
Investigating the use of hub neuron identification for
pruning sparse neural networks

Andrew Heath
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.j.heath@student.utwente.nl

ABSTRACT
Sparsity constraints decrease computation time and
memory requirements for Artificial Neural Networks
(ANN). Further research has shown that pruning
during each epoch based on accuracy shows similar
improvements. Research on pruning has brought ANNs
closer in line with their biological counterparts. However,
the formation and reinforcement of hub neurons, as seen
in a brain, has not been explored entirely in ANNs.
Reinforcement of said hub neurons could reduce the time
and memory requirements of network training pruning
algorithms. This research investigates the Laplacian
centrality of neurons in ANNs and Sparse Neural
Networks (trained using SET) during training, showing
changes in the distribution of Laplacian centrality of the
neurons. We propose an ANN training method, CenSET,
that uses Laplacian centrality to instruct pruning of
connections during the training of a sparse ANN. We
show that this approach does not dramatically decrease
the accuracy compared to training an ANN using a
conventional MLP or SET approach.

Keywords
Artificial Neural Network Pruning, Brain Neuron Hubs,
Laplacian Centrality, Network Science, Sparse Artificial
Neural Network, Sparse Evolutionary Training

1. INTRODUCTION
Deep Learning (DL) has grown in its applications,
in many fields, including medicine and social science.
Despite growing applications, there are still limitations
in the underlying methods, such as the memory and
time requirements to run DL methods. Biological neural
networks have served as inspiration for DL’s Artificial
Neural Networks (ANN). ANNs use fully connected
neuron layers that do not mimic the sparsely connected
neural networks of the brain or other networks seen in
nature [35, 4]. These additional connections, present
only in the artificial variant, increase its computational
complexity without improving the ANNs accuracy [6, 19].

Initial attempts to improve the efficiency of ANNs focused
on pruning [21, 29], the removal of unnecessary neurons

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
35th Twente Student Conference on IT Jul. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

1
2

3

4 ...

Figure 1: Visualization of SET. 1) For each sparse
connected layer: 2) At the end of each training epoch,

then absolute weights are removed. 3) For every weight
removed a new weight is randomly added. 4) The

procedure repeats as in normal ANN training

from the dense neural network during training, and
repeating the prune train cycle until an equilibrium is
found between performance and ANN size [27]. Later
work refined the pruning process further and showed that
it was sufficient to repeat the prune train cycle twice if
the network’s weights are initialized randomly [8].

Pruning uses the approach of starting with a dense ANN
and progresses towards a Sparse Neural Network (SNN)
during training epochs. Recent work has focused on
(static) sparse training, which in contrast to pruning,
starts with an SNN and trains using gradient descent (or
another method) afterwards [26, 17].

Sparse training reduces the memory requirements of the
ANN and increases the training speed when compared
with dense approaches to training [12, 26]. Although
sparse training approaches are closer to their biological
counterparts, they do not incorporate evolutionary
sparsity, the replacement of neural synapses over time
[15].

Sparse Evolutionary Training (SET) was proposed by
Mocanu et al. as a method to introduce this evolutionary
sparsity of synapses into SNN training [28]. With SET,
a fraction of the smallest positive and largest negative
weights are removed in each training epoch (visualised in
Figure 1). The paper noted a decrease in training time
with no significant decrease in accuracy using SET [28].

Further research by Lapshyna introduced the AccSET
procedure, which further developed SET by cutting down
on the number of connections during each training epoch
while the accuracy is still increasing, bringing the SET
procedure closer to synaptic pruning in the brain [20].

This research proposes using the identification of hub
neurons 1 through measuring the Laplacian centrality of
neurons within the network and pruning neurons that
fall below a level of the centrality. Hub neurons are

1Highly connected and important neurons within a neural
network.

1



typically identified as neurons with more than average
connections, but this does not incorporate the weights of
said connections. Laplacian centrality does account for
connection weights and is therefore more suitable. The
brain inspires the proposed approach, as the biological
neural networks promote the growth of hub neurons over
time [30].

The research began with an analysis of the Laplacian
centrality of neural networks in a fully connected MLP
as well as a sparse ANN trained using the SET method.
This analysis aimed to answer the research question:
How does the Laplacian centrality of neurons within an
ANN evolve during training? We go on to propose a
new training method, CenSET, that utilizes Laplacian
centrality to prune non-central neurons. Answering the
following research question: How does pruning neurons
based upon a Laplacian centrality threshold from a sparse
ANN at each training epoch affect the ANN’s accuracy?

2. RELATED WORK
There are two groups of relevant literature to this
research. Firstly, research into the brain’s structure in
relation to network science, and secondly research into the
optimization of ANNs. The 2011 paper by Telesford et
al.[35], shows that a graph can model the brain’s internal
networks, with vertex representing neurons and an edge
representing a synapse. They show how network science 2

can be applied successfully as a model for the brain and
that such an approach could improve understanding of
the brain’s functions. This idea is taken further in a 2019
paper by Oldham et al. [30] by modelling the development
of the brains neural network using a graph model. The
paper showed that the process of a (biological) neural
network’s development leads to the creation of hub
neurons. An earlier conference paper by Bolanos et al. [3]
in 2009 showed that network science centrality metrics
could be used to find hub neurons within a brain’s neural
network. These three pieces of prior research make this
research’s premise, that centrality metrics can be used to
improve the pruning of sparse neural networks, plausible.

We will now review the literature on the optimization
of Artificial Neural Networks (ANN) with respect to the
number of parameters in an ANN. In order to make ANNs
more efficient, a parameter reduction is required [27]. Early
work focused on transforming an initially dense network
to a sparse one by removing neurons during training. This
approach was termed pruning by LeCun et al [21], and
Mozer et al [29].

The pruning approach involves removing connections with
low weights during the training process and repeating
this process each training epoch, for as many epochs as
determined by the given applications time/performance
tolerance. Later work by Han et al. [13] updated the
pruning approach in the context of deep learning. Frankle
et al. [8] showed that only 2 cycles of training and pruning
are required if the ANN is initialised with random weights.

Further research on pruning brought about more
complex methods such as Simultaneous training and
pruning proposed by Louizos et al. [25] and further
developed by Liu et al. [24] which trains and prunes using
L0 regularization simultaneously starting from dense
networks. Another pruning approach is called one-shot
pruning [22, 38, 41]. These works showed that NNs could
be pruned faster by training for a very short time while
maintaining a similar performance.

2The field of study of complex networks.

a)

b)
c)

a)

b)
c)

Figure 2: Example of a fully connected MLP (left) and a
sparse ANN (right). a) Input layer b) Hidden layer(s) c)

Output layers.

Recently the focus has shifted towards the possibility of
starting with sparse neural networks and ending with one
after pruning/training. This approach is termed sparse
training [27]. Mocanu et al. proposed in 2016 a method
for sparse training [26] starting from a sparse network
initially and then training using gradient descent or
another method. Further research [17] showed this to be
a valid approach and it was later validated against other
types of NN not explored in the initial study [36, 31, 2].

Although promising, this approach leads to worst
performance compared to starting with a dense neural
network. Later research by Mocanu et al. [28] proposed
the Sparse Evolutionary Training (SET) in order to
address these performance issues. With SET in addition
to pruning connections, new connections are also added
at each training cycle; the same number are added as
were pruned in the same step. This approach proved
to reduce the number of connections while obtaining a
better accuracy than with a dense network.

SET is further developed in the 2020 paper by Lapshyna
[20] where AccSET was proposed, building on SET with
the addition of adding connections to the network during
the training phase only if accuracy is decreasing.

Parallel work, such as a paper by Li et al. in 2020 [23]
shows a pruning method for (dense) neural networks using
Katz centrality as the pruning metric where neurons that
do not meet the threshold centrality score are pruned.
The paper shows this to be a valid metric to use for
pruning, opening the possibility of combining a sparse
training approach [28] with a network centrality metric
as we will explore in our research.

3. BACKGROUND
It is assumed that the reader has basic knowledge of
statistics, graph theory and linear algebra.

3.1 Artificial Neural Networks
Artificial Neural Networks (ANN) are a type of computing
system inspired by biological neural networks found in the
brains of animals. Numerous kinds of ANNs exists; this
research focuses on Multi-Layer Perceptrons (MLP) an
example of which is seen in Figure 2. An MLP has three
main structural parts: the input layer, the hidden layers
and an output layer. Each layer has several neurons, and
each layers neurons are connected to the neurons of the
next layer by a connection with a weight. The input layer
takes the initial input of information which could be data
points or pixel information. The output layer classifies the
input in one of the possible classes as defined by the model
[33]. The hidden layers (of which there can be one or more)
allow the network to classify the input correctly.

The network is trained through the supervised learning
method of backpropagation. This entails adjusting the

2



x1

x2x2

x3

x4

x5

x6

0.4

0.4 0.2

0.2

0.2

0.6

0.6

Figure 3: Example of a weighted graph.

weight of neurons depending on the error at the output
of the network. This adjustment is made from the output
layer to the input layer. It is important to note that
MLPs are fully connected, meaning that each neuron
in a layer has a weighted edge to every neuron in the
next layer. This results in vast networks with many
neurons and connections, making the backpropagation
computationally very intensive.

3.2 Sparse ANN and SET
A sparse ANN is an ANN similar to an MLP, but it is
not fully connected, Meaning each neuron in each layer
is not connected to every neuron in the next layer. The
difference between a fully connected MLP and a sparse
ANN is visualized in Figure 2. The sparsity allows for
decreased memory and computation requirements for the
backpropagation of the ANN and is therefore desirable
provided it does not reduce accuracy dramatically [27].

The Sparse Evolutionary Training (SET) procedure [28],
is an MLP training procedure that generates an initial
sparse topology for the MLP before beginning training,
replacing the MLP’s dense layers with sparse ones. During
the training, the SET procedure removes a proportion
of the connections with the smallest weights and then
randomly regrows the number of removed connections.
The SET procedure is visualized in Figure 1.

3.3 Graph theory & Network Metrics
A graph is made up of vertices connected by edges. An
Artificial Neural Network can be modelled as a graph
where the vertices are the neurons, and the edges are the
connections, where edges have attributes corresponding
to the connection’s weight. Therefore we can denote the
graph of an ANN as a weighted network, G = (V,E,W ),
where V is the set of vertices V (G) = v1, v2, ..., vn, E
is the set of edges E(G) = e1, e2, ..., en where each edge
e = (vi, vj) has an associated weight wi, wj .

Figure 3 shows an example weighted graph. The
centrality of a vertex within a graph is a numerical score
that indicates the relative importance within the network.
The centrality score aims to reflect how important a given
vertex is within the graph. The specific calculation for
determining vertex centrality is varied as many different
metrics can measure centrality. These measures differ in
approach and what indicators they use to assess vertex
centrality. A simple centrality metric is Betweenness
centrality [9], which is calculated for a vertex as being the
number of shortest paths between two other vertices that
cross it [10]. The betweenness centrality (and Laplacian
centrality discuss below) of the vertices of Figure 3 is
given in Table 1. All vertices have betweenness 0 apart
from vertex x4 which has betweenness centrality of 0.8.

3.4 LaplacianCentrality
Laplacian centrality is a centrality metric that
incorporates edge weight proposed by Xingqin et al.
the explanation below will give a mathematical notation
as seen in the relevant literature [32]. Given the graph
G, where G = (V,E,W ), as defined in Subsection 3.3.

Vertex BC LC
x1 0 12
x2 0 20
x3 0 48
x4 8 20
x5 0 20
x6 0 20

Table 1: Laplacian (LC) and Betweenness centrality
(BC) calculated for Figure 3 (both not normalized).

It should be noted that Laplacian centrality does not
consider direction of edges so wi,j = wj,i. Loops are not
considered. A(G) is the adjacency matrix of graph G as
is shown in Equation 1. X(G) as shown in Equation 2
is the sum weight matrix of vertices of graph G where
xi =

∑n
j=1 wi,j (xi is the sum weight of the vertex).

A(G) =


0 w1,2 ... w1,n

w2,1 0 ... w2,n

. . . .
wn,1 wn,2 ... 0

 (1)

X(G) =


x1 0 ... 0
0 x2 ... 0
. . . .
0 0 ... xn

 (2)

The Laplacian matrix of the graph G is defined as L(G) =
X(G) − A(G). Given that for graph G, λ1, λ2, ..., λn are
the eigenvalues of it’s Laplacian matrix, L(G). We denote
the Laplacian energy of G as EL(G) where:

EL(G) =

n∑
i=1

λ2
i (3)

Given the definitions above and that Gi is G with vi
removed, we can define the Laplacian centrality for vertex
vi in G, LC(vi, G) as seen in Equation 4

LC(vi, G) = (∆E)i = EL(G)− EL(Gi) (4)

This research uses the non-normalized version of Laplacian
centrality, as we want to see the increase in Laplacian
centrality between epochs.

4. CENSET
As proposed, the CenSET (Centrality SET) method is a
variant of the SET method that uses Laplacian centrality
(LC) to instruct pruning.

The CenSET is an ANN training algorithm. The
method prunes connections in the ANN based on
identifying neurons with low LC. This method has been
benchmarked using an ANN initialized as sparse, but this
is not a requirement for the method as the ANN could
be initialized as fully connected although the process of
re-adding connections would need to be adapted (we leave
this exploration to further research).

CenSET initializes a sparse network (as in SET [28])
using a Erdős–Rényi model [7] and performs a standard
training procedure. During each epoch, the weight layers
are converted to a graph representation. LC of each
neuron is then calculated, connections (weights) attached
to a neuron with an LC that falls below the threshold
µ − kσ (where k depends on the data-set being trained
on) are removed. The same number of connections that
are removed are then randomly added and the training
continues.

3



This approach was motivated by the hypothesis that
neurons with lower than average LC within the network
are less important and therefore are good candidates to
be pruned. The pseudo-code of CenSET can be found in
Algorithm 1.

Algorithm 1: CenSET (based on SET [28] differences
shown in red)

initialize ANN model;
notations are described in Section 3;
set ε and ζ ;
k ← optimum threshold as seen in Section 6;
for each fully-connected (FC) layer of ANN do

replace FC with a Sparse Connected (SC) layer;
end
Init training parameters;
for each training epoch e do

perform standard training procedure;
perform weights update;
G ← graph representation of the ANN ;
R← {v|LC(v,G) < µ− kσ} ;
for each bipartite SC layer of the ANN do

remove connection if connected to neuron in R;
if e is not last training epoch then

add randomly new weights (connections)
the same amount as the ones removed
previously;

end

end

end

4.1 Converting weight layers to a Graph
The weighted layer representation needs to be converted to
an adjacency matrix to calculate Laplacian centrality on
the neural network’s graph. This allows it to be parsed into
the NetworkX library [11], which can be further converted
to the NetworKit library [34] to calculate the network’s
neurons Laplacian centralities. This conversion is done in
the following way:

Given networks layers L = l1, l2, ..., ln, Keras (see
Subsection 5.1) stores the network weights in a matrix as
in Equation 5, where w1,1 is the weight of the connections
between neuron 1 of layer lk and neuron 1 of layer lk+1.

K|lk|×|lk+1| =

w1,1 ... w1,k+1

...
. . .

...
wk,1 ... wk,k+1

 (5)

Given that the total number of neurons in the network
is S where S =

∑n
k=1 |lk|. NetworKit needs the ANN’s

graph to be in a adjacency matrix representation as in
Equation 6. Where wk,k represents a connection between
neruon k and neuron k + 1.

AS×S =

w1,1 ... w1,S

...
. . .

...
wS,1 ... wS,S

 (6)

In order to make the conversion to the representation in

Equation 5 to that in Equation 6 Algorithm 2 is used to
perform the conversion.

5. METHODOLOGY

Algorithm 2: Converting from keras weights
representation to an adjacency matrix

Result: AS×S = adjacency matrix of ANN;
AS×S = empty matrix;
for layeri = 1 to n do

calculate offsets for layeri to map layer to AS×S ;
Add to AS×S offset weights of layeri ;

end

5.1 Instruments Used
For the analysis of Laplacian centrality and the creation
and benchmarking of CenSET, the python machine
learning libraries TensorFlow [1] and Keras [5] were used.
Tensorflow is a machine learning library focusing on
artificial neural networks, and Keras provides a more
straightforward interface for using Tensorflow.

The GitHub repository 3 was used as a starting point. This
provided an implementation of SET [28] which was used
as a starting point for CenSET. The code base used to
run the experiments of this research can be found here:
https://github.com/andrewjh9/CenBench.

Other Python libraries used:

• Numpy [14] - Used to read results files, and for
general matrix operations.

• scipy [37]- Used for sparse matrix operations.

• NetworKit [34] - Used for efficient implementation of
Laplacian centrality.

• NetworkX [11] - Used to convert from adjacency
matrix to network representation.

• matplotlib [16] - Used for creating of the plots.

All experiments (on MLP, SET, and CenSET) use the
hyper-parameters 4 as given in Table 3.

5.2 Datasets
An overview of the datasets, FashionMNIST and CIFAR-
10, is provided in Table 2. It should be noted that the
structure of the ANN is dependent on the dataset. The
sizes of each layer are listed under Network architecture
used in Table 2. For example, 100-200-10 would refer to
an input layer of 100 neurons, a single hidden layer of 200
neurons and an output layer of 10 neurons (each of which
corresponds to a class).

It should also be noted that both datasets had 10 classes;
further research should check to see if the findings of this
paper hold for a different amount of classes.

FashionMNIST [40] is a dataset made up of 28×28 images
of Zalando’s products. The dataset is made up of 60,000
training examples and 10,000 testing examples. CIFAR-10
[19] is a dataset made up of 32 × 32 images. The dataset
comprises of 50,000 training examples and 10,000 testing
examples.

5.3 Analyzing Centrality
For analyzing Laplacian centrality, two ANNs were
trained, one using an MLP approach and another the
SET approach. Each approach was run on each dataset.
During each epoch, the conversion as described in
Subsection 4.1 is performed, then the AS×S matrix

3https://github.com/dcmocanu/
sparse-evolutionary-artificial-neural-networks
4A hyper-parameter is a parameter that controls the
learning process in a machine learning model

4

https://github.com/andrewjh9/CenBench
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks


Dataset Type # Classes Training Set Size Testing Set Size Network architecture used
FashionMNIST [39] Image 10 60000 10000 784-256-128-100-10
CIFAR-10[18] Image 10 50000 10000 3072-4000-1000-4000-10

Table 2: Information on the datasets used in analysis of centrality and benchmarking CenSET.

Figure 4: Standard deviation (σ) of the Laplacian centrality of the neurons for MLP and SET. (left) FashionMNIST over
200 epochs, (right) CIFAR-10 over 400 epochs.

Hyper-
parameter

Value Hyper-
parameter

Value

activation
function

SRelu momentum 0.9

batch size 100 optimiser SGD
dropout rate 0.3 ζ 0.05
learning rate 0.01 ε 20
loss function Categorical cross-

entropy

Table 3: Hyperparameters used in all experiments

is read by the NetworKit library [34]. The NetworKit’s
Laplacian centrality function is then called on the network,
and this returns each neuron’s Laplacian centrality. These
Laplacian values were then saved to CSV files for later
analysis. During the analysis of the Laplacian centrality,
the conversion as described in Subsection 4.1 and calling
of the Laplacian centrality function was done each epoch.

5.4 Finding Optimum Pruning Threshold in
CenSET

To find an optimum pruning level for each dataset in
CenSET, trials were conducted on the two datasets.
Each dataset started with a wide search pruning between
µ − 0σ and µ − 4σ at intervals of 0.5σ. The number of
epochs varied per dataset, with FashionMNIST’s wide
search running for 50 epochs and CIFAR-10’s for 100
epochs. This difference in the number of epochs reflects
the different dataset sizes. The accuracy for each trial was
calculated as the mean of the last 10 epochs.

Further trials for FashionMNIST consisted of a narrow
search between µ − 2.1σ and µ − 3σ at intervals of 0.1σ.
This range was chosen as the wide search showed this to
be the range in which the highest accuracy lies.

CIFAR-10’s further trials consisted of two parts; a semi-
narrow search and a narrow search (this was due to the
long time required to conduct searches on CIFAR-10 at a
small interval). The semi-narrow search consisted of trials
between µ − 2σ and µ − 4σ at intervals of 0.4σ. Finally
the narrow search consisted of trials between µ−2.8σ and
µ− 4σ at intervals of 0.1σ.

6. RESULTS
6.1 Results of Analyzing Centrality
As seen in Figure 8, results of the analysis of Laplacian
centrality clearly shows an observable pattern. The
figure shows the Laplacian centrality distribution across
the neurons at 25 epoch intervals for Multi-Layered-
Perceptron (MLP). It can be seen that initially, the
distribution has a low standard deviation (σ), and as
the number of epochs increases, σ also increases. This
is true for both CIFAR-10 and FashionMNIST as seen
in Figure 4. This visual intuition can be confirmed by
Table 9 which shows σ = 1.162 in epoch 0 and σ = 7.074
by epoch 175 an average increase of 26.9% per epoch for
FashionMNIST. Also in Table 10 we see a similar pattern
for CIFAR-10 with an initial σ = 1.984 and by epoch 375,
σ = 18.563 an average increase of 16.5% per epoch for
CIFAR-10.

For SET [28] a similar picture emerges, but the centrality
is affected by the changes in training that SET imposes.
The sparse topology that it imposes (see Subsection 3.2 for
details) decreases the number of neurons in the network,
and therefore the initial σ for FashionMNIST and CIFAR-
10 is 0.429 and 0.02, respectively. For FashionMNIST, σ
shows a 72% increase from epoch 0 to epoch 175 and
CIFAR-10 shows a 66% increase between epoch 0 and
epoch 375.

6.1.1 Centrality and Accuracy
It can be seen in Figure 5 that a similar centrality curve
is observed in both SET and MLP across both datasets.
Laplacian centrality displays linear growth over epochs.
Although accuracy and centrality are both increasing,
it cannot be said from this investigation that they are
correlated although the data does imply this.

6.2 Finding optimum pruning level for
CenSET

CenSET, requires a pruning level to be found per
dataset. Multiple trials where conducted as described in
Subsection 5.4. The results of these trials will be discussed
per dataset. The graph G will be considered as the graph
representation of the an ANN, the notation will be as
given in Section 3.

5



Model CenSET SET MLP

Dataset
Acc
%

Conn
# LC

Prune
Threshold

Acc
%

Conn
# LC

Acc
% LC

FashionMNIST 84.87 33337 2.595± 5.599 < µ− 2.6σ 86.00 33230 5.090± 9.732 87.3 3.886± 7.252
CIFAR-10 64.34 341124 0.452± 2.573 < µ− 3.2σ 67.08 341664 0.676± 1.807 63.10 7.050± 18.563

Table 4: Comparison between CenSET (at optimum pruning threshold for the dataset), SET and MLP. Values given are
the mean of the final 10 epochs. FashionMNIST was run for 200 epochs and CIFAR-10 was run for 400 epochs.

(a) FashionMNIST (MLP) (b) CIFAR-10 (MLP) * (c) FashionMNIST (SET) (d) CIFAR-10 (SET)

Figure 5: Accuracy vs Laplacian Centrality for MLP and SET. Showing FashionMNIST over 200 epochs and CIFAR-10
over 400 epochs. *(For CIFAR-10 MLP, LC was sampled at 25 epoch intervals and a line was fitted)

FashionMNIST CIFAR-10
Threshold Accuracy (%) Accuracy (%)
µ− 0σ 61.63 10.00
µ− 0.5σ 61.63 47.54
µ− σ 80.11 49.01
µ− 1.5σ 82.11 50.09
µ− 2σ 82.59 51.40
µ− 2.5σ 83.45 58.75
µ− 3σ 83.24 59.17
µ− 3.5σ 83.09 59.17
µ− 4σ 83.06 59.31

Table 5: Wide search for optimum value pruning for
CenSET. Mean accuracy of last 10 epochs is given.

FashionMNIST was run for 50 epochs and CIFAR-10 was
run for 100 epochs.

6.2.1 FashionMNIST
FashionMNIST’s wide search can be seen in Figure 6 left,
this results in a optimum range being identified between
2.1σ and 3σ. A further narrow search between 2.1σ and 3σ
is seen in Figure 6 right. From this search, we found the
optimum pruning threshold to be 2.6σ (It should be noted
that the difference in accuracy between the thresholds in
the narrow search are not significant and may represent
noise between the different trials, but the optimum does
sit within the narrow search range). Therefore the pruning

Threshold Accuracy (%) Threshold Accuracy (%)
µ− 2σ 84.43 µ− 2.6σ 84.87
µ− 2.1σ 84.21 µ− 2.7σ 84.76
µ− 2.2σ 84.50 µ− 2.8σ 84.45
µ− 2.3σ 84.29 µ− 2.9σ 84.71
µ− 2.4σ 84.46 µ− 3σ 84.83
µ− 2.5σ 84.62

Table 6: Narrow search for optimum value pruning for
CenSET on FashionMNIST, over 200 Epochs. Mean
accuracy across epochs last 10 epochs on is given.

function p of neuron v where v ∈ V is:

p(v) =

{
prune v, if LC(v,G) < µ− 2.6σ

don’t prune v, otherwise

The full results of the narrow and wide search can be seen
in Table 6 and Table 5 respectively.

6.2.2 CIFAR10
CIFAR-10’s wide search can be seen in Figure 7 (left),
this results in a optimum range being identified between
2σ and 4σ. A secondary semi-narrow search as seen in
Figure 7 (middle) between the previously stated interval
resulting in a another range being found between 2.8σ
and 4σ. A final search as seen in Figure 7 (right) resulted

Figure 6: Finding optimum pruning level for FashionMNIST. Pruning neuron v if LC(v,G) < µ − xσ (where x is given
in the legend). (left) Wide search over 50 epochs, at intervals of 0.5σ between 0 and 4σ. (right) Narrows search over 200

epochs, at intervals of 0.1σ between 2.1σ and 3σ. * SET is a baseline.

6



Figure 7: Finding optimum pruning level for CIFAR-10. Pruning neuron v if LC(v,G) < µ − xσ (where x is given in
the legend). (left) Wide search over 100 epochs at intervals of 0.5σ between 0.5σ and 4σ. (middle) Semi-narrow search
over 400 epochs between 2σ and 4σ at intervals of 0.4σ. (right) Narrow search over 400 epochs between 2.8σ and 4σ at

intervals of 0.1σ. * SET is a baseline.

(a) FashionMNIST (MLP) (b) CIFAR-10 (MLP) (c) FashionMNIST (SET) (d) CIFAR-10 (SET)

Figure 8: Probability density of MLP and SET distributions of Laplacian centrality (LC) of neurons shown at every 25
epochs. 175 epochs trials for FashionMNIST and 375 epochs for CIFAR-10. LC range is limited for readability.

Threshold Accuracy (%)
µ− 2σ 41.19
µ− 2.4σ 39.59
µ− 2.8σ 63.75
µ− 3.2σ 64.14
µ− 3.6σ 63.59
µ− 4σ 64.02

Table 7: Semi-narrow search trials for optimum pruning
threshold for CenSET over 400 epochs for CIFAR-10.

Mean accuracy last 10 epochs given.

in the optimum pruning threshold to be 3.2σ (It should
be noted as with FashionMNIST that the difference in
accuracy between the thresholds in the narrow search
are not significant and may represent noise between the
different trials, but the optimum does sit within the
narrow search range). Therefore the pruning function p of
neuron v where v ∈ V is:

p(v) =

{
prune v, if LC(v,G) < µ− 3.2σ

don’t prune v, otherwise

The full results of the narrow, semi-narrow and wide search
can be seen in Table 8, Table 7 and Table 5 respectively.

6.3 Benchmarking CenSET
With the optimum prune thresholds of 2.6σ for
FashionMNIST and 3.7σ for CIFAR-10. CenSET was
benchmarked against SET and an MLP. The results of
this benchmarking is summarized in Table 4 and plotted
in Figure 9. The benchmarking shows that CenSET
underperforms both MLP and SET training approaches;
for FashionMNIST, CenSET under-performs SET by
2.3% and MLP by 3.8% on MLP. As for CIFAR-10, a

Threshold Accuracy (%) Threshold Accuracy (%)
µ− 2.8σ 63.75 µ− 3.5σ 63.88
µ− 2.9σ 63.60 µ− 3.6σ 64.06
µ− 3σ 63.89 µ− 3.7σ 63.90
µ− 3.1σ 63.30 µ− 3.8σ 64.14
µ− 3.2σ 64.34 µ− 3.9σ 64.16
µ− 3.3σ 64.18 µ− 4σ 64.02
µ− 3.4σ 64.02

Table 8: Narrow search trials for optimum CenSET
pruning threshold for CIFAR-10. Mean accuracy over

last 10 epochs given.

different picture emerges, CenSET underperforms SET
by 3.8% but performs better than MLP by 1.25%. Table 4
shows the full comparison between the methods.

7. DISCUSSION
7.1 Discussion of Analyzing Centrality
The findings of an increase in the spread of the distribution
of Laplacian centrality as the ANN trains is exciting. This
result implies the existence of hub neurons within the
ANN. Furthermore, the standard deviation increases over
the training epochs, this implies a small set of neurons are
becoming more important than others.

The formation of the higher distribution spread seems to
be important to the learning of the ANN as the accuracy is
increasing the most during the epochs that see the biggest
changes in distribution. The first four epoch intervals for
FashionMNIST show the most distribution change as seen
in Figure 8 (this holds for both SET and MLP), this
distribution change over the first 100 epochs happens in
approximately the same interval as the largest accuracy
increase as seen in Figure 5.

7



Figure 9: MLP, SET and CenSET at optimum pruning accuracy compared. (left) FashionMNIST over 200 epochs.
(right) CIFAR-10 over 400 epochs.

Although we do not formally demonstrate a link between
the increase in standard deviation and accuracy in this
research, our results empirically show it. Based on this
observation, further lines of research are mentioned in
Section 9.

7.2 Discussion of CenSET
CenSET currently underperforms SET on both datasets
and performs worst than MLP on FashionMNIST and
approximately matches MLP’s accuracy on CIFAR-10. We
believe this performance to be due to two reasons: the
decreasing removal rates as CenSET trains longer and
possible knock-on effects of removing certain non-central
neurons. The underperformance against SET is less than
a 5% decrease in accuracy across both datasets tested.
We would think that with a refined version of CenSET, it
may be possible to match or surpass the other methods on
accuracy.

As CenSET trains with a fixed pruning threshold, the
standard deviation becomes stable quicker than in SET
and MLP. This is because lower outliers are being pruned.
Once the standard deviation stabilizes, very few (if any)
neurons will be removed in a given epoch. This lack of
removal prevents the network from learning. SET, unlike
CenSET, will always remove a fixed amount of connections
in a given epoch, ensuring that the network has enough
new connections to continue increasing accuracy.

Another possible explanation for CenSET’s performance
is the knock-on effects of the removal of neurons of low
centrality. The removal of neurons with low centrality
could lead to an overall drop of centrality in the whole
network in a given epoch. As the neurons being removed
could be increasing the centrality of neurons they are
connected to. A different possible approach would be to
only remove low centrality neurons while the centrality
of the whole network is not increasing. This approach
is similar to the AccSET method [20], which uses inter
epoch accuracy change as a metric for deciding when to
re-add connections after pruning or not. Deciding not
to re-add could lead to a reduction in the a number of
connections in the network.

8. CONCLUSION
Within this research, a first attempt to sparsify a neural
network using inspiration from network science and graph
theory is made. Prior works [28, 13] were focusing on
pruning criteria like magnitude pruning and gradient-
based pruning. In this work, we introduce the use of
centrality metrics as a new pruning criterion in a dynamic

sparse training algorithm. The proposed method is named
CenSET. CenSET is extending the sparse evolutionary
training algorithm [28] and uses Laplacian centrality (LC)
as a pruning criterion.

This research shows that the LC of an MLP changes as
it trains and that this also holds for networks trained
using SET [28](an MLP based approach that uses sparse
topologies as well as a prune re-grow cycle during
training). Most notably, the standard deviation of the
network increases linearly. We also propose a training
approach, CenSET, similar to SET, but it uses LC as a
metric for deciding which neurons to prune. To this end,
LC was proven to provide very interesting insights into
the existence of hub neurons in dense and sparse neural
networks. The results show that the proposed method
(CenSET) has the ability to account for hub neurons at
a similar or slightly lower accuracy, with a good level of
stability.

9. FURTHER RESEARCH
This paper brings to light several new directions for
research into the structure and centrality of neurons
in an ANN as it is being trained. Firstly, more specific
analysis should be done to identify if there are hub
neurons being formed in the network during training.
This research implied this but did not prove it directly.
Further development of CenSET could also be possible,
in which a non-random method of re-adding connections
could be explored. This re-adding method could use
information regarding what new connections would
increase the network’s overall centrality. As discussed
in the conclusion, centrality could also be used to tell
whether the networks are learning along with the increase
of accuracy and could be used to instruct a pruning
approach that only re-adds connections if centrality is
decreasing between epochs.

Finally, research could be undertaken to create a
more appropriate centrality metric for Artificial Neural
Networks. Our research used Laplacian Centrality,
which does not take into account the direction of edges
(connections). It is also a metric created for graphs
generally and doesn’t consider topological considerations
of ANNs, such as the distinction between input, output,
and hidden layers. The different types of layers could
well be used to make distinctions when calculating
neuron centrality. The development of a more appropriate
centrality metric for neurons in an ANN could lead to
better identification of hub neurons, which could be used
to prune or sparsify the ANN in novel ways.

8



ACKNOWLEDGMENTS
I would like to give special thanks to my supervisor Elena
Mocanu for her all-around support during this research
project. I would also like to thank Freek Nijweide for his
helping in discussing theoretical matters and finally, to my
small army of proofreaders.

10. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zhang. TensorFlow: A system for large-scale
machine learning. CoRR, abs/1605.08695, 2016.
eprint: 1605.08695.

[2] N. Ailon, O. Leibovich, and V. Nair. Sparse Linear
Networks with a Fixed Butterfly Structure: Theory
and Practice. arXiv:2007.08864 [cs, stat], July 2020.
arXiv: 2007.08864.

[3] M. E. Bolanos and S. Aviyente. Identifying
centralized hubs within neural functional
connections. In 2009 IEEE/SP 15th Workshop on
Statistical Signal Processing, pages 25–28, 2009.

[4] D. M. Busiello, S. Suweis, J. Hidalgo, and
A. Maritan. Explorability and the origin of network
sparsity in living systems. Scientific Reports,
7(1):12323, Sept. 2017.

[5] F. Chollet and others. Keras. 2015.

[6] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and
N. de Freitas. Predicting parameters in deep
learning. CoRR, abs/1306.0543, 2013.

[7] P. Erd. os and A. R enyi, On random graphs I. Publ.
Math. Debrecen, 6:290–297, 1959.

[8] J. Frankle and M. Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations, 2019.

[9] L. C. Freeman. A Set of Measures of Centrality
Based on Betweenness. Sociometry, 40(1):35–41,
1977. Publisher: [American Sociological Association,
Sage Publications, Inc.].

[10] R. P. Grimaldi. Discrete and Combinatorial
Mathematics: an Applied Introduction. Pearson
Addison Wesley, Boston, 2004.

[11] A. Hagberg, P. Swart, and D. S Chult. Exploring
network structure, dynamics, and function using
networkx.

[12] S. Han, H. Mao, and W. J. Dally. Deep Compression:
Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding.
arXiv:1510.00149 [cs], Feb. 2016. arXiv: 1510.00149.

[13] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning
both Weights and Connections for Efficient Neural
Networks. arXiv:1506.02626 [cs], Oct. 2015. arXiv:
1506.02626.

[14] C. R. Harris, K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, Sept. 2020.

[15] J. Hawkins. Special report : Can we copy the brain?

- What intelligent machines need to learn from the
Neocortex. IEEE Spectrum, 54(6):34–71, 2017.

[16] J. D. Hunter. Matplotlib: A 2D graphics
environment. Computing in Science & Engineering,
9(3):90–95, 2007. Publisher: IEEE COMPUTER
SOC.

[17] J. Kepner and R. A. Robinett. Radix-net:
Structured sparse matrices for deep neural networks.
pages 268–274, 2019.

[18] A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. 2009.

[19] A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. University of Toronto, 2012.

[20] V. Lapshyna. Sparse Artificial Neural Networks:
Adaptive Performance-based Connectivity inspired
by Human-Brain processes, 2020. Bachelor Tshesis.

[21] Y. LeCun, J. Denker, and S. Solla. Optimal Brain
Damage. In D. Touretzky, editor, Advances in
Neural Information Processing Systems, volume 2.
Morgan-Kaufmann, 1990.

[22] N. Lee, T. Ajanthan, and P. H. S. Torr. SNIP:
Single-shot Network Pruning based on Connection
Sensitivity. arXiv:1810.02340 [cs], Feb. 2019. arXiv:
1810.02340.

[23] W. Li, M. Chu, and J. Qiao. A pruning feedforward
small-world neural network based on Katz centrality
for nonlinear system modeling. Neural Networks,
130:269–285, 2020.

[24] J. Liu, Z. Xu, R. Shi, R. C. C. Cheung, and
H. K. H. So. Dynamic Sparse Training: Find
Efficient Sparse Network From Scratch With
Trainable Masked Layers. Sept. 2019.

[25] C. Louizos, M. Welling, and D. P. Kingma. Learning
sparse neural networks through l 0 regularization. In
International Conference on Learning
Representations, 2018.

[26] D. C. Mocanu, E. Mocanu, P. H. Nguyen,
M. Gibescu, and A. Liotta. A topological insight
into restricted Boltzmann machines. Machine
Learning, 104(2):243–270, Sept. 2016.

[27] D. C. Mocanu, E. Mocanu, T. Pinto, S. Curci, P. H.
Nguyen, M. Gibescu, D. Ernst, and Z. A. Vale.
Sparse Training Theory for Scalable and Efficient
Agents. arXiv:2103.01636 [cs], Mar. 2021. arXiv:
2103.01636.

[28] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen,
M. Gibescu, and A. Liotta. Scalable training of
artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature
Communications, 9(1):2383, June 2018.

[29] M. C. Mozer and P. Smolensky. Using Relevance to
Reduce Network Size Automatically. Connection
Science, 1(1):3–16, Jan. 1989. Publisher: Taylor &
Francis eprint:
https://doi.org/10.1080/09540098908915626.

[30] S. Oldham and A. Fornito. The development of
brain network hubs. Developmental Cognitive
Neuroscience, 36:100607, 2019.

[31] A. Prabhu, G. Varma, and A. M. Namboodiri. Deep
expander networks: Efficient deep networks from
graph theory. In V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, editors, Computer
Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018,
Proceedings, Part XIII, volume 11217 of Lecture
Notes in Computer Science, pages 20–36. Springer,
2018.

9



[32] X. Qi, E. Fuller, Q. Wu, Y. Wu, and C.-Q. Zhang.
Laplacian centrality: A new centrality measure for
weighted networks. Information Sciences,
194:240–253, July 2012.

[33] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Press, USA, 3rd
edition, 2009.

[34] C. L. Staudt, A. Sazonovs, and H. Meyerhenke.
Networkit: A tool suite for large-scale complex
network analysis, 2015.

[35] Q. K. Telesford, S. L. Simpson, J. H. Burdette,
S. Hayasaka, and P. J. Laurienti. The Brain as a
Complex System: Using Network Science as a Tool
for Understanding the Brain. Brain Connectivity,
1(4):295–308, Oct. 2011. Publisher: Mary Ann
Liebert, Inc., publishers.

[36] K.-a. Tessera, S. Hooker, and B. Rosman. Keep the
Gradients Flowing: Using Gradient Flow to Study
Sparse Network Optimization. arXiv:2102.01670
[cs], Feb. 2021. arXiv: 2102.01670.

[37] P. Virtanen, R. Gommers, T. E. Oliphant,
M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright,
et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17.

[38] C. Wang, G. Zhang, and R. Grosse. Picking
Winning Tickets Before Training by Preserving
Gradient Flow. arXiv:2002.07376 [cs, stat], Aug.
2020. arXiv: 2002.07376.

[39] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine
Learning Algorithms. CoRR, abs/1708.07747, 2017.
eprint: 1708.07747.

[40] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine
learning algorithms, 2017.

[41] S. Zhang and B. C. Stadie. One-shot pruning of
recurrent neural networks by jacobian spectrum
evaluation. In International Conference on Learning
Representations, 2020.

APPENDIX
A. LAPLACIAN CENTRALITY

Epoch MLP SET CenSET
0 0.90 ± 1.62 0.12 ± 0.42 0.15 ± 0.50
25 1.29 ± 3.38 0.27 ± 1.74 0.34 ± 1.17
50 1.72 ± 4.28 0.66 ± 3.32 0.74 ± 2.05
75 2.06 ± 5.09 1.07 ± 4.55 1.12 ± 2.75
100 2.41 ± 5.64 1.55 ± 5.97 1.49 ± 3.47
125 2.63 ± 6.00 1.90 ± 7.05 1.76 ± 4.10
150 2.72 ± 6.54 2.23 ± 7.95 2.04 ± 4.66
175 2.95 ± 7.07 2.60 ± 8.84 2.35 ± 5.16

Table 9: Mean Laplacian centrality across different
methods on FashionMNIST

Epoch MLP SET CenSET
0 1.16 ± 1.98 0.01 ± 0.02 0.01±0.02
25 1.16 ± 2.76 0.02 ± 0.16 0.05±0.39
50 1.53 ± 3.80 0.04 ± 0.26 0.03±0.48
75 1.53 ± 4.65 0.06 ± 0.37 0.03±0.61
100 2.03 ± 5.85 0.07 ± 0.47 0.04±0.74
125 2.03 ± 6.88 0.09 ± 0.59 0.06±0.89
150 2.48 ± 8.00 0.11 ± 0.59 0.08±1.03
175 2.48 ± 9.74 0.13 ± 0.81 0.11±1.17
200 3.02 ± 10.68 0.15 ± 0.92 0.15±1.36
225 3.02 ± 11.62 0.16 ± 1.04 0.18±1.51
250 3.582± 12.70 0.19 ± 1.15 0.22±1.65
275 3.58 ± 13.88 0.21 ± 1.26 0.26±1.81
300 4.01 ± 15.58 0.23 ± 1.38 0.30±1.97
325 4.01 ± 16.38 0.25 ± 1.48 0.34±2.16
350 4.44 ± 17.58 0.27 ± 1.60 0.38±2.32
375 4.44 ± 18.56 0.29 ± 1.72 0.42±2.51

Table 10: Mean Centrality across different methods on
Cifar10

10


	Introduction
	Related Work
	Background
	Artificial Neural Networks
	Sparse ANN and SET 
	Graph theory & Network Metrics
	LaplacianCentrality

	CenSET
	Converting weight layers to a Graph

	Methodology
	Instruments Used
	Datasets
	Analyzing Centrality
	Finding Optimum Pruning Threshold in CenSET

	Results
	Results of Analyzing Centrality
	Centrality and Accuracy

	Finding optimum pruning level for CenSET
	FashionMNIST
	CIFAR10

	Benchmarking CenSET

	Discussion
	Discussion of Analyzing Centrality
	Discussion of CenSET

	Conclusion
	Further Research
	References
	Laplacian centrality 

