
The suitability of Groove as a General Game Playing
Language

Daniël Floor
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

d.floor@student.utwente.nl

ABSTRACT
A General Game Playing system is capable of playing a
wide variety of games with the use of AIs. Part of these
games is perfect information games. To play these games
in such an environment, a Game Description Language is
needed. This is the language that is used to model the
games in a digital environment. There are lots of options
to base the Language on, one possibility is graph transfor-
mations. Groove uses these graph transformations which
can be used to model board games. This paper will ana-
lyze the suitability of the Game Description Language of
Groove for General Game Playing purposes.

Keywords
General Game Playing, Graph transformations, Groove,
Game Description Language

1. INTRODUCTION
There exist several game-specific AI’s that can beat even
the best human players. Examples of these are Stockfish1

for chess and AlphaZero [5] for the board games Go, chess,
and Shogi. These programs are adapted in such a way that
they perform incredibly well on specific games, while not
being able to perform on a wide variety of other games.

Since the early 2000s, General Game Playing (GGP) has
been gaining popularity amongst computer scientists. GGP
is an AI that can successfully play a variety of games in a
specific language without a game-specific implementation.
These specific languages are called a Game Description
Language (GDL). In a GDL, it is possible to model or
program a wide variety of games. To play these games
accordingly, the models need to adhere to certain cod-
ing conventions. If done properly an incredible amount of
games can be modeled and later on be used for GGP.

In 2005 Stanford [2] organized a GGP tournament, where
students and computer scientists would compete in writ-
ing the best AI adhering to the GDL that Stanford has
created for this competition. For the competition to work
correctly, a game manager needed to be created as well. A

1Stockfish information: https://stockfishchess.org/
about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT July 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

game manager is the center of the game, which asks each
player for a move input and serves as a communication
platform.

The GDL of Groove2 offers a graphical representation of
games. Groove makes use of a graph representation of the
current state of a game and combines this with a set of
rules also called a grammar. These rules define transfor-
mations of the graph. This is a different approach from
what most other GDLs use [2]. Most of the GDLs use a
logical representation similar to what Prolog3 has to of-
fer. Like mentioned before, Groove uses an approach of
graph transformations to model several instances. A ben-
efit of the graph transformation approach is a simple way
of exploring the states and possibilities of the game.

1.1 Problem Statement
Having a GDL for modeling games with the goal of GGP
is not enough. Such a GDL needs to fulfill certain criteria
to be suitable. Using graph transformations as a basis for
a GDL seems promising, but is yet to be confirmed. To
conclude whether Groove could serve as a GGP environ-
ment certain criteria need to be met. Browne [1] proposed
five properties to determine whether a GDL is suitable or
not for GGP. These properties are:

• Simplicity
The game descriptions should be easy to write and
also be easily modified.

• Clarity
The game descriptions should be readable and com-
prehensible for the users.

• Generality
The GDL should support a wide variety of games
and thus functionalities.

• Extensibility
The GDL should be easy to extend to support new
concepts.

• Evolvability
Game descriptions should combine to produce mostly
valid (i.e., playable) children with characteristics of
their parents.

1.2 Research Question
The question that is going to be answered with this re-
search is: Is Groove and its Game description language
suitable for a general game playing environment?

2information on Groove: https://groove.ewi.utwente.
nl/about
3information on Prolog: https://www.swi-prolog.org

1

https://stockfishchess.org/about
https://stockfishchess.org/about
https://groove.ewi.utwente.nl/about
https://groove.ewi.utwente.nl/about
https://www.swi-prolog.org


This question will be answered based on the properties of
Browne [1]. To answer this question and analyze these
properties. The methodology covers which games have
been implemented and how the properties have been an-
alyzed. For the Clarity property, an experiment has been
conducted. This experiment has been explained in de-
tail how it will be conducted. After this, the results will
be presented regarding the game implementations and the
experiment. Lastly, each property will be individually an-
alyzed and this is used to come to a conclusion and answer
the research question.

2. BACKGROUND
To understand the rest of the paper properly, Groove and
graph transformations are discussed in more detail.

2.1 Groove
Groove is a tool that uses graphs for modeling object-
oriented programs. Furthermore, it also supports model
transformations using rule-based graph transformations.
These graph transformations give Groove the possibility to
verify model transformations and model checking. While
this is the main purpose of Groove it is also possible to
model a board game.

2.2 Graph transformations
Graph transformations are rules taking a subset of the cur-
rent graph and describing how this should be transformed.
Each graph transformation rule thus describes a change in
the graph. After applying these rules to the graph a new
graph is created. In this way, the current graph is the
current state of the game. Each of the rules that can be
applied represents the possible moves a player can make.
Modeling the games in a structured way will result in a
board game that can be played. An example of one of
these transformations can be found in Fig 1. In this ex-
ample an edge with label c between a node with label a
and a node with label b will be created if and only if there
does not exist such a edge yet. The red edge indicates
that it may not exist in order to apply the rule and the
green edge indicates that the edge will be created with
given label.

Figure 1. an example graph transformation

3. METHODOLOGY
The research to answer the research question consists out
of three parts. The first part is the implementation of the
games. This part covers which games will be implemented.
The second part is the analysis of the five criteria. To
analyze one of the criteria an experiment is conducted,
the results of this will then be used to analyze the Clarity
of Groove.

3.1 Game implementations
Choosing a good subset of games to use to determine the
suitability of Groove for GPP requires a good overview

and categorization of the games. Four categories enclose
almost all games that are made. In each of these cat-
egories, there are still multiple gradations that vary in
complexity.

• The first category is perfect information games. Play-
ers in these games have perfect information, meaning
that players are fully informed of all events that oc-
curred in the game. An example game is Chess or
Tic-tac-toe.

• The second category is imperfect information games.
These games are exactly the opposite of perfect in-
formation games. This means that the players have
not a complete overview of the information in the
game. An example game would be battleships.

• The third category is perfect information stochastic
games. These games contain some form of chance
in the game. This may be rolling dice, receiving
cards, or spinning a wheel. The perfect information
stochastic games are games with perfect information
as described in the first category combined with the
stochastic elements. An example of this type of game
would be ludo.

• The last category is imperfect information stochastic
games. These games are stochastic just like the pre-
vious category, but instead of having perfect infor-
mation, these games contain imperfect information.
An example of this would be poker Texas Hold’em.
Since the cards are distributed randomly each player
only knows the cards that were received.

For this research, the games that are implemented will re-
main restricted to perfect information games and perfect
information stochastic games. While this does not give
full coverage for all types of games, this still covers a sub-
stantial part of games that make General Game Playing
possible. the games that are gonna be implemented are as
follows.

3.1.1 Perfect information games
The games that will be implemented for perfect informa-
tion games are Tic-tac-toe4, Checkers5, and Chess6. Tic-
tac-toe will be the most simplistic game that is going to
be used, but it already serves as a good indication of how
to tackle certain problems. Checkers will be much more
advanced than Tic-tac-toe. It requires proper solutions for
slaying opponent pieces while using only one piece. Chess
will be a much more complex game than Checkers, since
this game requires constant checks for legal moves, con-
cerning being in a check position. Chess also offers some
unique moves that require multiple pieces and certain cir-
cumstances like the Castling move or moving the pawn for
the first time.

3.1.2 Stochastic games
For the stochastic games, this will only be Ludo7. For
Groove, there already exists a working implementation of
Ludo. It also contains a standard implementation for the
die, therefore Ludo will be used to explore the possibilities
of randomized actions.

4https://en.wikipedia.org/wiki/Tic-tac-toe
5https://en.wikipedia.org/wiki/International_
draughts
6https://en.wikipedia.org/wiki/Rules_of_chess
7https://en.wikipedia.org/wiki/Ludo_(board_game)

2

https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/International_draughts
https://en.wikipedia.org/wiki/International_draughts
https://en.wikipedia.org/wiki/Rules_of_chess
https://en.wikipedia.org/wiki/Ludo_(board_game)


3.2 Criteria points
To answer the research question, the satisfiability of the
5 criteria needs to be investigated. Using the games that
have been previously defined each of these properties is
evaluated.

3.2.1 Simplicity
The first property that is investigated after implementing
the previously mentioned games is Simplicity. A GDL
satisfying the Simplicity criteria has an easy-to-write game
description and it should be possible to modify or update
current existing implementations without.

After implementing all the games, all difficulties regard-
ing the GDL will be evaluated. To do this properly a dis-
tinction will be made between the different game aspects.
Firstly, the game logic will be evaluated. This means that
for each unique game aspect, a simple and practical solu-
tion needs to exist and does not need a large workaround.
Secondly, the game design will be evaluated. Points that
will be looked at are a simple and effective implementation
of the board.

3.2.2 Clarity
The Clarity property will focus on the readability and the
comprehensibility of the games. This requires input from
outside and therefore an experiment will be set up, see
section 3.3 for more information on the experiment. The
results of the experiment will sketch a picture of the Clar-
ity of Groove, by combining the results and the reasoning
of the participants the satisfiability will be determined.

3.2.3 Generality
For the Generality, the games that were implemented are
used to analyze. These games are already chosen in such
a way that they already a wide range of functionalities.
All these functionalities will be evaluated separately and
analyzed what their impact is with other games in mind.

3.2.4 Extensibility
While the other properties mostly focus on the game de-
scriptions, the Extensibility focuses on the GDL and its
ability to support new concepts. To test this, the devel-
opment of Groove will be analyzed to see how Groove is
being extended to support new concepts. This can later
be used for modeling the games as well. If the process
of Grooves development shows that small features can be
implemented it will satisfy the Extensibility property.

3.2.5 Evolvability
Evolvability is all about producing valid states and making
sure that each move that has been made is valid. Groove
supports a state exploration functionality by using this
functionality and combining the results of the games the
Evolvability can be evaluated. Especially the Chess imple-
mentation can give a clear indication of Grooves capacities
in this regard since it requires a check after each move that
has been made.

3.3 Experiment
One of the properties that will be evaluated is Clarity.
This checks the readability and the comprehensibility of
the game descriptions for its users. To test this properly,
an experiment is set up. This experiment will consist out
of 3 parts, namely the instructions with an example, the
experiment itself, and lastly a feedback moment to address
any points the participants might have.

3.3.1 Instructions

The first part of the experiment is the instructions. The
instructions will consist out of a general explanation of
what Groove is and what graph transformations are. This
will not be done in too much detail, because the users
do not need extensive knowledge of Groove. This expla-
nation will be done guided by a demonstration program.
This program will serve as a guiding tool to prepare the
participants such that they have enough information to
take part in the experiment.

3.3.2 Game recognition
After the instruction phase, the test phase will start. Dur-
ing this phase, each participant will get to see the same
3 games. These games are Tic-tac-toe, Checkers, and
Ludo. For each of these games the same procedure ap-
plies. Firstly, the participants get 2 minutes the time to
look at the game and try to determine if they know what
game it is. If they believe they know what game it is, they
are required to explain what game it is and give examples
that would make this true, e.g. a certain move or setup of
the board. If after the first 2 minutes they haven’t figured
it out they will get a little help in how to understand it.
These will not be game-specific hints, but general remarks
that might apply to the game. If after another 2 minutes
they haven’t been able to give an answer or provide a valid
explanation. For the analysis, the results will be divided
into the three aforementioned categories:

1. recognized without help

2. recognized with help

3. not recognized

4. RESULTS
This section covers all the results of all game implemen-
tations, giving an overview of all functionalities. Further-
more, the results of the experiment are discussed and ex-
plained.

4.1 Game implementations
For this research several games needed to be implemented
to answer the research question. For each of the games,
the new functionalities that are noteworthy are discussed.
The games are discussed in the order that they were im-
plemented and discovered.

4.1.1 Tic-tac-toe
The first game that was implemented is Tic-tac-toe. While
the game itself is not very extensive, it offered a few pos-
sibilities to try out and see how they turn out.

Players
For pretty much all board games the players make moves
after one another. Before implementing the game logic the
players were modeled. Each player represents a node and
has an edge with a label next pointing to the player that
has to make a move afterward. Figure 2shows how the
players have been modeled in Groove. After each player
made a move, the move also removes the turn label at the
Player and transfers it to the player which is next.

Priorities
Furthermore, the implementation of this game gave a first
glance at how to deal with priorities. In the case of Tic-tac-
toe, checking for a winning condition has a higher priority
than executing a move. Groove supports a priority system
where for each priority (high to low) the number of moves
with the highest priority is determined. If there are no

3



Figure 2. Modeled players

available moves for this priority, moves on a lower priority
will be evaluated.

Ending the game
Lastly, are the win conditions as mentioned in Section
4.1.1 like mentioned before. After a game is won, no moves
should be played anymore and it should be clear who won
the game. This is done by removing the turn label and
adding the win and add a label to the winner and loser.
Additionally but not required, a score can be awarded to
the winner and loser respectively. This can be achieved
by connecting the player node with a node of type int. A
game only reaches a final node if and only if there are no
longer moves applicable indicating and the game is over.
This means one of the players won or the game ended in
a draw. Which is guaranteed with this implementation.

4.1.2 Checkers
The next game that has been implemented is Checkers,
this implementation of this game includes all functional-
ities that have been described in Tic-tac-toe. Checkers
is more complex than Tic-tac-toe and therefore also need
additional functionalities that need to be implemented to
complete the game.

Multiple moves per turn
The first additional functionality is making multiple moves
on a turn. This is the case when you take a piece and after
this have to take as many pieces as possible. After a piece
is taken, this piece gets the slay label, indicating this is
the only piece for this turn that can take other pieces.
After no pieces can be taken anymore an explicit rule has
been created to transfer the turn to the other player and
removing the turn and slay label. This works perfectly as
it combines the priorities to make sure the right moves are
executed.

Variable move length
After a king is introduced in the game, such a piece can
move a variable amount of fields to take pieces or simply
move itself. Using the methods like before, this would
mean that there must be 9 different rules for this. This
isn’t necessary as Groove supports regular expressions that
make it possible to put this in only one rule. See Figure
3how a king can move downwards.

Figure 3. Varying move length

Counting
In Checkers counting is introduced for the first time. To
know who won the game, the pieces that are on the board
need to be counted. When this number reaches 0 this
means one of the players lost the game and a final state is

reached. There are two options to keep track of the count-
ing. The first option is assigning a label an integer value
like let: pieces= 20 for initial value and let: pieces = pieces
- 1 for the update. The second option requires manual cal-
culations with the same results as the first option and is
not worth further exploring for simple functionalities like
these. It will be discussed in a little bit more detail in the
Ludo implementation as it proved to be useful there.

4.1.3 Chess
The largest and most complex game that is implemented is
Chess. The reason Chess is more complex than the others
is that each move can only be valid if after the move your
own king is not in a check position. Additionally, this is
the first game that introduces much more piece variants,
Checkers only has two. To implement Chess with these
two new mechanics, 2 Groove functionalities have been
used. Besides these 2 functionalities, a combination of
previously mentioned functionalities also has been used to
model the Chess game.

Recipes
To make sure that each move that has been made does
not result in an invalid state, your king is checked, recipes
were used. These recipes consist out of one or multiple
graph transformation rules. All these rules within the
recipe need to be executed, if parts of this fail the entire
recipe cannot be executed. While it is possible to execute
these rules in the recipe one by one, the state the game is
in is not valid and only becomes valid if the entire recipe
has been executed. By using the recipes it is guaranteed
that a move that has been made is also valid.

Variables
Chess also introduced a new functionality that is neces-
sary to keep the game compact. Since there are a total of
6 different chess pieces, it would be inefficient if there are
different rules for all 5 pieces that can be taken (the king
cannot be taken). Groove supports the use of variables,
which make it possible to define only 1 rule for each piece
to take an opponent piece. See Figure 4 for an implemen-
tation on how to work with variables. The list after the
variable x indicates all values it may not be, this is nec-
essary as it otherwise is also able to take the value of the
white label which is undesirable behavior. It is also pos-
sible to instead of indicating which values it cannot have,
indicate the values it could be.

Figure 4. Black pawn takes white piece

4.1.4 Ludo
The last game that was implemented is Ludo. Ludo is a
Stochastic game, meaning it got an element of chance in
it. In Groove, there already existed an implementation
of Groove with working game mechanics. Therefore for
the modeling, only the chance element within Groove has
been explored. After this two possible ways to implement
the dice roll have been explored.

Player
The first option to model the dice roll is by seeing the

4



dice roll as a third player. This would mean that this ad-
ditional player randomly chooses one out of six numbers,
meaning for the implementation of the dice no chance el-
ements have to be implemented. While this is an easy
solution that would make the dice work as it is supposed
to, the implementation would mean this third player need
to be modeled as well to keep playing the game as in-
tended. The rule in this instance always has 6 possibilities
namely one to six.

Generate random number
The second implementation of the dice roll does not re-
quire a third player. It namely uses the random int gen-
erator that is part of Groove. While this number cannot
be ranged from one to six, the modulo of the generated
number can be taken. This will result in a number from
0 to 5, so the last operation would be to add 1 to this
number. The final number ranges from 1 to 6, the values
of a normal 6-sided die. The benefit of this approach is
that it doesn’t require a third player and instead of having
6 possible rules that can be applied there is only one with
a ranging result.

4.2 Experiment
The experiment as described in section 3.3 has been con-
ducted on five test persons. The results of each game will
be discussed separately. Additionally to the classifiers that
were previously mentioned, three other categories indicate
on what basis they recognized the game. A 0 indicates
they did not need it to recognize the game and a 1 indi-
cates that they used it to recognize the game. These three
categories are board structure, naming(labels and rules),
and game logic.
The board structure is the starting representation of the
game and how the nodes and edges are positioned.
The naming is all names of the labels and the rule names.
The game logic is the logic behind each of the rules that
represent a move in the game.
To conduct the research the test persons gained full control
over the computer hosting Groove, this was done to give
them as much control over the recognition and exploration
of the games.

4.2.1 Tic-tac-toe
Tic-tac-toe was the first game the test persons had to rec-
ognize. After a small introduction discussing the essen-
tials of Groove and the mechanics, Tic-tac-toe was shown.
While each of the persons managed to recognize the game
within 2 minutes, some struggled a little with understand-
ing how the game was modeled. While most of them fig-
ured it out without having to look at the game logic, there
was one person that used the game logic and more pre-
cisely the winning conditions to recognize the game.

Tictactoe Recognized Board structure Naming(labels, rules) Game logic
person 1 nohelp 1 1 0
person 2 nohelp 1 1 0
person 3 nohelp 1 1 0
person 4 nohelp 1 1 1
person 5 nohelp 1 1 0

Table 1. results experiment Tic-tac-toe

4.2.2 Checkers
After Tic-tac-toe the test persons had to recognize the
game checkers. 3 out of 5 people after seeing it for the
first time reacted directly that it was the game Chess. Af-
ter mentioning it all of them immediately redacted their
previous answer as they saw this was not correct. The
other two immediately did recognize the game, by looking

at the board and the naming they clearly indicated that
the game was Checkers. The remaining three recognized
the game after analyzed the moves that indicated taking
another piece. After quickly trying that out, they recog-
nized the move and concluded that it must be checkers.
One did indicate that the term king threw them off a lit-
tle as they associated it with Chess, but after recognizing
the game they understood this as well.

Checkers Recognized Board structure naming(labels, rules) Game logic
person 1 nohelp 1 1 0
person 2 nohelp 1 1 1
person 3 nohelp 1 1 1
person 4 nohelp 1 1 1
person 5 nohelp 1 1 0

Table 2. results experiment Checkers

4.2.3 Ludo
For Ludo, the result was the same for each test person. Af-
ter being shown the game, they all recognized the unique
shape and setup from the game and linked the names of
the rules and labels directly to the game, and recognize
the game within 30 seconds. They did mention that the
unique structure of the game benefited in recognizing the
game and clearly separating the players with their assigned
pieces. If this wasn’t modeled as clearly as it was now, they
wouldn’t have seen it as fast as they did now.

Ludo Recognized Board structure Naming(labels, rules) Game logic
person 1 nohelp 1 1 0
person 2 nohelp 1 1 0
person 3 nohelp 1 1 0
person 4 nohelp 1 1 0
person 5 nohelp 1 1 0

Table 3. results experiment Ludo

5. ANALYSIS
With the results of the game implementations and the
experiment the five different properties that Browne de-
scribed can be analyzed. The research question will be
answered based on the analysis of the five properties.

5.1 Simplicity
Simplicity is all about simple and easy to write game de-
scriptions. After modeling the different games, it was dif-
ficult at first to use the right structures. But this was
mostly the cause of inexperience in the program. As soon
as multiple features in Groove became clear, the design
became much more simple. The functionalities that have
been described are a simple way of modeling them and
without too much repetition and overlaps, like the regular
expressions or priorities. Furthermore, the rules system in
Groove makes it easy to create rules or adjust currently
existing ones since each rule is separately declared and
does not require any links with the other rules. If the
functionalities of Groove are clear to the person modeling
the games, it becomes a simpler process that results in ef-
ficient games. Since the rules and starting graph are easily
modifiable implementable satisfies Groove the Simplicity
property.

5.2 Clarity
Using the results of the experiment the Clarity property
can be analyzed. From the results of the game, each par-
ticipant recognized the games without help. Which is al-
ready an indication of the Clarity of Groove. But other
things need to be highlighted as well. The way the par-
ticipants recognized the games was in most cases because

5



of the clear structures of the board and the clear naming
of the labels and rules. the Clarity increases by order-
ing the graphs and naming everything logically. With the
game logic being a bit more advanced, the participants
still recognized the games as mentioned before this is not
the most important aspect of the game descriptions. So
by looking at the results, the recognition, and the factors
that determined the recognition, Groove also satisfies the
Clarity property.

5.3 Generality
Generality is more about the bigger picture of the GDL.
Since the GDL should support a wide variety of games
and functionalities. For the games that have been imple-
mented all different functionalities have been listed. All
of these games have been successfully implemented, all
using a different range of functionalities. While there al-
ready have been plenty of functionalities, not all possibil-
ities in Groove were needed. Wherewith each in complex-
ity increasing game no problems in the design have been
found. It is highly likely that with other, perfect informa-
tion, games no problems would be encountered. Therefore
Groove satisfies the Generality property.

5.4 Extensibility
Groove already contains a large variety of features that
make it possible to model different kinds of games, as
can be seen from the results of the game implementations.
While several features of Groove have been explored not
all features have been used to create the games. Seeing
that most features proved to be useful for certain types of
implementations, it likely that those unexplored features
can help to implement other game mechanics. Further-
more, these features in Groove have been growing over
time for one can argue it relatively easy to extend to sup-
port new concepts, may it be for existing features or new
ones. Because of the aforementioned points Groove satis-
fies the Extensibility property.

5.5 Evolvability
During the modeling of the games, it is important that no
faulty moves can be made. With the several games that
have been modeled, there have been two possibilities that
make sure this is not the case. Firstly the priorities make
sure that if a certain move can be made, this must be
done and not a move that has a lower priority. Secondly,
the recipes proved to be really useful for checking the va-
lidity of a move, by executing everything that is inside
the recipe. If at some point a rule cannot be applied the
recipe cannot be applied as a whole. This was extremely
useful for implementing the check for the check rule in
Chess. Both of these implementations make sure that the
game cannot end in a non-playable state. The only way
the game ends in a final state is when a player wins or it
ended in a draw. Since this always applies when the game
is modeled correctly using these methods, Groove satisfies
the Evolvability property.

6. CONCLUSIONS
With the game implementations and the analysis of the
properties, there are several things to take away from.
The GDL of Groove proved to be capable of modeling
the games that were planned to be modeled. Although,
this does not mean that the GDL of Groove is suitable for
all types of games. Since the games that have been imple-
mented and analyzed were perfect information games and
a take on chance. Therefore the suitability of Grooves
GDL for imperfect information games cannot be deter-

mined based on this research. But the GDL of Groove
does satisfy the five properties that have been presented
and analyzed. So we can answer the research question
that has been stated at the start of the paper. Is Groove
and its Game description language suitable for a general
game playing environment? The answer to the question
is yes, but this is only for the perfect information games
and stochastic games which have perfect information.

7. DISCUSSIONS
This research gives a good basis for using Groove as a
GGP environment. There are still a lot of parts that
could have been different. Because of the limited time
of this research, the pool of games that were implemented
stayed small. To give a more convincing answer, a larger
set of games could have been used to analyze. The same
can also be said about the experiment that has been con-
ducted. Currently, the experiment only had 5 participants
which limit the diversity in the participants which could
lead to a biased result. By extending the experiment with
more participants, but also increase the games that need
to be recognized the result becomes more convincing than
it currently was.

Lastly, this research only focused on the perfect informa-
tion games. This keeps the imperfect information games
left to explore for the GDL of Groove. This research could
serve as a good basis for future research that looks into
imperfect information games. This research can also serve
as a basis to create a game manager that would bring the
GGP into practice in Groove.

8. RELATED WORK
In 2005, Stanford University created its own GDL (S-
GDL) having Prolog-logic-based representation. They chal-
lenged computer scientists all over the world in a competi-
tion for the best search algorithm [2]. Stanford would host
this competition annually until 2016. While the GDL of
Stanford is the most well known GDL to date, they have
not been the first to propose a Prolog-logic based repre-
sentation for a GDL Koller & Pfeffer [4] were the first in
1997.

While the S-GDL remains the most accepted GDL to date,
multiple other GDLs have been proposed that do not take
the logic-based representation, one of them uses undirected
graphs to model the games [3], but instead of using the
graph transformations, like Groove, to model the different
actions, matrices are used.

Furthermore, Tagiew [6] describes a GDL which bases its
representation on Petri nets. This is a place and transi-
tion network, this has quite some similarities to how graph
transformations work. These Petri nets describe a set of
transitions that are applicable if all places in here contain
a token that will then fire and result in a new state. Which
in a lot of ways overlaps with the functionalities of graph
transformations.

9. REFERENCES
[1] C. Browne. A class grammar for general games. In

A. Plaat, W. Kosters, and J. van den Herik, editors,
Computers and Games, pages 167–182, Cham, 2016.
Springer International Publishing.

[2] M. Genesereth, N. Love, and B. Pell. General game
playing: Overview of the aaai competition. AI
Magazine, 26(2):62, Jun. 2005.

6



[3] M. Kearns, M. L. Littman, and S. Singh. Graphical
models for game theory, 2015.

[4] D. Koller and A. Pfeffer. Representations and
solutions for game-theoretic problems. Artificial
Intelligence, 94(1):167–215, 1997. Economic
Principles of Multi-Agent Systems.

[5] S. J. S. K. Silver, D. Mastering the game of go
without human knowledge. Nature, (550):354–359,
2017.

[6] R. Tagiew. Multi-agent petri-games. In 2008
International Conference on Computational
Intelligence for Modelling Control Automation, pages
130–135, 2008.

7


	Introduction
	Problem Statement
	Research Question

	Background
	Groove
	Graph transformations

	Methodology
	Game implementations
	Perfect information games
	Stochastic games

	Criteria points
	Simplicity
	Clarity
	Generality
	Extensibility
	Evolvability

	Experiment
	Instructions
	Game recognition


	Results
	Game implementations
	Tic-tac-toe
	Checkers
	Chess
	Ludo

	Experiment
	Tic-tac-toe
	Checkers
	Ludo


	Analysis
	Simplicity
	Clarity
	Generality
	Extensibility
	Evolvability

	Conclusions
	Discussions
	Related work
	References

