
Calculating the Risk of Valve Failures when Maintaining
Water Supply Networks

Jeffrey Bakker
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.bakker@student.utwente.nl

ABSTRACT
When performing maintenance and repairs on parts of a
Water Supply Network, those parts need to be cut off in
order to prevent spillage. It can occur, however, that the
valves needed to cut off the target section cannot be closed,
in which case other sections need to be cut off as well. Par-
ties tasked with the maintenance of these networks need
to know how many households will be affected by main-
tenance. This paper explains the fault in the current ap-
proach and researches what is needed to make a correct
solution. One of the approaches makes use of Binary De-
cision Diagrams as a solution to the Inclusion-Exclusion
Principle. Finally, one correct, but inefficient solution is
formed and another solution is given, which still has some
implementation issues.

Keywords
Water Supply Network, Risk Analysis, Formalization, Pla-
nar Graph, Binary Decision Diagrams

1. INTRODUCTION
Water Supply Networks (WSNs) describe the public in-
frastructure of water pipes that provide households with
fresh and clean water. Parties tasked with maintenance
and upkeep of this infrastructure have to compute the ef-
fective number of households (risk) that are affected by the
downtime due to maintenance or repairs of failed sections
of pipe.

A current solution provided by a local company1 is com-
putationally inefficient for larger networks and shows an
error margin when compared to a Monte Carlo simulation
[10] due to simplified calculations.

2. PROBLEM STATEMENT
Consider a network consisting of pipes and valves, then
a section is a set of pipes bounded by valves. Let the
target be the section that is up for maintenance; in order
to prevent spillage of water, the target must be cut off from
the network by closing valves. If a valve cannot be closed –

1The solution is based on internal expertise and has – to
the best of our knowledge – no concrete scientific basis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

due to mechanical failure or if it is not accessible – then a
neighbouring section has to be closed off from the network
as well. Then the goal is to calculate the effective number
of affected households due to maintenance on some target
section.

2.1 Design Requirements
An optimal solution to the stated problem must:

• be accurate;

• be computationally efficient; and

• be easy to implement.

2.2 Current Solution
The current solution relies on the following logic concern-
ing Probability Theory:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= 1− P (A) ∗ P (B)

= 1− (1− P (A)) ∗ (1− P (B))

The current solution then assumes that the same principle
holds for a union of more than two terms:

P

(⋃
u∈U

u

)
= 1−

(∏
u∈U

(1− P (u))

)

This, however, does not work if the different events have
some overlap (ie. they are not disjoint) leading to a miscal-
culation if this formula is used. Implementations using the
given calculation generally yield a total probability that is
a bit too high since the intersections are not properly sub-
tracted from the result. This leads to an outcome that is
higher than the correct result.

Cases like these, where the terms of the union are not
disjoint, should use the Inclusion-Exclusion Principle [5]
in order to account for the overlap in events.

2.3 Research Questions
The proposed research will try to answer the following
research questions:

RQ1 How can the effective number of affected households
be computed?

RQ1.1 Which sections can be affected by mainte-
nance on the target section?

RQ1.2 What is the probability that a section is af-
fected by maintenance on the target section?

RQ1.3 How can the total risk of maintenance on a
target section be computed?

1

Network

21 3

4 5

V1 V2

V3 V4

V5 V6

V8

V7

Figure 1. Example network G consisting of 6 sections and
8 valves.

RQ2 Can Fault Tree Analysis be used to compute the ef-
fective number of affected households?

RQ3 How can the performance of the computation of the
risk of maintenance be improved?

3. RELATED WORK
Some preliminary investigation2 into the problem has al-
ready been done. This preliminary investigation was not
published, but it highlighted the error in the current solu-
tion and it gave an initial (not fully fledged) solution. This
initial solution evaluates all different ways a given section
can be affected, but this initial solution still suffers from
the same problem that is mentioned in Section 2.2.

Professor John Andrews [2] describes a few techniques that
lie very close to the method implemented by the aforemen-
tioned local company.

Finally, most work related to Water Supply Networks (or
similar systems) describe the risk of certain components
[6, 7] (ie. pipes and valves) of the network failing. Other
works related to WSNs focus on which components should
be given priority when performing maintenance [11]. These
topics are not what this research aims for.

4. BACKGROUND
4.1 Water Supply Networks
According to Di Nardo et al [4], Water Supply Networks
can be represented as planar graphs in “which pipes (and
valves) correspond to links, and nodes or junctions corre-
spond to graph nodes”. This will be simplified a bit for
the specific use case that is being researched:

Definition 4.1. A Water Supply Network is defined by
a planar graph G =< V,E, P (e), γ(v) > with:

V as the set of vertices (sections);

E as the set of edges (valves);

P (e) as the probability of a valve e ∈ E failing when
closing; and

γ(v) as the amount of households in a section v ∈ V .

An example of such a network G can be seen in Figure 1.

2By Lisandro Jimenez, M.Sc. PDEng at the University of
Twente

Top

p

q

r

True False

Figure 2. BDD representing p ∗ (q + r) with high(n) as
solid lines and low(n) as dashed lines.

4.2 Risk of Maintenance
We define the risk (or the effective number of affected
households) of maintenance on some target section based
on the expected utility function [10]:

Definition 4.2. Let P (u) denote the probability that
section u ∈ V is affected by maintenance on target section
v ∈ V . Then the total risk of maintenance on target sec-
tion v is:

risk =
∑
w∈V

P (w) ∗ γ(w) (1)

4.3 Binary Decision Diagrams
Binary Decision Diagrams [8] (BDDs) are a way to repre-
sent Boolean equations in a tree-like data-structure. BDDs
are computationally expensive to construct from a given
Boolean equation, but evaluating the probability of the
top node occurring can be done relatively efficiently.

A BDD n in universe N is recursively defined with the
following three variables:

• var(n) ∈ N ,

• high(n) is either True or a BDD, and

• low(n) is either False or a BDD.

The probability of the top node of the BDD can be com-
puted using the following recursive equations:

P (True) = 1.0

P (False) = 0.0

P (n) = P (var(n)) ∗ P (high(n))

+ (1− P (var(n))) ∗ P (low(n))

Take, for example, the independent events p, q and r, each
with an arbitrary probability of occuring, then the BDD
corresponding to the proposition p ∗ (q + r) can be found
in Figure 2.

4.4 Fault Tree Analysis
According to E. Ruijters et al [9], “Fault Tree Analysis
(FTA) is one of the most prominent techniques” in risk
analysis. The technique provides a good way to visualize
how a few errors can cause an entire system to fail.

For example, take – again – independent events p, q and r,
each with an arbitrary probability of occurring, then the
Fault Tree corresponding to the proposition p∗ (q+ r) can
be found in Figure 3.

2

p ∗ (q + r)

p

q r

Figure 3. Fault Tree representing p ∗ (q + r).

5. METHOD
The correctness/validity of the results of the proposed re-
search will be tested against manual calculations [10] on
handcrafted networks.

5.1 Computing the Risk (RQ1)
Finding Relevant Sections (RQ1.1)
A pre-requirement of computing the effective number of
affected households is finding which sections are at risk.
In order to do this, a set of conditions will be formalized
to define when a section is affected by maintenance on a
target section.

Probability of a Section Being Affected (RQ1.2)
The next step is to compute the probability of a section
being affected by the maintenance of a target section due
to valve failures. This will be done by composing a set
of paths from the section to the target section that could
lead to the section being affected. The failure rates of the
valves along the paths can then be used to compute the
probability of the section being affected.

Computing the Total Risk (RQ1.3)
Given all the probabilities of relevant sections being af-
fected, the total risk (or effective number of affected house-
holds) can be computed using Equation 1.

Finally, all of this will be composed into a single algorithm
for computing the risk of maintenance on a target section.

5.2 Fault Tree Analysis (RQ2)
Next to the method for RQ1, another approach that can be
considered for this computation is Fault Tree Analysis. It
will be analyzed whether Fault Tree Analysis is a suitable
approach and whether some modifications to traditional
Fault Tree Analysis need to be implemented in order for
this method to work.

5.3 Improving Performance (RQ3)
In order to improve the computational performance (mea-
sured with time complexity) of the algorithm developed in
RQ1, the following options will be explored:

• Reducing the amount of nested loops;

• Saving intermediate calculations for usage in other
nodes;

• Approximating the result by limiting the computa-
tional depth (by, for example, limiting the amount
of edges that can fail at one time); and

• Minimizing logic using Boolean algebra to reduce the
amount of computations needed.

un t

s

Figure 4. Example of path (from s to t) running through
a dependency u with water source n, target t and current
section s.

The performance of all algorithms will then be measured
by taking the average runtime of 5 consecutive runs on a
set of manually created networks of different sizes.

6. RESULTS
The implementations corresponding to the developed al-
gorithms can be found in the GitHub repository jeffrey-
bakker/wsn [3].

6.1 Computing the Risk (RQ1)
6.1.1 Finding Relevant Sections (RQ1.1)

Observing example graphs (see Appendix A) quickly leads
to the insight that a section s is affected by maintenance
on target section t if:

• There exists a path from s to t along which all valves
fail; or

• There is some other section u that is affected by the
maintenance on t; then s is affected as well if, in
the graph obtained by removing all affected sections
(and incident valves), there is no path from s to the
water source anymore. In this scenario u is a depen-
dency of s since the availability of water in s relies
on the availability of water in u.

The first statement is rather obvious and should not re-
quire any further explanation. The second statement,
however, might require some explanation:

Example 6.1. Consider a network G with target sec-
tion t, network section n (the water source) and section
p. Then we say p is affected by maintenance on t if there
exists no uninterrupted path from p to n.

Let q be a section such that all possible paths from p to n
go through q. Then, if q is affected by maintenance on t,
that must mean that p is automatically also affected.

It can also be argued that the statement in the second
bullet point is an extension of the first since there exists a
path from s to t through u. Therefore, the effective path
that affects section s, is the path from u to t:

Example 6.2. Figure 4 shows an example where the
path from section s to target section t goes through u. If
u were to be affected by the maintenance on t, then - logi-
cally - s would also be cut off from the rest of the network.
Therefore this case is an extension of the first statement.

6.1.2 Probability of a Section being Affected (RQ1.2)
For computing the probabilities of the different sections in
the network being affected, there are two clearly obvious
approaches:

3

https://github.com/jeffreybakker/wsn
https://github.com/jeffreybakker/wsn

1. Computing all different paths from section s to tar-
get section t and taking the union of the probabilities
that all valves along the given paths fail.

2. Enumerating all possibilities of failing valves in the
network and adding the chance of one permutation
happening to the failure probability of a section, if
that section happens to be affected due to the given
set of failing valves.

The first approach strongly resembles the current solution
to the problem. So the probability of a section s being
affected by the maintenance on target section t consists of
a union of all paths (which are themselves intersections of
edges) happening. If a path from s to t visits a depen-
dency u of s, then only the path from u to t needs to be
considered instead of the path from s to t.

This approach, however, is a bit more complex than is ini-
tially evident: If different paths from s to t overlap (have
edges in common), then the Inclusion-Exclusion Principle
[5] has to be applied. Implementing this for an unknown
number of terms has proven to be more difficult than ini-
tially expected. Therefore the decision has been made
to use Binary Decision Diagrams (more specifically the
Python library dd [1]).

The second approach is less efficient, but is less likely to
contain any errors as it relies on simpler techniques. Given
a set of failed edges it can be computed whether the given
section is still connected to the water source. If it is not,
then the probability of the specific event (combination of
failed edges) occurring can be added to the probability of
the given section being affected.

6.1.3 Computing the Total Risk (RQ1.3)
After the total probabilities of all sections being affected
by maintenance on target section t have been computed,
the total risk can be computed by using the earlier defined
risk calculation (see Equation 1).

Using the first approach described in Section 6.1.2 the fol-
lowing algorithm can be constructed:

Algorithm 1: Basic approach (with BDDs)

input : graph G =< V,E, P (e), f(v) >,
target section t, water source n

output: Total risk
risk = 0.0;
for v ∈ V do

probability = 0.0;
if v == t then

probability = 1.0;
else if v == n then

probability = 0.0;
else

expr = False;
for each path from v to t do

term = True;
for each edge e in path do

term = term ∧ e;

expr = expr ∨ term;

probability = evaluate(expr);

risk += probability * f(v);

return risk

In Algorithm 1, a function evaluate(expr) is used, this
refers to the recursive calculation of the probability of the
top node defined in Section 4.3.

Using the second approach yields the following algorithm:

Algorithm 2: Naive approach

input : graph G =< V,E, P (e), f(v) >,
target section t, water source n

output: Total risk
risk = 0.0;
for failed ∈ P(E) do

probability = 0.0;
for e ∈ E do

if e in failed then
probability += P(e);

else
probability += 1 - P(e);

closed = all edges in failed reachable from t by
just using the edges in failed;

closed += all edges incident to the heads and tails
of the edges in closed;

unaffected = the set of vertices reachable from n
without using any of the edges in closed;

for v ∈ V \ unaffected do
risk += f(v) * probability;

return risk

6.1.4 Measurements
The raw test results per algorithm per example network
(defined in Appendix A) can be found in Appendix B.

The set of example networks contains a few base cases and
a lot of edge cases in order to be able to determine whether
an algorithm is correct or not.

When comparing the results from the Naive algorithm to
the results from the manual computations (see Table 1),
it becomes clear that the results from the Naive approach
and the manual computations are the same.

Furthermore, the results from the basic algorithm differ in
some cases from the manual computations and the results
of the naive algorithm.

6.2 Fault Tree Analysis (RQ2)
Fault Trees can be used to describe and visualize the dif-
ferent ways (path, split up in edges) a given section can
be affected by maintenance on some other section.

For example, using node C in the ”Complex” example net-
work (see Appendix A), the Fault Tree in Figure 5 can be
constructed.

However, just as described earlier (in Section 6.1.2), when
trying to compute the probability of the top node, one
would - again - run into the problem concerning the Inclusion-
Exclusion Principle [5]. A logical solution would be to use
BDDs to compute the probability of the top node instead

Table 1. Results from the different algorithms on the dif-
ferent networks with the incorrect results highlighted.

Network Manual Naive Basic with BDDs
Lisandro 706.40 706.40 706.40

Simple 365.00 365.00 365.00
Complex 312.50 312.50 312.50
Surrounded 2087.77 2087.77 2111.99
Middle 1650.00 1650.00 848.00
Triple 300.66 300.66 318.26
Combi 340.00 340.00 320.00

4

C

(C, D) (D, T)

(C, T)

(A, B) (B, D) (D, T)

Figure 5. Fault Tree for node C in the ”Complex” network.

Top

(C, T)

(C, D)

(D, T) (D, T)

(A, B)

(B, D)

True False

Figure 6. BDD for section C in the ”Complex” network.

(see Figure 6), which is already the idea of the basic ap-
proach.

6.3 Improving Performance (RQ3)

6.3.1 Basic Approach
Even though the performance of the Basic algorithms look
promising in comparison to the Naive approaches, some
improvements can be made to increase the computational
performance. The basic algorithm searches through the
entire network for paths from some section s to target
section t for every section in the network. However, if it
were to go the other way around, then a lot of steps would
only have to be done once. This could lead to a significant
performance improvement:

Algorithm 3: Search-based approach

input : graph G =< V,E, P (e), f(v) >,
target section t, water source n

output: Total risk
def construct(vertex v, list of nodes that already
failed):

bdds = map of vertices that fail if v also fails
(alongside failed);

failed += new vertices in bdds;
for neighbour n of v do

if n in failed then
continue

edge = edge from v to n;
res = construct(n, failed);
for each pair (w, bdd) in res do

bdds[w] = bdds[w] ∨ (edge ∧ bdd);

return bdds
risk = 0.0;
trees = construct(t, []);
for each pair (v, bdd) in trees do

risk += f(v) * evaluate(bdd);

return risk

Figure 7. Average performance of algorithms for different
amounts of vertices.

Algorithm 3 uses (just like Algorithm 1) the evaluate(bdd)
function; the calculation of the probability of the top node
of a BDD is explained in Section 4.3.

6.3.2 Naive approach
Furthermore, the naive approach iterates over all possi-
ble combinations of failing edges. It can occur, however,
that different combinations of failing edges have the same
impact, therefore it can be beneficial to cache some in-
termediate results such that some computations can be
skipped.

6.3.3 Measurements
The graphs in Figures 7 and 8 show how the different algo-
rithms perform as the input graphs get more complex. As
is visible in these graphs and the overall performance re-
sults (in Appendix B), the search-based algorithm appears
to perform worse than the basic algorithm with BDDs.

Next to that, as seen in Appendix B, the results from
the search-based algorithm differ from the manual calcu-
lations.

Furthermore, the variant of the naive approach with caching
only yields a minor speed improvement (8% to 10% in most
cases) if it even improves the speed in that case.

5

Figure 8. Average performance of algorithms for different
amounts of edges.

7. CONCLUSION
The main problem is solved; one correct solution is given
as well as some other approaches. However, these other
approaches still have some implementation issues.

7.1 Computing the Risk (RQ1)
Both the basic and naive approaches to the given problem
work quite well; the naive approach does not appear to
have any errors – even in the edge cases – so it would
suffice to say that this is a correct solution to the given
problem; the basic solution, however, produces some small
errors in some of the edge cases. The problem here lies in
how the dependencies are computed and applied. If this
is fixed, then the basic algorithm would also be correct.

This problem is purely an implementation issue that could
not be solved during this research.

7.2 Fault Tree Analysis (RQ2)
Technically, Fault Tree Analysis can be used to compute
the effective number of affected households by using FTA
on each of the other sections in the network. However,
since FTA is not that different from the basic approach and
it does not offer any additional functionality over BDDs,
it is not a viable solution to the given problem.

The only real benefit of FTA in this case would be that
it might be handy to visualize how a given section may
be implicated in the maintenance on another section, but
BDDs are – subjectively – easier to read and understand.

7.3 Improving Performance(RQ3)
As is evident from the results, the search-based algorithm
actually performed worse than the basic algorithm. Next
to that, the search-based algorithm still has the same flaws
concerning the computation and application of dependen-
cies that the basic approach also has.

Furthermore, the speed improvement of the naive approach
with caching is too small to really make a difference in its
ability to compute the risk for larger networks.

Overall the computational performance of the computa-
tion of the risk of maintenance has not been improved
(significantly).

8. DISCUSSION
8.1 Inclusion-Exclusion Principle
Due to the difficulties of trying to implement a solution
that works with the Inclusion-Exclusion Principle, a choice
was been made to go with Binary Decision Diagrams in-
stead. These, however are not the most computationally
efficient to create. This contrast can be seen in Table B.2

(in Appendix B), where also the performance of the Basic
algorithm is shown without the creation of a BDD.

Even though the approach using BDDs has yielded correct
results, where earlier iterations of the algorithm did not,
this does pose a problem with regard to the third research
question.

8.2 Implementation Issues
As explained, there are some issues with the implemen-
tation that deals with the dependencies of sections and
their application in the risk calculation. Because of this
implementation issue all algorithms (except for the naive
implementations) yield wrong results in some edge cases.

8.3 Handcrafted Networks
The networks on which the different approaches have been
tested are – as mentioned – handcrafted (or imaginary)
networks that try to simulate real situations. However, a
general conclusion for the problem cannot be drawn since
these networks are not based on real-world data.

Furthermore, real networks are larger than the networks
that are tested with in this research. Using larger networks
will significantly increase the runtimes of the different al-
gorithms as has become evident from Figure 8.

9. FUTURE WORK
9.1 Replacing BDDs
As acknowledged before (in Section 8.1), BDDs have not
been the most computationally efficient solution to the
problem. Future research could try to solve the problem
regarding the Inclusion-Exclusion Principle (as described
in Section 6.1.2). This might give a significant speed im-
provement if it is implemented well enough; a small insight
into this speed improvement is given by Table B.2 (in Ap-
pendix B): This table shows how just iterating the paths
and summing their probabilities is significantly faster than
the version of the algorithm that also creates a BDD.

Another approach would be to find a way to include BDDs
in such a way that their creation is not as demanding
(time-wise).

9.2 Improving Accuracy
At the moment, there are a few edge cases that yield an
incorrect result for some of the algorithms. This is, as
explained (see Section 7.1), due to an error in the way that
the earlier mentioned dependencies (see Section 6.1.1) are
computed and applied. Future research could go into how
to set up a correct data structure for these dependencies
and how to compute and apply them properly.

9.3 Other Algorithms
Only a few approaches to solve the problem have been
tried in this research. Future research could look into dif-
ferent approaches to solve the problem that might be less
error-prone and more computationally efficient.

10. ACKNOWLEDGEMENTS
I would like to thank my supervisors Matthias Volk and
Moritz Hahn for their supervision and for their help when
I got stuck during my research.

Furthermore I would like to thank Lisandro Jimenez for
his preliminary investigation into the problem.

Finally, I want to express my appreciation for my friends
who have helped me to proof-read my submissions on mul-
tiple occasions.

6

11. REFERENCES
[1] tulip-control/dd, June 2021.

https://github.com/tulip-control/dd.

[2] J. Andrews. Next Generation Prediction
Methodologies and Tools for Engineering Risk
Assessment. Talk at PrimaVera Colloquium, 2021.
https://www.youtube.com/watch?v=uCn9s3IfC6Y.

[3] J. Bakker. jeffreybakker/wsn, June 2021.
https://github.com/jeffreybakker/wsn.

[4] A. Di Nardo, M. Di Natale, C. Giudicianni,
R. Greco, and G. F. Santonastaso. Water Supply
Network Partitioning Based On Weighted Spectral
Clustering. In H. Cherifi, S. Gaito,
W. Quattrociocchi, and A. Sala, editors, Complex
Networks & Their Applications V, volume 693,
pages 797–807. Springer International Publishing,
Cham, 2017.

[5] K.-C. Lin, I.-E. Liao, T.-P. Chang, and S.-F. Lin. A
frequent itemset mining algorithm based on the
Principle of Inclusion–Exclusion and transaction
mapping. Information Sciences, 276:278–289, Aug.
2014.

[6] M. S. Marlim, G. Jeong, and D. Kang. Identification
of Critical Pipes Using a Criticality Index in Water
Distribution Networks. Applied Sciences, 9(19):4052,
Sept. 2019.

[7] A. Matyash, I. Usenko, R. Myagkohlib, and
S. Kostenko. Estimation of failure-free operation of
metal water pipes. Eastern-European Journal of
Enterprise Technologies, 3(1 (87)):35–41, June 2017.

[8] A. Rauzy. A brief introduction to binary decision
diagrams. Journal Europeen des Systemes
Automatises, 30(8):1033–1050, 1996.

[9] E. Ruijters and M. Stoelinga. Fault tree analysis: A
survey of the state-of-the-art in modeling, analysis
and tools. Computer Science Review, 15-16:29–62,
Feb. 2015.

[10] S. J. Russell, P. Norvig, and E. Davis. Artificial
intelligence: a modern approach. Prentice Hall series
in artificial intelligence. Prentice Hall, Upper Saddle
River, 3rd ed edition, 2010.

[11] Y. Zhang, S. Li, Y. Zheng, and Y. Zou. Multi-model
based pressure optimization for large-scale water
distribution networks. Control Engineering Practice,
95:104232, Feb. 2020.

7

APPENDIX
A. EXAMPLE NETWORKS
In the networks below, ”N” represents the rest of the network (the water source) and ”T” represents the target section
that is up for maintenance.

The network ”Lisandro” is named after Lisandro Jimenez, M.Sc. PDEng at the University of Twente since he created this
network in his preliminary investigation (see Section 3).

Lisandro Simple Complex

N

A:300 T:100

B:500

0.2

0.4 0.9

N

A:200 B:500

C: 300

T:400

0.8

0.4

0.25

N

A:100 B:100

C:100 D:100

T:100

0.5

0.5 0.5

0.5

0.5

0.5

Surrounded Middle Triple

N

T:800A:200

B:500 C:200

E:600

D:400

0.6

0.4

0.7

0.2

0.5

0.4

0.9

N

A:500 T:400

B:900

C:100

0.5

0.2

0.9

N

B:100A:100 C:100

D:100

T:100

0.5

0.2
0.65

0.4

0.3

0.5

Combi

N

T:100A:100 B:100

C:100 D:100 E:100

0.5

0.7

0.2

0.8 0.5

8

B. TEST RESULTS
B.1 Results

Network Manual Naive Naive with Cache Basic Search
Lisandro 706.40 706.40 706.40 706.40 706.40
Simple 565.00 565.00 565.00 565.00 565.00
Complex 312.50 312.50 312.50 312.50 312.50
Surrounded 2087.77 2087.77 2087.77 2111.99 1930.50
Middle 1650.00 1650.00 1650.00 848.00 848.00
Triple 300.66 300.66 300.66 318.26 300.66
Combi 340.00 340.00 340.00 320.00 320.00

Table B.1: Results from the different networks defined in Appendix A with the used algorithms. The incorrect results are
highlighted.

B.2 Performance measurements
|V | |E| |V | ∗ |E| Naive Naive with Cache Basic without BDDs Basic with BDDs Search
3 2 6 0.136 0.087 0.015 0.348 0.173
3 3 9 0.092 0.106 0.019 0.153 0.281
4 3 12 0.118 0.116 0.035 0.306 0.294
4 4 16 0.191 0.267 0.037 0.163 0.408
4 5 20 0.573 0.575 0.053 0.426 0.882
4 6 24 1.043 0.994 0.059 0.364 1.341
5 4 20 0.190 0.193 0.046 0.151 0.211
5 5 25 0.533 0.415 0.068 0.307 0.435
5 6 30 0.977 0.778 0.061 0.536 0.981
5 7 35 1.754 1.657 0.078 0.745 1.220
6 5 30 0.337 0.313 0.061 0.148 0.294
6 6 36 0.936 0.742 0.063 0.279 0.410
6 7 42 2.223 1.594 0.125 0.408 1.523
6 8 48 4.261 3.254 0.161 0.692 2.744
6 9 54 12.163 7.795 0.265 1.517 4.866
6 10 60 26.420 18.914 0.281 2.159 7.669
7 6 42 0.788 0.668 0.080 0.138 0.170
7 7 49 1.598 1.694 0.096 0.414 0.414
7 8 56 4.043 3.177 0.173 0.613 1.543
7 9 63 9.732 7.232 0.259 0.879 2.945
7 10 70 28.387 15.991 0.417 1.511 3.877
7 11 77 44.680 38.632 0.334 2.190 5.489
8 7 56 1.658 1.190 0.130 0.183 0.188
8 8 64 3.774 3.375 0.126 0.409 0.491
8 9 72 9.719 6.600 0.236 0.695 1.642
8 10 80 21.807 15.731 0.351 1.077 3.331
8 11 88 58.927 31.639 0.442 1.457 4.551
8 12 96 102.433 84.727 0.486 3.058 5.935

Table B.2: Runtimes of the different algorithms on networks of different sizes in milliseconds.

9

	Introduction
	Problem Statement
	Design Requirements
	Current Solution
	Research Questions

	Related Work
	Background
	Water Supply Networks
	Risk of Maintenance
	Binary Decision Diagrams
	Fault Tree Analysis

	Method
	Computing the Risk (RQ1)
	Fault Tree Analysis (RQ2)
	Improving Performance (RQ3)

	Results
	Computing the Risk (RQ1)
	Finding Relevant Sections (RQ1.1)
	Probability of a Section being Affected (RQ1.2)
	Computing the Total Risk (RQ1.3)
	Measurements

	Fault Tree Analysis (RQ2)
	Improving Performance (RQ3)
	Basic Approach
	Naive approach
	Measurements

	Conclusion
	Computing the Risk (RQ1)
	Fault Tree Analysis (RQ2)
	Improving Performance(RQ3)

	Discussion
	Inclusion-Exclusion Principle
	Implementation Issues
	Handcrafted Networks

	Future Work
	Replacing BDDs
	Improving Accuracy
	Other Algorithms

	Acknowledgements
	References
	Example Networks
	Test Results
	Results
	Performance measurements

