9]. There are 2 distinct layers through which
input data, usually referred to as input volume due to the
multi-dimensional aspect, goes through in a CNN, before
being fed to a standard type of neural network. These are
the Convolution Layer, used to map regions of the input
volume to a single output, and the Pooling Layer, used
to further reduce the size of the convoluted features, by
sub-sampling the output from the previously mentioned
layer. Together, these steps can be repeated any num-
ber of times, allowing CNNs to easily scale for large data
instances [15].

In the last few years, besides artificial intelligence, mobile
computing has also seen a hegemonic period. As a result,
different techniques have been proposed to compress CNNs
so that devices with limited computing capability(relative
to modern desktop computers) would be able to at least
perform the classification tasks. Methods for compression
include Parameter Quantization and Binarization, Param-
eter Pruning and Sharing and Knowledge Distillation [19].

Bringing attention to a different field, we look at the chal-
lenges posed by the detection of cardiovascular diseases(CVD).
Electrocardiography is a process through which the activ-
ity of the cardiac muscles is mapped onto a graph rep-
resenting electric charge against time. Cell membranes
of a heart constantly undergo voltage changes, which are
caused by the movement of charged ions between and
the inner and outer parts of the cell. Using electrodes,
this change of voltage can be recorded, and, when plotted
against time, a type of graph is created known as an elec-
trocardiogram(ECG). These ECGs can either be classified
by specialised software on ECG machines or be manually
read by a specialist. Both of these solutions come with
downsides, however, as there can be significant disparities
between the signals acquired from different patients, and
manual reading requires a piece of deep knowledge and is
time consuming. [8]. In the last years, different machine
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learning techniques have been proposed to facilitate the
classification of ECG signals. CNN’s are a natural can-
didate to help with such a problem, due to their known
high accuracy in signal and image processing. In their pa-
per surveying the application of CNNs for different types
of body anomalies detection, Sarvamangala and Kulkarni
have reached an accuracy of 92 per cent when classifying
ECG signals [16]. However, they point out one problem
with this method, which was the long time to train the
model. Indeed, model size and computational complexity
can hamper the use of CNNs, especially in critical situa-
tions when real-time data analysis and high mobility are
required [13]. Cardiovascular disease is the number one
cause of deaths worldwide, with an estimated amount of
18.6 million people dying in 2019 due to CVDs [14]. The
price of ECG machines is also relatively high, going up to
hundreds of euros. As a result, these can be quite inac-
cessible to some medical facilities, especially in developing
countries. This poses a huge problem, as early detection
and intervention can be vital in preventing CVD deaths.

In the light of this information, we can see the potential
a low cost, highly mobile device would have in helping
medics detect cardiovascular disease, especially in edge
or in-field situations. Here we show an analysis of how
successful Convolution Neural Networks algorithms, when
compressed to run the inference task on low-powered de-
vices, would be in detecting cardiac anomalies.

This leads to the following research question, which covers
the two most important aspects we’re going to research:
accuracy and performance.

1.1 Research question
Main Question: How can a CNN be modelled and com-
pressed so as to produce highly accurate ECG signal clas-
sifications on a low powered device?

This in turn will be answered by analysing the following
sub-questions:

Sub-RQ1: How accurate is a compressed CNN running on
an embedded device in classifying ECG signals?

Sub-RQ2: What are the computational resources required
by a compressed CNN algorithm?

To carry out these questions, we analyse recent literature
and evolution in the study of neural networks, focusing
on the use of CNNs to classify ECG signals and the com-
pression of CNNs for deployment on low powered devices.
Then, using a modern desktop PC, we build and train var-
ious CNN algorithms, compress them, and finally deploy
them onto a Raspberry Pi Zero to analyse their perfor-
mance. As a source of training and classification data, we
use the open-access MIT-BIH Arrhythmia Database [12],
which contains ECG readings from various patients, cour-
tesy of BIH Arrhythmia Laboratory.

The experiments will be carried out by building and train-
ing different CNN architectures on the desktop PC. Then
we’ll compress these through various methods, save the
compressed models, and transfer them over to the Rasp-
berry Pi. We will then analyse their performance using
various metrics (accuracy, precision, recall) and size reduc-
tion. Finally, we draw conclusions from these experiments
and propose possible improvements and future work on
this topic.

2. RELATED WORK
Because of the relative novelty of both efficient neural net-
works and decently powerful embedded devices, research

into this topic is still in its infancy and subject to rapid
changes.

Y. Chen et al. give a description of the state of the art
on the problem of deep learning algorithm compression
for use on mobile and embedded devices. They outline
the challenges that come with this topic and describe 7
techniques that can be used for compression. They group
these methods into pruning, quantization, model distil-
lation, network design strategies, low-rank factorization,
other and hybrid. This will be used as a guiding point for
our research, as we will both employ some of these tech-
niques and further follow the topic to discover different or
newer techniques than what was presented here. Since this
is a survey on the topic of compression, it doesn’t give us
any information on how these methods actually perform
on the ECD classification task [3].

In one of the earliest takes on the subject, researchers have
shown in 2018 how CNNs can be used for real time my-
ocardial infarction and the efficiency of this method when
deployed on a low power Cortex-A9 processor [10]. They
have shown that such devices are suitable for real time
application, with their embedded implementation capable
of processing each heartbeat in 26.75ms, or 1.07s for a 40
heartbeat segment. They use a custom multi-lead-CNN,
which captures distinct features from each lead of the ECG
machine. This work shows the possibility and potential of
using CNNs for this task, but mainly focuses on the pre-
processing and feature extraction part of the process and
doesn’t try to compare how different type of algorithms.
The platform they used, Terasic DE1-SoC, while it can be
considered low power, is still quite expensive. We propose
carrying out our research on a much cheaper device.

In 2020, A. Faraone and R.D-Gonzalo were able to design a
Convolution Recurrent NN that could run on an nRF52832
general purpose SoC and classify between normal heart
rhythm, atrial fibrillation, noise and other rhythms [4].
They were able to achieve an accuracy of 85.7 per cent and
an execution time of 94.8ms per window of data(160 ECG
samples). They’re program also occupied only 210KB of
storage memory, while storing no more than 7KB of data
in RAM at the same time. This improves on the previous
paper by using a device with considerably less processing
power, but still focuses on building its own custom algo-
rithm and doesn’t compare this against different solutions.

3. CNN’S, COMPRESSION AND DATA
3.1 Convolutional Neral Networks
Convolutional Neural Networks are a class of Deep Neural
Networks specialized for the classification of image data,
which has found successful use in various type of applica-
tions. These include image recognition, recommendation
systems, medical imaging analysis, natural language pro-
cessing and so forth.

In the medical field, CNN’s have already been used to facil-
itate classification tasks usually performed by specialists
or specialised devices. Such applications are bio signal
analysis, seizure and cardiac arrest prediction, drug dis-
covery or the analysis of electronic health records. ECG
signals are part of the lattermost domain. [18]

CNN’s are based on three main building blocks: convolu-
tion layers, pooling layers and a fully connected layer.

A convolution layer is used to extract features from an
input set of data using a kernel. A kernel is a multi-
dimensional data structure, usually a 2D or 3D matrix,
depending on the input, which is multiplied in sections
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Figure 1: Example of a convolution: a 3x3 kernel is ap-
plied over a 5x5 input, producing an output structure with
dimensions 3x3 and a value of 4 at the first index

against the input data. A kernel also has a stride value,
which represents the number of positions over the input
that separates consecutive operations. The kernel extracts
relations between data points, creating feature crosses along
the way. Multiple kernels (kernel with different values) can
be applied during one convolution to obtain a higher di-
mensional output, in which each set of points along the
new dimension represents a different type of high level
feature. As an example, one kernel might record spatial
correlations along the input image, while another can cap-
ture the edges of objects in the input data.

Pooling layers follow after convolutions and are used af-
ter to reduce in plane dimensionality of features. This is
done both to reduce the number of parameters and de-
crease model size, and to maintain feature correlation in
case of small changes in values. A pooling operation has
a dimension, just like a kernel, which is the space over the
input where the values are pooled. In that space, pool-
ing is done in usually 2 ways: max pooling, where the
largest value in the pooling space is used in the output,
or average pooling, where the average of all the values
is taken. Again, just like the kernel, pooling operations
have a stride, which states how many positions should the
pooling move between operations.

The output of the final convolution or pooling layer is
the flattened and fed into a fully-connected layer. This is
a typical neural network, where each input value is con-
nected to output values with a set of weights. An FCL
can have multiple layers containing nodes, in which each
node represents an output value based on the input and
the weights associated with it. The last layer of the FCL,
also called the output layer, has as many nodes as there
are classes used for classification, and it determines under
which category the data falls into.

Anywhere in-between the previously mentioned layers an
activation layer can be used. This makes the model per-
form better at predicting non-linear data. One such ex-
ample is ReLu (Rectified Linear Unit) [1], which for each
value X taken as input, it outputs max(0, X)

Furthermore, we will look at different CNN architectures
and how they can be used to classify the recordings from
the MIT-BIH Arrythmia Database.

3.2 CNN compression
Compression in the context of Convolutional Neural Nets

Figure 2: Typical CNN architecture

Figure 3: Example of quantization process. Here,
Ristretto quantization is shown [13]

refers to the reduction in both size and complexity of the
model, so the storage space and inference time is greatly
reduced. In their survey paper on this topic, Pilipovic et.
al group compression techniques in 3 main categories [13]:

• Precision Reduction

• Network pruning

• Design of compact neural networks

Precision reduction is done by changing the format in
which values for weights and parameters is stored. Usu-
ally, these are stored in 32 bit floating point format. By
applying quantization, these can be further reduced to a
smaller value, like 16 or 8 bit, in either fixed or dynamic
point format. For the purposes of this paper, we are using
TensorFlow’s 8 bit training aware quantization. Train-
ing aware means that after compressing the network, we
re-fit the compressed model again on a subset of data.
Another method of precision reduction employed here is
weight clustering, where weights with values close to one
another are given a similar value. These techniques help in
both reducing model size and speeding up inference time

Network pruning is done by gradually setting non-salient
weights to zero. In an iterative process, weight are set
to 0 and the impact of this action on the model’s loss is
evaluated. In this way, weights that contribute little to the
model’s overall performance are nullified in a step-by-step
process.

Compact neural nets are networks designed specifically
for use in a low-performance environment, such as mo-
bile phones or microcontrollers. They usually have small
model sizes and result in faster inference times than a ”tra-
ditional” model. In this paper we train and deploy some
of this, specifically MobileNet and EfficientNetB0, anal-
yse their performance compared to larger models that we
compress and look and possible improvements.

3.3 Dataset
Our dataset of choice for this project is the MIT-BIH Ar-
rhythmia Database. This is a repository containing 48
half-hour ECG recordings, each belonging to a different
patient, obtained by the Beth Israel Hospital Arrhythmia
Laboratory between 1975 and 1979. These were chosen
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Figure 4: QRS comlex pattern

from a set of 4000 holster recordings, and can be divided in
two groups, based on how they were chosen. 23 recordings
were selected randomly from this set and are supposed to
represent common waveforms and artefacts that an ECG
device might encounter with typical use. The 40 minutes
excerpts from each recording were also selected randomly.
The other 25 records were picked to include signals with
features (like rhythm, QRS morphology and signal qual-
ity) that are expected to pose difficulties for arrhythmia
detectors. These are described as “complex ventricular,
junctional, and supraventricular arrhythmias and conduc-
tion abnormalities”by the MIT-BIH Arrhythmia Database
directory.

The two signals in each recording come two lead configu-
rations, modified by placing the electrodes on the patients’
chest. The upper signal is a modified Limb II Lead, while
the lower one is a modified V1. However, this is not the
case for all recordings, with some of them using different
lead configurations (like V2 or V5). One recording also
has the lower and upper signals inverted. The argument
for this is that arrhythmia detectors should be able to deal
with such situations.

The recordings were originally stored on tape, being digi-
tized afterwards with an Analog-to-digital converter. The
analogue signal was filtered for saturation and anti-aliasing
and were sampled at a rate of 360Hz. The digital signal
originally used 11-bit values to represent a signal sample,
so sample values ranged from 0 to 2047, with 1024 repre-
senting 0 volts. These were further reduced to 8-bit first
difference format values, due to storage limitations.

The records were then labelled, with a label applied for
each heartbeat. This was first done with a QRS detec-
tor, which marked each beat as normal. Then, for each
record, two paper sheets were printed containing the en-
tire 30-minute excerpt, which added labels where these
were missing and correctly labelled abnormal beats. They
also labelled the heart rhythm and signal quality from the
recordings. In total, the database contains 109,000 la-
belled beats, some of which were revised throughout the
years [12].

Heart signals are modelled using the QRS complex, which
represents the electrical patterns exhibited by a heart dur-
ing a heartbeat. It is composed of 4 sub-waves present
in the entire model, which together form 5 different seg-
ments. For a healthy heart, the wave pattern represents
the following:

Label Description

N Normal beat
L Left bundle branch block
R Right bundle branch block beat
B Bundle branch block beat
A Atrial Premature Beat
J Nodal premature beat
S Supraventricular premature or ectopic beat
V Premature Ventricular Contraction
r R-on-T premature ventricular contraction
F Fusion of ventricular and normal beat
e Atrial escape beat
j Nodal escape beat
n Supraventricular escape beat
E Ventricular escape beat
/ Paced beat
f Fusion of paced and normal beat
Q Unclassifiable beat
? Beat not classified during learning

Table 1: Beats in the MIT-BIH database

P-Wave: atrial depolarization, as electric charge “passes”
through the atria (the part of the heart though which
blood flows inside). Characterized by a small uniform
transition.

Q-Wave: downward charge following the P wave. Rep-
resents depolarization in the interventricular septum, the
“wall” separating the ventricles.

R-Wave: immediately following the Q-wave, represents
the charge passing though the ventricular walls. Due to
the thickness of these walls, more charge is required, re-
sulting in the spike nature of this wave.

S-wave: depolarization in the Purkinje fibres, which are
located inside the ventricular walls. This immediately fol-
lows the R-Wave, and the dip comes from the charge being
moved out of the ventricular walls.

T-Wave: before the cycle repeats, both ventricles are re-
polarized. This results in this wave appearing at the end
of a heartbeat.

There are multiple types of abnormal heartbeats labelled
in the MIT-BIH database. The second example in fig. 5 is
a premature ventricular contraction, which happens when
a heartbeat is initiated by the Purkinje fibres in the ven-
tricles, rather than the sinoatrial node in the right atrium.
As it can be seen, it is characterized by a sudden discharge
of the fibres, followed by a surge in the ventricular walls.

Another example of an abnormal beat (fig. 5, (c)), a fu-
sion beat occurs when a charge from multiple sources is
collected in the same region at the same time. This can
happen in the atrial chambers (atrial fusion beats) or ven-
tricular chambers (ventricular fusion beat).

The following is a table of valid beat types present in the
database (valid means the recording wasn’t noisy or a mea-
suring artefact):

4. TOOLS AND METHODOLOGY
In this section, we will go over the tools and procedures
used in carrying out this research. We first describe the
hardware used here, then move on to the preprocessing
and extraction of features from the MIT-BIH dataset. Af-
terwards, we describe the CNN architectures we chose for
compression and give an account of the hyperparameters
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(a) Example of normal heartbeat from
the MIT-BIH database

(b) Premature ventricular contraction
(subject 200, peak time=1.905s)

(c) F-beat (Subject 217, peak time =
1.27.697m)

Figure 5: Heartbeat examples from the MIT-BIH database

used for these. Finally, we also describe the metrics we
use for measurements and give a detailed description of
the procedures through which these measurements were
carried out.

4.1 Tools
The entire programming process (building the model, train-
ing, compression, testing) was done using the TensorFlow
library in Python3. Two devices were used along the way:
a desktop computer for building, training and compressing
the models and a Raspberry Pi Zero for deployment and
testing of compressed models. The Raspberry Pi Zero was
chosen since it is a low cost, a low power hardware plat-
form that suitably represents the type of devices we target
in this paper.

The specifications of the desktop PC are as follows:

• Operating System: Windows 10 Professional

• CPU: Intel Core i5-7600K CPU @ 3.80GHz 3.8GHz

• Memory: 16GB RAM DDR4

• GPU: NVIDIA GeForce GTX 1070 Ti

• Video Memory: 16GB Ram GDDR5

• Nvidia Cuda version: 11.3

• Nvidia driver version: 27.21.14.6589

The Raspberry Pi Zero has the following specification:

• Raspberry Pi OS Lite

• CPU: 1-GHZ, Broadcom BCM2835

• Memory: 512MB RAM

• SD Card Size: 16GB

To transfer data between the PC and the Pi, the Pi was
connected to the same wireless network as the PC and
an SSH connection was made from the desktop. Most of
the coding was done on PC, only the necessary files being
moved over to the Pi for testing (heartbeat data, models,
python scripts).

Figure 6: A single heartbeat captured in a 3.6s time win-
dow

4.2 Methodology
Preprocessing

Data is read from the MIT-BIH database files one subject
at a time. Before any other operations can be done, the
values normalized by removing the mean and are scaled
in units of standard variance. That is, for each data point
X, the normalized value is f(X) = (X-u) / d, where u
is the mean and d is the standard variance of all data
points values of given a subject. Subsequently, we build
the actual input data for our models, by simulating an
image from the given sample values around each heartbeat
present in the dataset. These steps are detailed in the
following section.

Data structuring for classfication

Data in the MIT-BIH is represented by a continuous set of
values. As such, we have used the signal values present in
the database to build an “image” of each heartbeat, which
can be fed to many pre-existing models, that have already
proved highly performant. In the MIT-BIH database, we
are provided with the location for each R peak of a heart-
beat, where a label was manually applied during the databases’
digitalization. Since the electrical signal was sampled at a
rate of 360Hz, implying 360 values for a second of record-
ing, we can create a time window around each R peak to
capture an individual heartbeat. We have chosen a time
window of 1.8s before and after each peak, from which we
capture every value and associate this value set with the
label at the peak. This results in a 3.6s time window, in
which 360 values will be captured. This was chosen so the
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Class
label

MIT-
BIH
Label

Description

0 N Normal beat
1 V Premature Ventricular Contraction
2 F Fusion of ventricular and normal beat
3 / Paced beat
4 f Fusion of paced and normal beat
5 *rest* Other beat types

Table 2: Beat labels used during classification

“image” build-out of the signal can be translated to a ma-
trix of shape 36x36. Since most CNN’s also expect a third
dimension, usually associated with colour, we also reuse
each value in the image matrix 3 times, giving us a final
shape of 36x36x3, like a small image. Here each “pixel” is
a sample value given in the MIT-BIH database, and each
36x36x3 matrix represents a heartbeat associated with a
label. Given the variability in heart rate, and the fact that
usually and hopefully more than one heartbeat takes place
every 3.6s, it is possible for each image to capture more
than 1 heartbeat. To deal with this, we have decided to
capture only the values around each label position, relative
previous and future labels. Since a label in the dataset is
exactly at the peak of a heartbeat, we take half distance
(in value indexes) between consecutive beats as the area
which we consider to be part of a single heartbeat. In this
way, we can accurately capture the P-T-R interval for all
the heartbeats. The values outside the P-T-R range are
all normalized to 0.

Data segmentation

75 percent of the labelled data was used for training, picked
at random from the complete set, was used for training,
with the rest used for testing. Then, from the training
data, 25 percent of it is used for validation during training.
This is necessary to avoid overfitting, a common problem
in machine learning where the model is biased towards the
data it was trained with, resulting in erroneous predictions
for values outside the training set. It is a best practice
to keep training and validation data separate from test-
ing data, as the first should be used during the training
phase, and the latter while evaluating the performance of
a completely trained model.

Classification categories

Although there are many types of heartbeats recorded in
the MIT-BIH dataset, they do not appear with the same
frequency. Many of them occur only a few times. For
example, there are only 106 ventricular escape beats (la-
belled as E, see table). As such, we have picked for classi-
fication only those types of beats that occur at least 1000
times. The heartbeats that do not fall into this category
were classified as ”other”. As a consequence, the models
we train are able to classify the following categories:

Models

Here we describe the models we have trained and com-
pressed for this project. They were chosen based on their
performance in image classification and versatility for use
in other tasks, and by looking at their ImageNET accu-
racy.

ResNET [5]: here we use ResNET50 and ResNET 101. We
chose these particular versions due to their smaller ”out of
the box” model size compared to the 152 and Inception
variants, as well as higher accuracies than their ”v2” coun-

terparts. These obtained scores of 95.3 and 95 percent
Top 5 accuracy on the ImageNET dataset.

The distinguishing feature of ResNET is the use of resid-
ual learning, where successive layers are made to fit the
residual functions of previous layers plus the desired func-
tion. This is done to avoid the vanishing gradient problem,
where due to continuous multiplications in large networks,
the gradient value gets infinitely smaller.

DenseNet [7]: another type of deep network with a large
amount of layers, it proposes a different solution to solve
the vanishing gradient: the output of each layer is given as
input to all subsequent layers. As such, each layer receives
information from all previous layers. Here, we specifically
use DenseNet 201, which has achieved 93.66 percent top 5
accuracy on the ImageNet dataset.

MobileNet [6]: build specifically for use on mobile and
embedded devices, MobileNet uses depth wise separable
convolutions to reduce feature processing, and two hyper-
parameters, for dimensionality reduction of input/output
of each layer and image representation, respectively. We
chose this to compare against the compressed model and
see if an architecture like this, which was purposefully built
for low power devices, can be further compressed

Hyperparameters and metrics

For every model, we have used the following parameters,
as they have proven the most efficient, both in speed and
classification performance:

• Batch size of 31. As there would be 82987 heartbeats
in the training dataset, our batch size choice was
quite limited (1, 31, 2677, 82987). We have found
31 to perform well and provide training in a decent
amount of time.

• Final activation function: softmax, usually used for
categorical classification

• Training epochs: 10 to 20, depending on the model

• Loss function: Categorical Crossentropy

• Optimizer: Adam. Used to provide for flexibility to
the descent gradient of the model, by basing it on
statistical features of previous gradients.

Additionally, the following metrics have been used to as-
sess the performance of each model, along with their size
reduction after compression:

• Categorical Accuracy. The number of correct pre-
dictions per overall predictions.

• Precision. The number of correct positive predic-
tions per all positive predictions. Shows how likely
the model is to correctly classify a positive instance.

• Recall. The number of correct positive predictions
per all actual positive entries. This shows how likely
the model is to classify an instance as positive.

• Compression rate (compressed model size / original
model size)

5. RESULTS
Uncompressed results

Before diving into the results of the compressed models,
we show how these perform in their original state. For
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Model Accuracy Precision Recall Size
ResNet50 0.958 0.961 0.957 274
ResNet101 0.956 0.959 0.951 497
DenseNet 0.944 0.951 0.939 226
MobileNet 0.934 0.936 0.931 30

EfficientNetB0 0.959 0.960 0.957 52

Table 3: Uncompressed models results

Model Accuracy Precision Recall Size
ResNet50 0.905 0.908 0.903 33/274
ResNet101 0.904 0.907 0.901 44/497
DenseNet 0.906 0.910 0.903 18/226
MobileNet 0.895 0.897 0.894 2.59/30

EfficientNetB0 0.918 0.919 0.916 4.67/52

Table 4: Quantized models results

each model, the results are measured using the metrics
described above, together with their size in megabytes.

Here we see all the models performing very well doing
heartbeat classification. We also see that increased ar-
chitecture complexity doesn’t also mean increased per-
formance. ResNET 101 performs worse than its smaller
ResNEt 50 counterpart, while EfficientNet gives us the
best results. This can be caused by feature dilution in
larger models given our type of input. As previously men-
tioned, the actual input is time-dependent and values out-
side the time-range of a heartbeat are set to 0. As a con-
sequence, larger networks infer relational features between
”useful” values and outside-beat values that can result in
decreased prediction accuracy compared to smaller archi-
tectures, such as EfficientNetB0.

Compressed results

In the following sections, we take a look at the results
of the compressed models, based on the used compression
methods, and provide a discussion in which we express our
findings.

For each model, they were compressed using quantization
(training aware, i.e. model is fit after being quantized)
and pruning, plus a combination of pruning and clustering.
For each of these different compression methods, we have
obtained the following results (where the values in the size
column represent the space occupied on disk in Megabytes
after and before compression):

Quantization

Pruning

Here, the first value in the size column represents the
model size after ZIP archiving of the pruned model. Archiv-
ing is necessary to take full advantage of pruning, as the
weights set to 0 allow archiving algorithms to efficiently
compress the model file.

Quantization + pruning (Q+P)

Model Accuracy Precision Recall Size
ResNet50 0.908 0.911 0.905 25/274
ResNet101 0.903 0.907 0.902 37/497
DenseNet 0.910 0.912 0.906 15/226
MobileNet 0.900 0.899 0.897 1.88/30

EfficientNetB0 0.914 0.915 0.916 3.79/52

Table 5: Pruned models results

Model Accuracy Precision Recall Size
ResNet50 0.895 0.897 0.890 6.5/274
ResNet101 0.890 0.891 0.889 9.2/497
DenseNet 0.901 0.903 0.899 4.2/226
MobileNet 0.895 0.892 0.891 0.98/30

EfficientNetB0 0.903 0.905 0.905 1.21/52

Table 6: Q+P models results

Similar to the previous section, the size after compression
here refers to the size of the model archive.

Discussion

From these results, we can draw the following conclu-
sions. First, EfficientNet seems to perform the best for
the classification task of arrhythmia. This was constant
along with compressed models of each type, as well as for
uncompressed measurements. As elaborated before, this
is probably due to reduced feature complexity compared
to the other models, as our input image only has a frac-
tion of values providing actual useful information, so fewer
relationships are made between empty pixels and useful
data. This could also be seen in MobileNet, which per-
forms better than the deeper models like DenseNet and
ResNet. Second, by far the model with the most poten-
tial for compression is MobileNetV2. When processed us-
ing both quantization and pruning, it provides a model
archive of under 1MB, while still performing really well in
the classification task. The accuracy reduction (together
with other metrics) is relatively small. When taken into
consideration together with the size reduction, we can say
it is worth having the models perform just slightly worse,
while we benefit from great savings in storage space. On a
similar note, we see how separate, quantization and prun-
ing alone perform just a bit better than Q+P, while again,
in our opinion, the reduction in size offsets this cost.

Overall, we have seen the Convolutional Neural Networks
can successfully be compressed to small sizes and deployed
on a low-powered, cheap device to perform accurate clas-
sification of the heartbeat signal. Different compression
methods can successfully be used together to retain high
accuracies while providing greatly reduced model sizes.
Furthermore, we have seen when these methods are ap-
plied to compact architectures, like MobileNet and Effi-
cientNet (compact at least in comparison with DenseNet
and ResNet), we get can get even better results compared
to using compressed complex architectures.

6. CONCLUSION AND FUTURE WORK
In this paper, we have shown how Convolutional Neural
Networks can be compressed and successfully deployed on
embedded devices to classify different types of heartbeats.

We analysed the MIT-BIH dataset to determine how data
is represented and labelled and chose to classify categories
based on the frequency of different types of heartbeats.
After pre-processing the data and converting it into a rep-
resentation that CNN’s can take as input, we moved on
towards model building and compression. For this, we
trained 5 different established architectures, compressed
them using quantization, pruning and weight clustering.

To answer our main research question, of how can CNN’s
be compressed to produce accurate classification results on
embedded devices, we have answered two sub-questions as
follows.

For Sub-RQ1 we have determined that compressed mod-
els, close to or even under 1MB can perform ECG signal
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classification on an embedded device, here represented by
a Raspberry Pi Zero, with around 90 per cent accuracy.

Furthermore, we have shown that this can be done on
a very cheap, low-powered device, which at the time of
writing costs about 10 euros (in the Netherlands) and is
powered by a Broadcom BCM2835 system-on-chip, with
a processing speed of 1GHz and a pool of only 512MB of
RAM.

Based on the results of the project, we can say that CNN’s
can successfully be used on cheap, low powered devices
for electrocardiogram classification, to classify abnormal
heartbeats with around 90 per cent accuracy. This an-
swers our main research question and proves that machine
learning on embedded devices can be highly useful in the
healthcare domain. Deployment of such systems could
greatly reduce costs and the human expertise required to
diagnose patients suffering from cardiac issues.

Future improvements over the methods provided here could
be done in 2 major areas. First is network architecture
design, where a network could be designed specifically for
this purpose. Second, more complex compression tech-
niques could be applied. Quantization and pruning could
be done at the layer level. Then it could be decided which
layers to compress individually to optimize accuracy and
model size. Finally, methods from transfer learning, like
model distillation, or novel methods like low-rank factor-
ization could be researched in association with those al-
ready presented here, for further compression possibilities.
Other possible aspects that could be researched include
the computation time and viability for real-time detec-
tion of different compress models. Based on model size
and complexity, inference time could be analysed and a
comparison between different models could show which
are more suited for time-sensitive critical situations when
medics would have no time to wait for their device to pro-
cess the results.
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