
Speeding Up Convergence For Sparse Training Using
Feature Extraction Behaviour

Andrei Radu
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.radu@student.utwente.nl

ABSTRACT
Deep learning is a powerful subset of machine learning al-
gorithms, using multiple layers to learn complex patterns
from large amounts of data. As deep neural networks re-
quire huge amounts of computations, sparsity addresses
this problem by having removed a proportion of the con-
nections in the network. Sparse Evolutionary Training
(SET) is an approach to sparsity that involves remov-
ing connections based on the magnitude and adding new
random ones, allowing for sparse-to-sparse training. A
method to add connections to the network in a less random
manner is introduced. With the help of skip layers con-
nections and the linear features learned by them, during
training, LiSET will add connections based on important
linear features. While this method offers trade-offs, we
argue that this approach leads to a faster convergence on
certain datasets, especially when training on high levels of
sparsity. An evaluation metric is proposed to estimate the
speed up in convergence. On training the algorithm using
stochastic gradient descent on two datasets, MNIST and
ISOLET, it outperformed SET on the proposed evaluation
metric and reached greater accuracy. This work presents
a contribution to the research in sparse neural networks
and speeding up the convergence of such models.

Keywords
artificial neural networks, sparse neural networks, sparse
evolutionary training, fast convergence, linear features

1. INTRODUCTION
Deep learning is part of the family of Machine Learning
methods that is leading the innovation in what we call
today AI. The increasing quantity of data and the use
of deep learning becoming more advanced and accessible
make deep learning become a ubiquitous part of applica-
tions, representing a fundamental shift in how we develop
software [10], and finding uses in tasks such as visual or
speech recognition, natural language processing and oth-
ers.

Artificial neural networks are inspired by the human brain,
but the way these learn is not closely as efficient. As
the field of deep learning progresses, better algorithms are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

designed, but the number of parameters used greatly in-
creases [23]. Larger models will require greater storage
capacity and huge amounts of computations. Thus it be-
comes hard for people using devices with limited capacity,
including researchers, to keep up with the innovation in
the field.

This is where sparsity comes in. In a trained artificial neu-
ral network, a high number of parameters are redundant
to the performance [2]. Sparsity refers to having a percent-
age of the numbers in the matrices set to zero, in order to
reduce the number of calculations involved in running a
model. This makes the training of a network faster time-
wise (thus more energy efficient), minimizes the storage
and helps improve generalization [13, 7].

Another method usually used to reduce computational
complexity is feature selection. This method consists of
picking a subset of the most relevant features which can
efficiently represent the input data.

Different methods have been addressed to achieve results
on both sparsity and feature selection [8, 1]. The re-
search in this paper builds mainly upon Sparse Evolution-
ary Training (SET) of Mocanu et al. [17]. This method
consists of continuously removing connections of small mag-
nitude and adding new random ones. What is proposed
in this work is a novel approach to adding connections in
the network when using SET, inspired by feature selection
behavior. A link to a repository implementing the method
is provided in footnote1.

The rest of the paper is organized as follows. Section 2
introduces concepts from the field and gives an overview
of the related work and research the method is based on.
Section 3 introduces the proposed method, with details
on theory and implementation. In section 4, results on ex-
periments on two datasets are shown, compared to vanilla
SET, completed by a discussion in section 5 on the bene-
fits and trade-offs of the proposed method. Finally, some
conclusions of the research will be discussed in section 6
and possible future research not covered by this work.

1https://github.com/AndreiMVP/liset

1

2. BACKGROUND AND RELATED
WORK

2.1 Deep learning
Deep learning is an area of machine learning methods
based on artificial neural networks. An artificial Neural
Network (ANN) is a brain-inspired mathematical model
in which the algorithm learns its parameters based on
given input and, in the case of supervised learning, output
data. Deep learning architectures can be of many types
such as deep neural networks, deep belief networks, con-
volutional neural networks, recurrent neural networks and
others [15]. This work makes use only of deep neural net-
works.

A Deep Neural Network (DNN) is an artificial neural net-
work containing more than two layers. The network is
called dense when each neuron of a layer is connected with
all the neurons of the next and previous layer. When data
is given to run the network on, each neuron gains a differ-
ent level of activation, depending on the connections and
the values of the neurons associated with it. The activa-
tion function defines how the neuron should be activated:
some time ago the most popular was the sigmoid func-
tion, which sets the activation to be a number between
0 and 1, but ReLU [19], which only sets negative activa-
tions of the neuron to zero, was found to be more efficient.
The process described earlier proceeds from the input to
the output layer and is called forward propagation. When
training, the error between the computed and the desired
output is calculated. The goal of training is to minimize
this error, without overfitting the training data.

Backpropagation is used to alter the parameters in the
network, depending on the error, to improve the perfor-
mance of the given data. Gradient descent is the most
popular algorithm used to optimize such networks, by it-
eratively attempting to find a minimum for the loss (er-
ror) function. The step toward that minimum is scaled by
the learning rate. One of the simpler and more popular
variations of gradient descent is Stochastic Gradient De-
scent (SGD), which takes a step in the gradient-based on
batches of data and applying some smoothness properties
and momentum [22].

2.2 Sparsity
As explained in the introduction, sparsity is having a chunk
of the connection in the network set to 0, in order to re-
duce the computations involving them. While this topic
has been explored for a long time since the 1990s [13, 7],
it gained popularity only recently. Dey et al. show that
’larger and sparser’ networks lead to better accuracy than
’smaller and denser’ [3], as was tested on a dataset from
each of 3 different types of datasets: image, speech and
text.

In 2019, Frankle and Carbin articulated the lottery ticket
hypothesis, which states that dense, randomly-initialized
networks contain subnetworks that when trained in isola-
tion reach test accuracy comparable to the original net-
work [4]. Gale et al. [5] compared three state-of-the-art
sparsification techniques: IO regularization, variational
dropout and magnitude pruning. They implemented sim-
ple heuristics to achieve similar or better on a reduced
computational budget, but not declaring a winning method.
They also concluded that complex techniques perform in-
consistently especially on small datasets.

Sparsity is not only limited to connection but larger units
of the network as well. In 2021, Hoefler et al. offer an
overview of different approaches taken to sparsify neural

networks [8]. Sparsity has been explored to remove model
parameters from weights (unstructured sparsity) to neu-
rons and filters, channels, or heads (structured sparsity).
There have also been diverse approaches taken towards
how to select candidate elements for removal during sparsi-
fication. These have been put into three categories: data-
free (local-features-based), data-driven (inference-based)
and training-aware.

In 2018, Mocanu et al. have introduced sparse evolution-
ary training (SET), an approach to sparsity inspired by
the simplicity of evolutionary approaches [17]. Instead of
starting training from a dense neural network (dense-to-
sparse training), SET starts with the fully connected lay-
ers replaced with Sparsely-Connected layers (SC). After
each training epoch, for each SC, a fraction ζ of the small-
est positive and the largest negative weights is removed.
Figure 1 offers better visualization of this algorithm.

2. Remove ζ

connections

3. Add ζ

connections

 TRAIN

Figure 1: Visualization of SET algorithm.

Several variations of SET have been proposed [21, 11].
Pieterse and Mocanu have tried 5 different algorithms that
perform cosine similarity-based connection removal and/or
addition [21]. The algorithms were found to perform col-
lectively better on 7 out of the 8 datasets trained on, with
those involving cosine similarity-based connection addition
performing better.

2.3 Feature selection
Feature selection is known as the process of selecting a
subset of relevant features that can efficiently describe the
input data, reducing the impact of redundant and irrele-
vant features [6]. It helps in reducing the complexity of
the model and the computations needed.

In 2014, Chandrashekar and Sahin provided an overview
of feature selection methods [1]. They classify feature se-
lection methods in three categories: filter methods, which
use variable ranking techniques as the principle criteria for
selection, wrapper methods, which use the performance of
the predictor as the feature selector criterion and embed-
ded methods, which incorporate the feature selection as
part of the training process.

Besides SET, the other method that this research was in-
spired by is LassoNet [14]. While lasso regression only ap-
plies to linear models, LassoNet is a neural network frame-
work that is capable of performing global feature selection.
It makes use of skip layer connections (connections that go
from the neurons of the input layer to the output layer),
using the weights as upper bounds for the first hidden layer
weights. It manages thus to select some input features for

2

which it eliminates all of the weights.

3. LISET
In this research, a new method to add connections in SET
is introduced, based on the linear features of the layers
previous to each sparsely connected layer (LiSET). When
performing an evolution, the SET algorithm, after remov-
ing connections, adds new ones randomly. The idea of
LiSET is to make the addition part less random by mak-
ing it more likely for each sparsely connected layer to add
connections to more important features. What will often
be referred to as features will be the neurons of the layer
previous to a sparse one.

First, in order to set a base for the notation, we will
start with the way the sparse layers were initialized, in
the same manner as Mocanu et al. [17]. Each sparse con-
nected layer SCk has nk neurons [hk

1 , h
k
2 , ..., h

k
nk]. Connec-

tion between hk and hk−1 are collected in a sparse matrix

W k ∈ Rnk−1×nk

. W k is initialized as a Erdös–Rényi ran-
dom graph with probability of connection between neurons
hk
j and hk−1

j given by the following equation:

p(W k
ij) =

ε(nk + nk−1)

nknk−1
(1)

Parameter ε controls the sparsity level such that the smaller
its value, the sparser the network.

While LassoNET uses skip layer connections from the in-
put to the output layer, LiSET will use skip layer con-
nections from each of the layers previous to the sparsely
connected layer, as visualized in Figure 2. In a network
with K layers [L1, L2, ..., LK] (including input L1, output
LK and hidden layers) for any sparsely connected layer Lk

(which we can write as SCk), there is a fully connected
layer from the previous layer Lk−1 to the last, LK , which
we will call skip layer with weight matrix Ŵ k.

Sparse layer Sparse layer

Figure 2: Architecture of network with skip layers

Skip layers will only be used during training. We will
refer to the network not including the skip layers as the
main network and that including them as the full network.
When training, on a forward propagation the outputs from
all the layers connected to the output are summed before
applying any function. Each skip layer will find linear
features that have not been fully utilized by the main net-

work. The model will be evaluated only on the main net-
work, so the goal is to maximize its performance. To make
the model performance dependant only on the main net-
work and the convergence faster, skip layers connections
will be reinitialized after each evolution. It is also possible
to use dropout on them, each skip layer having the prob-
ability of not being used equally to a given skip dropout
rate.

Algorithm 1 LiSET pseudocode

/* Notation: Ks denotes the number of sparse

layers, Jk denotes the number of neurons for

layer k, Ŵ k
j denotes the connections for neu-

ron j of the feature layer corresponding to

layer k */

set ε, ζ and γ
initialize model
for each Fully-Connected (FC) layer of the ANN do

replace FC with a Sparse Connected (SC) layer
end
for each epoch do

perform standard training
for k ∈ {1, ...,Ks} do

/* For each sparse layer */

remove ζ weights
for j ∈ {1, ..., Jk} do

wj ← ‖Ŵ k
j ‖1

end
w̃ ← σ(w

max(w)
+ γ)

add weights according to w̃, in the same number as
previously removed

reinitialize Ŵ
end

end

The LiSET algorithm is detailed in Algorithm 1. When
performing an evolution based on the algorithm, we take
the sparse layer SCk and for each neuron of the feature

layer Ŵ k corresponding to SCk we calculate the abso-
lute norm of weight values going from that neuron to
the output layer. We put the values in the vector wk =
[‖Ŵ k

1 ‖, ‖Ŵ k
2 ‖, ..., ‖Ŵ k

n‖]. The goal is to reach from wk the
vector of the same dimension w̃k using the parameter γ,
which helps control the variation wk and which will be
explained in more detail shortly.

During the evolution, when adding a new connection, the
connection will be more likely to come from a neuron which
corresponds to a higher w̃k value. This likelihood is bet-
ter generalized by Equation 2, stating the ratio between
probability of connection between neurons hk−1

i1
and hk−1

j1
,

and probability of connection between neurons hk−1
i2

and

hk−1
j2

. The addition of weights in LiSET is also represented
in Figure 4.

p(W k
i1j1)

p(W k
i2j2

)
=
w̃k

i1

w̃k
i2

(2)

As shown in algorithm 1, the vector w̃k is computed from
vector wk and using the parameter γ with the aim of con-
trolling the variation between values of wk. By applying
the sigmoid function, if γ > 0, as it increases, the varia-
tion between values of wk will shrink, with the variation
between greater values shrinking faster, as is exemplified
in Figure 5. Similarly happens when γ < 0 and it de-
creases, except that the smaller values will shrink faster.

3

0 10 20

0

5

10

15

20

25

0 10 20

w (= 3)

0 10 20

w (= 1)

0 10 20

w (= 4)

0.0

0.2

0.4

0.6

0.8

1.0w

Figure 3: First figure to the left is an example of features w found by the skip layer from the input layer to the output
layer of a network trained on MNIST database. The rest of the figures are values of w̃ resulted from applying different γ
values. All the vectors have been normalized from 0 to 1.

In Figure 3, the distribution the standard deviation of w̃k

is exemplified based on different γ values. One key dif-
ference between very big values and very small values of
γ is that as big values converge at 1, their ratio as rep-
resented in Equation 2 becomes closer to 1, meaning that
features are taken as more equal in importance and the
connections are picked more randomly. Thus a γ value
big enough adds connections in the same manner as SET.
When γ is very small and converges to 0, that ratio can
increase (for example, the ratio between 0.2 and 0.1 is very
different from the ratio between 0.9 and 0.8). A smaller γ
value puts more accent on fewer features.

SET LiSET

Figure 4: On the left, it is shown how weights are added
randomly in SET. On the right, we see that in LiSET
weights are added less randomly based on w̃. Neurons
corresponding to a higher w̃ value will have more of the
connections added to them.

By adding connections less randomly in the manner of
LiSET, the network might catch on to important features
faster, achieving a boost in accuracy early in the training.
The learning of the network might be handicapped by the
use of the skip layers, but on high levels of sparsity, the
trade-off might be worth it. This will be further explored
in experiments.

8 6 4 2 0 2 4 6 8

0.19

0.20

0.21

0.22

0.23

0.24

St
d.

 o
f n

or
m

al
ize

d
w

Figure 5: The distribution of standard deviations of w̃
normalized from 0 to 1 depending on the value of γ in a
situation similar to that of Figure 3

3.1 Calculating the speed of training
To calculate the speed at which the network improves the
accuracy, a new evaluation metric is introduced which will
be called Average Ratiod Accuracy (ARA). We take the
accuracy ai corresponding to ith epoch of the n epochs
trained and sum them up in the manner shown in Equa-
tion 3, with c1 = n−nb

n−1
and c2 = n−nc1, for shorter nota-

tion. b represents the impact of the first training epoch on
the final score compared to the last one, with this impact
uniformly increasing from early to late epochs. If b = 0.5,
the first epoch has half the impact of the last. When b = 1,
the ARA is equivalent to the mean of the accuracy of each
epoch.

ARA =

∑n
i=1 ai(ic1 + c2)

n2(b+1)
2

(3)

Greater ARA suggests greater overall accuracy along all
epochs. A higher value of ARA and equivalent or higher
final accuracy for a training interval compared to others
suggest faster convergence.

4

Dataset Batch size Architecture Learning rate used ε used Corresponding sparsity

MNIST 100 784-300-100-10 0.001
4.5 97.5%
9 95%

ISOLET 100 617-512-256-128-26 0.01
21 90%
42 80%

Table 1: Summarization of parameters used on the two databases

0 50 100 150 200 250
Epoch [#]

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 [%
]

SET
LiSET(= 1)
LiSET(= 3)
LiSET(= 3)
LiSET(= 24)

(a) Initialized with ε = 4.5

0 50 100 150 200 250
Epoch [#]

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 [%
]

SET
LiSET(= 5)
LiSET(= 0)
LiSET(= 18)
LiSET(= 8)

(b) Initialized with ε = 9

Figure 6: MNIST accuracy over epochs using different γ

4. EXPERIMENTS
4.1 Datasets
The performance was evaluated on two datasets:

- MNIST [12], consisting of 28x28 grayscale images of
handwritten digits. The dataset consists of 50 000 train
samples and 10 000 test samples.

- ISOLET [18], consisting of preprocessed speech data, of
617 quantities, of subjects speaking the names of the 26
English alphabet letters. The dataset consists of 6 238
train samples and 1 560 test samples.

The chosen datasets are often used in feature selection
experiments, so they were picked with the fact that they
will have some input features to be exploited by LiSET in
mind.

4.2 Implementation details
LiSET was implemented and tested using the Pytorch li-
brary [20]. The optimizer used was SGD. Details of the
parameters picked are shown in Table 1. Lower values for
the learning rate were picked in order to better examine
the effect of the method on convergence compared to SET
on the number of epochs trained. Values of ε were picked
to approximate certain levels of sparsity, shown in Table
1. For the experiments, there were more negative values
of γ picked than positive ones, because the too large value
of the parameter leads to randomly adding weights, as ex-
plained previously. The values for γ were picked from -24
to 5 in a non-uniform manner, as will be shown in experi-
ments.

LeakyRELU [16] was used as the activation function. The
loss function used was the negative log-likelihood loss. A
dropout rate of 0.3 was used for the main network and 0.5
for the skip layers. For evolution, ζ of 0.3 was used. The
models were trained for 250 epochs on constant sparsity
detailed in Table 1.

Before delving into the results, it is important to bring to
attention the fact that the conditions of SET training are

different from those used in the literature, thus the results
are not comparable. Besides different parameters used,
different architecture was used for MNIST, fewer epochs
trained and SReLU [9] was used as activation function by
Mocanu et al. [17].

4.3 Results
For evaluation of the results, two metrics were picked,
namely the accuracy achieved after the number of epochs
and ARA with b = 0.5, Results of the experiments are
shown in Table 2 for MNIST and Table 3 for ISOLET,
with the best values written in bold. For each dataset and
sparsity, two of the best and two of the worst results were
picked and plotted along with SET in Figure 6 and 7 for
MNIST and ISOLET, respectively.

5. DISCUSSION
The experiments showed that LiSET converges faster, es-
pecially when higher sparsity was used. MNIST is a dataset
that allowed for more extreme sparsity. LiSET managed
to outperform SET on accuracy for both levels of sparsity,
with it reaching 87.14 accuracy on 97.5% sparsity, while
SET attained 85.14. LiSET’s outperformance held also
on 95% sparsity, where it consistently got better accuracy
than the 88.28 accuracy of SET for all of the γ values tried,
peaking at 89.87 for γ of 3.

As can be seen in Figure 6, at the beginning of train-
ing, LiSET manages to distribute connections to impor-
tant features faster than SET. It also manages to develop
a more consistent accuracy curve. This is best shown by
the ARA metric shown in Table 2, with LiSET greatly
outperforming SET on it on all tested parameter values
except for γ of 5 and lower ε. It can be observed that on
higher sparsity, LiSET got higher ARA when using the
smaller γ values, while getting lower accuracy. This might
be due to the algorithm distributing the few connections
to very few neurons, which could slow the training on later

5

0 50 100 150 200 250
Epoch [#]

0

20

40

60

80
Ac

cu
ra

cy
 [%

]
SET
LiSET(= 18)
LiSET(= 0)
LiSET(= 8)
LiSET(= 5)

(a) Initialized with ε = 21

0 50 100 150 200 250
Epoch [#]

0

20

40

60

80

Ac
cu

ra
cy

 [%
]

SET
LiSET(= 12)
LiSET(= 1)
LiSET(= 18)
LiSET(= 5)

(b) Initialized with ε = 42

Figure 7: ISOLET accuracy over epochs using different γ

ε = 4.5 ε = 9
LiSET SET LiSET SET

γ ARA Accuracy ARA Accuracy ARA Accuracy ARA Accuracy
-24 71.03 83.73 80.0 89.01
-18 71.05 84.06 79.57 88.76
-12 70.77 84.13 79.96 88.94
-8 70.16 84.29 79.71 88.64
-5 71.06 84.10 79.73 89.12
-3 69.86 83.87 80.12 88.87
-1 71.35 84.79 80.20 89.22
0 74.03 85.41 81.26 89.60
1 74.13 86.05 80.89 89.86
3 72.52 87.14 79.57 89.87
5 63.92 84.91

65.77 85.14

77.55 89.58

75.17 88.28

Table 2: Summarization of experiments on MNIST

epochs. The results on MNIST suggest that a γ value of
around 0 to 3 might be best on that dataset.

In the ISOLET experiments, LiSET greatly outperformed
when lower ε was used, reaching 85.70 accuracy where
SET got 83.26. On lower sparsity, it reached 93.39 where
SET got 92.88. On this dataset, it can be observed that
there is a less clear correlation between the values of γ
and the evaluation metrics, compared to MNIST. Figure
7 provides a visualization on the accuracy over epochs that
suggests that LiSET converges faster on the higher spar-
sity, but the gap shrinks on the lower. The ARA metric
in Table 3 suggests the same detail. For this dataset, it
is unclear whether there are γ values that would consis-
tently get the best results due to the lack of correlation
mentioned earlier.

The results suggest that there were no certain values of γ
that consistently got the best scores on both datasets. On
MNIST, values of the parameter close to zero were shown
to obtain better results, while on ISOLET small negative
values were getting good results as well. If we were to pick
a consistent value for γ, the experiments would suggest a
value around 0.

As mentioned earlier, LiSET offers some trade-offs. Be-
cause of using the skip layers, during training, the number
of connections is greater than the vanilla SET equivalent.
For each sparse layer using LiSET, the number of con-
nections added is equal to the number of neurons of the
previous layer multiplied by the number of classes of the
output layer. Thus higher number of classes will lead to

more skip layers connections, which adds to complexity
during training.

Some of the experiments point to the fact that some val-
ues of γ lead to LiSET underperforming on both evalua-
tion metrics. This is best indicated by the values of ARA
of LiSET being lower than the value of SET in the same
conditions and is better visualized in Figure 7. One reason
is that, since the values of γ are biggest in the cases where
SET outperforms, LiSET distributes connections almost,
if not, completely random. What happens is that, espe-
cially at the beginning of training, the skip layers will learn
some important features quicker than the main network.
Even if these layers get reinitialized on every epoch and
dropped out, the main network gets delayed from learn-
ing those features. Performance of LiSET worse than SET
also indicates that the linear features do not indicate the
best neurons to reinitialize connections to.

LiSET provides an appealing alternative to vanilla SET
for certain use cases. Faster convergence is a preference
when training bigger models on huge amounts of data for
example. Due to the duration of the training, these cases
might demand fewer epochs of training, so it is important
to make the most out of them. The way LiSET adds con-
nections suggests the method also as a useful option when
training large and sparse artificial neural networks. The
results on MNIST suggest that the proposed method gains
accuracy faster on extreme sparsity. When adding con-
nections randomly as does SET, some of the few connec-
tions might get reinitialized on insignificant features, while

6

ε = 21 ε = 42
LiSET SET LiSET SET

γ ARA Accuracy ARA Accuracy ARA Accuracy ARA Accuracy
-24 62.82 81.91

60.21 83.26

80.94 93.2

79.99 92.88

-18 64.59 85.70 79.45 91.85
-12 62.92 83.52 81.56 93.01
-8 63.31 82.30 80.90 92.69
-5 63.36 84.35 79.89 92.88
-3 63.54 84.16 80.21 92.69
-1 63.83 83.77 81.33 93.20
0 64.41 84.41 81.08 93.39
1 63.96 82.75 80.43 92.56
3 60.44 83.58 79.16 92.56
5 58.54 79.67 78.12 91.79

Table 3: Summarization of experiments on ISOLET

LiSET is able to consider some features as better to add
connections to. The presented trade-offs need, of course,
to be taken into account when considering the method.

6. CONCLUSIONS AND FUTURE
RESEARCH

This research proposed a variant of SET that adds connec-
tions during evolution based on linear features. The exper-
iments showed that it helped converge faster on MNIST
and ISOLET dataset when using greater sparsity. Differ-
ent values of γ lead to great out-performance of SET in
the specified experiment conditions.

The proposed method involved a few components that
were not fully experimented with so there are no general
conclusions that can be taken based on the low range of
experiments. Experiments shown in this paper have made
use of SGD. However, different optimizers might lead to
different behavior, depending on how the skip layers de-
velop features. While the experiments shown in this work
focused on datasets that are known to have some linear
features, it would be interesting to test it on data that
provide more non-linear features in order to see how it im-
pacts performance, such as images with background noise.

The experiments were conducted using only multi-layer
perceptron architectures. However, other architectures
are more efficient nowadays for different uses, for exam-
ple, convolutional neural networks or recurrent neural net-
works, and LiSET can be tested on some of them. Differ-
ent types of architectures will add different constraints to
how to apply the method. For example, convolutional lay-
ers play a key role in the performance of convolutional neu-
ral networks [12], but LiSET can not be applied to those.
However, this type of architecture contains fully-connected
layers it could be applied on to reduce the number of con-
nections.

LiSET adds some computation complexity, especially be-
cause of the skip layers, but there are occasions when the
trade-offs are worth it. The user of the method also has
the option to reduce the computation complexity through
different alterations. When performing sparse-to-sparse
training on some datasets, especially with high sparsity,
adding connections to linear features could prove to greatly
improve convergence speed compared to SET and reach
high accuracy faster.

LiSET provides a wide range of elements to alter and ex-
periment with. For example, it has not been tested what
is the impact of using the method on the earlier versus
the deeper layers of the network. If the method proves to

be impactful on all sparse layers, then different levels of
epsilon might impact deeper layers differently from early
ones.

While LassoNet ranks the importance of global features
[14], LiSET made use only of linear features. It could be
the case that methods that help find global features could
provide better input of where to add new connections dur-
ing evolution.

7. ACKNOWLEDGEMENTS
I would like to thank my supervisor Elena Mocanu for her
feedback, patience and for guiding me in my research.

8. REFERENCES
[1] G. Chandrashekar and F. Sahin. A survey on feature

selection methods. Computers & Electrical
Engineering, 40(1):16–28, 2014.

[2] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and
N. De Freitas. Predicting parameters in deep
learning. arXiv preprint arXiv:1306.0543, 2013.

[3] S. Dey, K.-W. Huang, P. A. Beerel, and K. M.
Chugg. Pre-defined sparse neural networks with
hardware acceleration. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems,
9(2):332–345, 2019.

[4] J. Frankle and M. Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[5] T. Gale, E. Elsen, and S. Hooker. The state of
sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[6] I. Guyon and A. Elisseeff. An introduction to
variable and feature selection. Journal of machine
learning research, 3(Mar):1157–1182, 2003.

[7] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal
brain surgeon and general network pruning. In IEEE
international conference on neural networks, pages
293–299. IEEE, 1993.

[8] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and
A. Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural
networks. arXiv preprint arXiv:2102.00554, 2021.

[9] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and
S. Yan. Deep learning with s-shaped rectified linear
activation units. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30,
2016.

[10] A. Karpathy. Software 2.0.

7

[11] V. Lapshyna. Sparse artificial neural networks:
Adaptive performance-based connectivity inspired
by human-brain processes. B.S. thesis, University of
Twente, 2020.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[13] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal
brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[14] I. Lemhadri, F. Ruan, and R. Tibshirani. Lassonet:
Neural networks with feature sparsity. In
International Conference on Artificial Intelligence
and Statistics, pages 10–18. PMLR, 2021.

[15] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E.
Alsaadi. A survey of deep neural network
architectures and their applications.
Neurocomputing, 234:11–26, 2017.

[16] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier
nonlinearities improve neural network acoustic
models. In Proc. icml, volume 30, page 3. Citeseer,
2013.

[17] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen,
M. Gibescu, and A. Liotta. Scalable training of
artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature
communications, 9(1):1–12, 2018.

[18] P. M. Murphy. Uci repository of machine learning
databases. ftp:/pub/machine-learning-databaseonics.
uci. edu, 1994.

[19] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml,
2010.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703, 2019.

[21] J. Pieterse and D. C. Mocanu. Evolving and
understanding sparse deep neural networks using
cosine similarity. arXiv preprint arXiv:1903.07138,
2019.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

[23] V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

8

