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ABSTRACT
The ever-growing amounts of data stored in the world re-
quire efficient and fast data structures to store and process
it. Due to the large size of such massive data sets, the data
structures that operate on them grow so large that they
can no longer fit in main memory. Thus, the number of
I/O operations between fast main memory and slow disk
becomes the performance bottleneck of these data struc-
tures. To properly assess their performance, these data
structures are analysed in the external memory model that
puts emphasis on the number of blocks transferred between
main memory and disk. Multiple data structures and their
variations were developed in the external memory model
to optimise the number of block transfers, among which
the B-tree is the most well-known one. One of the research
areas related to designing data structures in the external
memory model has been focused on making data structures
that keep the same search performance as the B-tree but
asymptotically improve the speed of writes. Despite exten-
sive theoretical results in the area, little experimental data
about performance of such write-optimised data structures
is available. In this research study, we analysed two write-
optimised data structures - the Bε-tree and cache-oblivious
lookahead array (COLA) - and performed experiments
to determine which data structure performs better under
which conditions. As our results show, the COLA has
much better write speeds than the Bε-tree when inserted
elements are not sorted, but achieves worse results when
the data is sorted. Point queries are faster in the Bε-tree,
which makes it a better choice for workloads that require
more querying than updating data. Lastly, the support of
an efficient read-and-update operation and more stream-
lined experience of implementing the Bε-tree compared to
the COLA make it an even more favourable data structure
to consider for a use in data storage systems.
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1. INTRODUCTION
Ever since the first computers were invented, there has
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been the need to efficiently store and process stored data.
With the emergence of more advanced computer systems
and deeper integration of technologies into people’s lives,
more data than ever needs to be stored and maintained.
Market intelligence company IDC reported that around
64.2 zettabytes (1 zettabyte equals 1021 bytes) of data was
created or replicated in 2020 and the worldwide storage
capacity reached 6.7 zettabytes [8].

Such tremendous amounts of generated data necessitate
research on space-efficient and fast data structures for
massive data sets. Since these data structures are meant
to work with data sets of sizes that far exceed the amount
of memory available on a computer, the bottleneck in
execution time of operations on these data structures is
not the speed of a CPU performing instructions but the
time spent on transferring blocks between main memory
and disk. Thus, data structures that work with massive
data sets are analysed in the so-called external memory
model (or the I/O model) introduced by Aggarwal and
Vitter in 1988 instead of the classic RAM model [1]. In the
external memory model, performance of a data structure
is evaluated by counting the number of memory-disk block
transfers required to perform an operation.

The B-tree is the most famous external memory data struc-
ture introduced by Bayer and McCreight in 1970 [2], long
before the external memory model was invented. The B-
tree generalises the idea behind the binary search tree and
adapts it to the external memory model [7].

Despite having optimal query speeds, the B-tree is not an
optimal data structure in terms of writing performance. To
address this weakness of the B-tree, research efforts have
been focused on creating data structures that can keep
the same optimal read speed as the B-tree but improve
the write speed to be asymptotically faster. Moreover,
faster writes not only affect writing performance, but also
allow for faster creation and maintenance of search indices,
which in turn increases the speed of searches in databases
as well [4]. Additionally, increased write speeds help utilise
modern flash memory devices better due to inherently
slower write speeds of these drives compared to their read
speeds [12].

In this research study, we performed a comparative evalu-
ation of two write-optimised data structures - the Bε-tree
proposed by Brodal and Fagerberg [5] and cache-oblivious
lookahead array (COLA) proposed by Bender at al.[3]. Both
data structures employ the same key idea of batching data
updates together to reduce the number of block transfers
required. However, they differ significantly in the way
they realise this idea in practice: the COLA maintains a
sequence of arrays geometrically increasing in size while
the Bε-tree is an extension of the B-tree that additionally
allocates space for update messages in internal nodes.

1



While the theoretical framework for Bε-trees and COLAs
has been established, there is not much comparative infor-
mation about how such array-based and B-tree-based ap-
proaches compare on practice. Thus, in this research study
we analysed the theory behind the two data structures,
implemented them and investigated their experimental per-
formance to determine the implications for the real-world
applications of the two data structures.

According to our results, both data structures are consider-
ably harder to implement than the regular B-tree. However,
this additional implementation complexity appears to be
worth the effort since the Bε-tree and COLA showed strong
gains in terms of increased write speeds in our experiments.
The COLA outperformed both Bε-tree and B-tree in the
random insertions test. The trees showed a considerable
increase in write speeds when inserted data was sorted. As
expected, the search speed of COLA was worse than of
both the B-tree and Bε-tree.

As a result of our study, we can conclude that the Bε-tree
is a more versatile and flexible data structure that has a
more streamlined implementation and less space demands.

The rest of the paper is organised as follows: in the second
section, we describe the general idea behind B-trees, Bε-
trees and COLAs, in the third section we compare the way
operations are performed on the latter two structures, in
the fourth section we outline the implementation details
of the data structures and in the last section, we show
the results of an empirical evaluation of the Bε-tree and
COLA.

2. PRELIMINARIES
2.1 Search tree in the I/O model
Most commonly, data structures and algorithms are anal-
ysed in the RAM model by counting the number of CPU
operations that are required to perform a certain action.
However, when a data structure grows too large, such ap-
proach ceases to show the true performance of the data
structure. As such data structure cannot fully fit into
memory, its parts have to constantly be swapped in from
a slow disk to memory or swapped out back to the disk.
In such circumstances, the cost of I/O operations required
completely outweighs the cost of computations that take
place in the main memory.

Thus, the external memory model filled the void in theoret-
ical performance evaluation of such ”large” data structures
by switching focus to the number of block transfers that
take place between memory and disk. The complexity of
algorithms in the I/O model is expressed in terms of the
(disk and memory’s) block size B, memory size M and
the number of elements stored in a data structure N. For
the purposes of theoretical analysis in the model, the time
taken by computations that happen in main memory is
considered to be negligible and thus is not included in
analysis.

Regular binary search trees that are commonly used for
lookups do not perform well in such a model since their
operations are not tuned to optimise the number of I/Os.
To address this issue, the idea of a binary search tree was
extended to the external memory model and resulted in
the creation of the B-tree. The B-tree was invented by
Bayer and McCreight in 1970 with the purpose of efficient
management of large voluminous indices for random access
files [2]. Its design ensures that the number of I/Os that
are required to perform operations on the tree stays small
compared to a traditional binary search tree. Due to the
considerable performance gains of B-trees, they became a

de facto standard in modern databases and file systems
that have to deal with massive amounts of data [9].

Instead of having only two children as in a binary search
tree, the B-tree’s fanout is set to be a multiple of the
block size B. Similarly, the size of each node of a B-tree is
set to be equal to O(B). In a standard B-tree, key-value
pairs are stored both in internal nodes and leaves in sorted
order. Keys in internal nodes serve as pivots that ensure
the sorted order of the tree and guide traversals of it.

Over the years, many variants and implementations of B-
trees have been developed, the most widely used of which
is the B+ tree [10]. In the B+ tree, only leaves store key-
value pairs while internal nodes contain pivots that are
used for navigation in the tree. An example of a B+ tree
is shown in Figure 1.

2.2 Bε-tree
The Bε-tree is an extension of the B-tree. It’s a write-
optimised B-tree that was proposed to demonstrate the
trade-off curve between external memory data structures
that support fast queries and those that support fast up-
dates [4, 5].

Similarly to the B+ tree, the Bε-tree stores key-value pairs
in leaf nodes and pivots for navigation towards leaves in
internal nodes. Both internal and leaf nodes have size O(B).
However, besides storing pivots, internal nodes also store
update messages in buffers that are the key to Bε-tree’s
enhanced write performance. O(Bε) space is reserved for
pivots and children pointers, and O(B −Bε) is left for the
message buffer. A schematic representation of Bε-tree’s
internal node is depicted in Figure 2.

Instead of directly propagating insertions, deletions and
updates down the tree towards target leaves as in the B-
tree, in the Bε-tree, these operations are encoded as update
messages that are put into internal nodes’ buffers starting
from the root node. Messages are stored in buffers sorted
by the key and creation timestamp (to maintain the order
of messages related to the same key).

Only when there are enough update messages in a buffer
to move them down efficiently (i.e. when the buffer is
full), they are flushed in a batch one level down the tree.

Such a strategy ensures that at least O(B−B
ε

Bε
) = O(B1−ε)

messages are moved together in a single batch [4]. Moving
these messages in batches results in fewer I/O transfers
than if each individual update was flushed directly to its
target leaf. Eventually, each update message will reach its
target leaf and will be applied to it.

The position of a specific variant of the Bε-tree on the
above mentioned trade-off curve depends on the choice of
parameter ε that determines how much space in each inter-
nal node is reserved for pivots and how much for messages.
Depending on the choice of ε, the Bε-tree can approximate
any structure along the trade-off curve, including a regular
B-tree (if ε = 1) [4, 5].

When ε = 0.5, the Bε-tree achieves asymptotically better
write speeds than the B-tree while maintaining comparable
read speeds [4]. Read operations keep the same asymptotic
complexity and still require O(logBN) I/Os. However,
the amortised write speed of such a Bε-tree increases to
O( logBN√

B
) compared to O(logBN) I/Os of the B-tree due

to the fact that messages are flushed in batches of size at
least O(

√
B). This combination of factors makes such a

configuration the most interesting one by far. Therefore,
in our experiments, we set ε to approximately 0.5.

It’s important to stress that the complexity analysis of
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Figure 1. A B+ tree with fanout F = 4 and block size B = 4. Elements in internal nodes are pivots and elements in leaves
are keys.

Figure 2. An internal node of a Bε-tree with O(Bε) space
reserved for pivot-children pairs and O(B − Bε) space for
the message buffer.

updates in the Bε-tree is amortised since some updates
might trigger recursive flushing of messages down the tree,
thus increasing the I/O cost of that single update.

2.3 Cache-oblivious lookahead array (COLA)
Cache-oblivious lookahead array (COLA) is a write-optimised
data structure that is a variation of the log-structured
merge-tree (LSM-tree) proposed by Bender at al. [3]. LSM-
trees are write-optimised data structures, first described
by P.O’Neil et al. in 1996 [11], that cover a range of multi-
level data structures, each level of which is larger than the
previous one by some multiplicative factor G. LSM-trees
have faster write speeds than B-trees since their pattern of
growth allows for batching of updates in a similar fashion
to Bε-trees.

While LSM-trees typically use tree-like data structures to
represent levels, COLA uses sorted arrays that are stored
contiguously on disk [3]. In its basic version, the COLA
scales by a growth factor of 2, i.e. each subsequent array
is twice larger than the previous one, and thus such a 2-
COLA has dlog2Ne levels in total. In 2-COLA, each level
is either full or empty. The kth level of 2-COLA is full
if the kth least significant bit of a binary representation
of the number of elements in COLA N is set to 1. When
there is not enough space in existing arrays, the COLA
creates a new array that is twice larger than the previously
largest array and moves all elements in a batch into the
new array. These batched movements of keys make sure
that the cost of updates is asymptotically better than in
B-trees.

The COLA keeps the same asymptotic read speed as B-trees
by applying fractional cascading introduced by Chazelle
et al. to speed up key searches [6]. To find a key in a
COLA, each level has to be searched, but running binary
search on each individual level results in an asymptotically
worse query complexity than in the B-tree. To address
this issue, in a COLA, each 8th element of the (k + 1)st
array is copied to the kth array with a lookahead pointer
to its position in its original array. Each fourth spot in an
array is reserved for a duplicate lookeahead pointer that

points to the closest real lookahead pointers to its left and
right [3]. Such technique allows to run only a single binary
search and follow it up by a sequence of constant-sized
scans in subsequent levels. The 2-COLA that illustrates
the idea of fractional cascading is shown in Figure 3.

Originally, the COLA was designed as a cache-oblivious
data structure, i.e. it does not need to know the block
size B for tuning its operations. However, the COLA can
be turned into a cache-aware lookahead array with similar
complexity bounds to those of the Bε-tree by setting the
growth factor G to O(Bε) and including each O(Bε)th
element of array (k + 1)th array as a lookeahead pointer
in array k [3]. These changes allow COLA to have faster
queries that match the ones of the Bε-tree while sacrificing
some writing speed.

Similarly to the Bε-tree, the performance analysis of inser-
tions and deletions in COLA is amortised as some updates
might cause expensive rebuilding of arrays of the data
structure. With the help of additional buffers per level,
the COLA can be deamortised and offer better complexity
guaranties per an individual update [3].

2.4 Operations on data structures
2.4.1 Insertions and deletions

In the Bε-tree, insertions differ significantly from insertions
in the regular B+ tree. Instead of propagating the key
down the tree, an update message with the inserted key is
put into the buffer of the root node. If the buffer of the
root node fills up, a batch of messages is flushed down to
either one or more of the root’s children [4]. If the child’s
buffer is (almost) full, its messages are also flushed to its
children in batches. Such policy ensures that after a certain
number of flushes each message is delivered to a correct
target leaf node. Similarly to the B-tree, if a leaf receives
too many keys, it splits. If an internal node receives too
many children (pivots), it splits and distributes the pivots
and messages from its buffer to the newly created internal
node.

Since each insertion goes through O(log√B N) levels of the
tree (when ε = 0.5) until it eventually reaches the target

leaf and messages are flushed in batches of at least O(
√
B)

messages, the amortised insertion cost is O( logB N√
B

) block

transfers [4].

Multiple policies for flushing messages and keeping buffers
can be created. For instance, the child with the largest
amount of pending messages can be selected to flush mes-
sages to [4]. The buffers might be kept without a specific
number of message slots reserved for each child or they
might allocate exactly O(B1−ε) space for each child’s mes-
sages and allow flushing in batches of exactly O(B1−ε)
messages.

When a key needs to be deleted from the tree, a delete
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Figure 3. Here only levels 3, 4 and 5 of a 2-COLA are shown. The rest of the COLA’s levels are omitted for brevity. Red
cells contain keys that are selected to be inserted into preceding arrays as lookahead pointers and green cells mark spots
reserved for duplicate lookahead pointers. Solid arrows represent lookahead pointers from array k to the subsequent array
k + 1 and dashed arrows show duplicate lookahead pointers that point to closest lookahead pointers.

message with this key’s value is inserted into the root [4].
Then, the procedure continues in the same way as for
updates until the message eventually reaches its target leaf
node. Since insertions and deletions are algorithmically
similar, their I/O complexity is the same.

Insertions in the COLA (with G = 2) start with insertion
of a key into a special buffer that can hold precisely one
element. Then, if there is already a level of size 1, the
buffer is merged with that level into the following level
of size 2. These merges into larger levels proceed until
no new merges are required and the element is put into
its target array. In the worst case, the inserted key has
to go through O(logN) merges before being inserted into
the target array. In order to merge two arrays of size k,
O(k/B) block transfers are needed, where B is the block
size. Therefore, O(1/B) block transfers are spent per each
item, which leads to the total amortised cost of insertion
O( logN

B
) I/Os [3].

After the merging procedure is finished, the lookeahead
pointers that were present in the merged arrays before are
no longer valid. Thus, they need to be redistributed from
scratch starting from the target level and continuing down
level by level, until the first level that is set to contain
lookeahead pointers is reached. Asymptotically, the cost
of insertion still stays at O( logN

B
) block transfers.

In the cache-aware version of COLA, each level is smaller
than its subsequent level by a factor of O(Bε), which means
that before the level k becomes full, the level (k + 1) has
to be merged into it O(Bε) times [3]. Since there are
O(logBε(N)) levels in total, the cost of insertion into such

a COLA is O( logBε (N)

B1ε ) I/Os.

Deletions in the COLA can be implemented by employing
techniques used by other variants of LSM-trees and Bε-
trees, e.g. by performing only a logical deletion of a key
with a tombstone mark without actually deleting it from
the structure.

Overall, in theory the COLA can offer higher insertion
speeds than the Bε-tree because of division by the factor
O(B) instead of O(

√
B) as in the Bε-tree, unless the size

of the Bε-tree node is chosen to be large.

2.4.2 Point queries
Since insertions, deletions and updates are scattered around
the nodes of the Bε-tree, the point query procedure is
more complicated than the one of the ordinary B-tree [4].
However, the guarantee that all updates to a leaf node are
located on the path to that node allows searches in the
Bε-tree to have the same optimal I/O complexity as in the

B-tree.

Searching starts from the root by checking the root’s buffers
for update messages [4]. If an insert or delete message is
found, the search can stop. If there is an update messages,
it has to be carried further and applied to any other update
messages found along the path to the target leaf. If the
search hasn’t stopped at the root, it continues performing
the same actions recursively on the correct child node (that
is chosen according to the pivots stored at the root) until
the search reaches the target leaf. Finally, if the leaf is
reached, its keys are scanned to find the key. In the worst
case, each query has to go down O(log√B N)) levels of the
Bε-tree with ε = 0.5 to reach a leaf node, thus leading to
the same query complexity of O(logB N)) I/Os as in the
B-tree.

For the COLA, in the worst case each array has to be
searched to find a key [3]. With the help of fractional
cascading and lookahead pointers, only the initial binary
search is necessary which is then followed by a scan of a
constant number of keys in each subsequent array. Thus, in-
stead of O(log2N) I/Os in the case of performing O(logN)
binary searches, a point query incurs only O(logN) I/Os
in the worst case.

Therefore, the query cost of the 2-COLA is slightly worse
than the one of the Bε-tree due to the difference in the
base of the logarithm, so it’s expected that queries in a
2-COLA are slower than queries in the Bε-tree.

However, the speed of queries in COLA can be increased by
making it cache-aware according to the procedure described
before. In such a case, the base of the logarithm in query
cost increases due to a larger growth factor and smaller
number of arrays, which leads to faster query speeds of
O(logB N) I/Os.

2.4.3 Upserts
One major advantage of the Bε-tree is its support of a
special type of operation - an upsert [4]. An upsert repre-
sents a typical workload in a database by combining two
common operations into one - querying data and perform-
ing updates based on the result of the query. Since search
speeds of both COLA and Bε-tree are far worse than their
write speeds, searching data before performing an update
would cancel all the benefit from asymptotic optimisation
of updates. Therefore, it’s vital in such a case to perform
an upsert without the need to query data first. While
the structure of COLA does not present an obvious way
to support a fast upsert, the message-based nature of the
Bε-tree allows for easy extension of its operation range to
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include upserts. Upserts in Bε-trees are simply encoded
as one more type of update messages that includes the
(pointers to) actions that have to be performed on the key
if it’s found in the tree. Since upserts in Bε-tree do not
require prior searches, their cost remains bounded by the
cost of a write.

Asymptotic complexities of operations on the two data
structures are summarised in Table 1.

2.5 Space requirements
The basic slow version of COLA without lookahead point-
ers requires O(N) of contiguous space on disk. When
lookahead pointers are added to a 2-COLA, its space re-
quirements grow twofold to O(2N) [3]. In a G-COLA, space
complexity of the data structure depends on the sampling
density of lookahead pointers. In case of a deamortised
COLA, the space it takes grows even further by a constant
factor to cover the additional buffers at each level. Such
space requirements are more demanding than the ones
of the Bε-tree, that keeps space close to O(N) without
large constant factors, and can make the Bε-tree a more
appealing choice if space is an important consideration.

3. IMPLEMENTATION
We implemented both Bε-tree and COLA in C++. Block
transfers between disk and memory are automatically man-
aged through memory mapping by the operating system.
We map a large file on a disk into memory and work directly
with the mapped memory.

Both data structures are implemented in their simplified
form, i.e without the support for variable-length keys,
heuristic-based optimisations or other features that would
be important in practice. However, our implementation
covers all the vital details of the data structures and is
sufficient to test the theoretical concepts in question.

For the COLA, we roughly followed the implementation de-
scribed by its authors [3]. We implemented a non-amortised
version of COLA that can be tuned with the growth factor
G and pointer density PD. Parameter PD represents the
number of lookahead pointers that each level contains, i.e.
if PD = 0.5, each array level besides k regular keys holds
0.5k lookahead pointers sampled from the subsequent level.
The last level does not contain lookahead pointers.

As in the original paper, in our implementation keys and
values each have the size of 8 bytes. Also, instead of using
duplicate lookahead pointers, in each key-value pair we
store a copy of the closest lookahead pointer to the right of
it. The closest lookahead pointers to the left are determined
when the subsequent level is scanned since the distance
between two lookahead pointers in their array of origin is
known based on G and P . Each lookahead pointer consists
of an 8-byte key and 8-byte index of its position in its origin
array. Real keys use 8 bytes of padding while lookahead
pointers use 16 bytes. All elements are stored right-aligned
in their levels.

Since the results of array merges can be too large to fit into
memory similarly to the arrays themselves, they have to be
written to disk as well. To save on additional disk space,
we follow the strategy of merging outlined in the original
paper: the result of the first array merge in insertion
is placed into the rightmost position in the target array,
then for the second merge, the result is placed into the
beginning of the mapped region which has just been freed
up due to a previous merge. For the subsequent merges,
we continue with alternating between the two destinations.
As one additional element spot is required when merging

is performed, we keep a buffer for that newly inserted
element.

Invariants of the 2-COLA about level fullness and size do
not hold in the G-Cola. Some levels in the G-COLA might
contain only lookahead pointers and no real keys. Each
level in the G-Cola might be full or have a size that is
a multiple of previous level’s size. We use these facts to
determine the number of elements present in each level of
COLA and the way to distribute lookahead pointers.

To create a cache-aware version of COLA, we set the pointer
density PD to 1 as such a setting corresponds to sampling
O(Bε) elements from array (k + 1) to array k when G =
O(Bε).

Our implementation of the Bε-tree closely follows the the-
oretical description of the data structure. In all our experi-
ments with the Bε-tree, we set ε to 0.5. In each internal
node, there are slots for pivots and children pointers with
the rest of node’s space reserved for the message buffer.
Each pivot-pointer pair takes 16 bytes of space. Our im-
plementation supports only insert messages as they are
representative enough of the other message types as well.
Each messages takes 32 bytes and consists of a key, value,
timestamp and type fields. Message buffers are imple-
mented as arrays. Additionally, each internal node stores
metadata about the number of pivot-pointer pairs it con-
tains, the number of messages in its message buffer and its
offset from the beginning of the mapped region.

Leaves have all O(B) space reserved for key-value pairs.
To match the implementation of COLA, keys and values
take 8 bytes of space each. Leaf nodes store as metadata
the number of keys they contain and their offset from the
beginning of the mapped region.

As in the theoretical model of the Bε-tree, in our imple-
mentation a key is inserted as an insert message into the
root first. If the root’s buffer fills, the child with the most
pending insertions is selected for flushing to. If the selected
child’s buffer contains too many messages to accommodate
the flushed batch from the root, the flushing process con-
tinues recursively from the child. The child node flushes
batches to its children until it can accommodate the batch
from its parent.

Internal nodes in our implementation only flush message
batches that exceed a certain threshold. The threshold
is set to the ratio between the number of messages in a
node’s buffer and the node’s maximum fanout (i.e. the
maximum number of children a node can have). If there
is no batch of size larger than the threshold to flush, the
node splits.

When a leaf node is reached, the insertion encoded in
messages are applied to the child. If a leaf receives to
many insertions, it splits into two leaves and distributes
its keys evenly. If an internal node gets too many pivots, it
also splits into two nodes and distributes pivots, children
pointers and messages between the two nodes.

Besides the two write-optimised data structures, we have
also implemented a regular B+ tree to serve as a baseline
for our experiments. As with the Bε-tree, we followed the
textbook description of the B+ tree closely. Each node of
our B+ tree has size 4096 bytes, and keys and values in
the tree take 8 bytes of space each.

Overall, we found both Bε-tree and B+ tree to be easier
to implement in code as the theory behind both structures
aligns better with practice than the theory behind the
COLA. In terms of lines of code, both Bε-tree and COLA
reached around 1000 lines of C++ code while B+ tree
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DS Insertion Point query Upsert (search followed by update)

B-tree O(logB N) O(logB N) O(logB N)

Bε-tree O( logB N

εB1−ε ) O( logB N

ε
) O( logB N

ε
)

Bε-tree, ε = 0.5 O( logB N√
B

) O(logB N) O(logB N)

2-COLA O( logN
B

) O(logN) O(logN)

G-COLA O(G logG N

B
) O(logGN) O(logGN)

Cache-aware LA O( logB N

B1−ε ) O(logBε N) O(logBε N)

Table 1. I/O complexity of operations on Bε-trees and COLAs

required less than half of that amount. Implementation-
wise, the Bε-tree and COLA were considerably harder to
implement than the regular B-tree.

4. EMPIRICAL EVALUATION
4.1 Setup
We ran our experiments in a sandboxed virtual machine to
restrict the influence of external factors on performance of
the data structures. We used VirtualBox v6.1.22 virtual
machine running Ubuntu 20.04.2.0 LTS with a single core
of a 2.9GHz quad-core Intel Core i7 CPU (with 8MB
shared L3 cache) and 3GB of RAM available. A single
core ensured that all operations on data structures were
performed sequentially. For the backing disk, we used
Transcend StoreJet 25M3 external HDD. The system’s
page (block) size was set to 4096 bytes. The default Linux
swap file was turned off before running the experiments.

Before the testing started, we allocated a large file on the
disk that would serve as a backing storage for the data
structures. Before each test, we flushed the memory buffers
to remove cached pages, remounted the disk and remapped
the disk file into memory.

With the help of the C++ Boost library, for each of our
experiments we measured the wall clock time and CPU
time (subdivided into the user time and kernel time). As
we were interested in the I/O performance of the data
structures, we followed the approach described in [3] to
estimate the time spent on block transfers: we measured
the disk time as the difference between the wall clock time
and CPU time reported. The time not spent in user- or
kernel-space is mostly devoted to running I/O operations,
so such a way of measuring time enabled us to observe the
amortised I/O performance of the data structures.

4.2 Experiments and results
First, we inserted around 225 random key-value pairs into
the B+ tree, Bε-tree, 4-COLA with pointer density PD =
0.1, 32-COLA with PD = 1 and 64-COLA with PD = 1.

Figure 4 demonstrates that the increased write speeds of
the COLA in theory are clearly reflected on practice as
well. The 4-COLA achieves at least 10-times better write
speeds than the B+ tree and several times faster writes
than the Bε-tree when the structures fill the memory. The
COLA is significantly faster for random insertions since

Figure 4. Random insertion of key-value pairs. All graphs
are plotted on the logarithmic scale. PD stands for pointer
density, S for node size and P for the number of pivots.

its logarithmic cost of insertions is divided by the factor
of O(B), even though the base of the logarithm is smaller
than that for the Bε-tree and B+ tree. Even when the Bε-
tree and B+ tree start slowing down, the 4-COLA doesn’t
yet show signs of decreasing write speeds and has a much
flatter downward-trending curve. The non-smooth wavy
appearance of the COLA’s graph is caused by level merges.
In the beginning, multiple new levels are created, so the
total I/O cost of these operations appears to be higher on
the graph and thus the initial speed of insertions of the
4-COLA is slightly smaller than of the Bε-tree.

The Bε-tree shows a better write performance than the
regular B+ tree due to the usage of update messages and
batched updates. For each single insertion, the I/O cost
is shared with a number of other insertions. As expected,
the B+ tree has the worst random insertion performance
as its write speed is not optimal.
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Figure 5. Sorted insertion (ascending) of key-value pairs

Both 32-COLA and 64-COLA perform worse than the 4-
COLA in terms of insertion speed. The more we increase
the growth factor G in a COLA to be closer to B (i.e.
by making the COLA cache-aware), the slower insertions
become as merging larger arrays requires a larger amortised
number of I/O transfers. The insertion pattern of the 32-
COLA is more similar to the one of 4-COLA while the
curve of the 64-COLA (which growth factor is closer to
Bε) already resembles the one of Bε-tree.

Overall, it’s observable that for random insertions the Cola
has a clear (asymptotic) advantage over both Bε-trees and
B+ trees.

After testing random insertions, we inserted about 226

sorted key-value pairs into the three data structures in
ascending order. Figure 5 shows the result of the test.

It can be observed that for sorted insertions the situation
is considerably different than for the random ones. The
COLA can no longer maintain the same advantage in
performance over the Bε-tree and B+ tree. However, the
reason of a change in the graphs lies within the bump in
performance of the trees, not in the slower write speeds
of the COLA. Sorted insertions are the best case for the
Bε-tree and B+ tree since they let the trees to solely use
either the leftmost part of the tree (in case of descending
insertions) or the rightmost part (in case of ascending
insertions). As only these parts of the tree need to stay in
memory, there are less block transfers involved compared
to random insertions.

The results of insertion experiments show that neither the
Bε-tree nor COLA is consistently faster across the range
of different workloads. As we showed, both data structures
have their strengths and weaknesses depending on the
specifics of data they work with. However, if we assume
that the typical workload of a database is concerned more
with randomised insertions, the trees will not enjoy the
same advantage as they showed in the last two experiments
and the COLA will be a much faster option.

Next, we experimented with point query characteristics of
the data structures. The results are presented in Figure

Figure 6. Point queries (searches)

6. First we inserted about 227 keys into a B+ tree, 4-
COLA and Bε-tree. For all data structures, the results
show that the more nodes (parts of arrays) are loaded into
memory and cached, the faster searching becomes. For
searches, the B-tree is faster than the other data structures,
proving why it still stays the most popular data structure
for database design. 4-COLA is the slowest out of the three
data structures with several times slower query speeds than
in the B-tree.

As for space requirements, the COLA with fractional cas-
cading took more space than the trees as its arrays grow
geometrically by a factor of G each time. Since we kept
elements in arrays right-aligned according to the described
implementation, each time space had to be allocated for
the whole array, even if only a small portion of it was filled
at that time.

5. CONCLUSION
Write-optimised data structures have a huge potential to
increase performance of databases and file systems not only
through increased speeds of writing data but also through
the faster creation of indices used for searching. Both Bε-
tree and COLA seem to be good choices for these purposes,
although each data structure has its own advantages and
disadvantages. While COLAs work better for random
insertions, they tend to have slower reading speeds than
B-trees. Bε-trees, on the other hand, have slower writing
speed than COLAs but maintain better reading speed. As
we showed in our experiments, the COLA can be tuned
with the block size B to become a cache-aware lookahead
array that approximates the performance of the Bε-tree.

In general, for environments with a substantial demand
for writing data, such as the messaging applications, the
COLA might serve as a better choice. For more balanced
environments or for environments with more demand for
reading data, we would prefer the Bε-tree.

The Bε-tree involved less implementation complexity and
aligned better with theoretical description on practice than
the COLA. Moreover, the Bε-tree’s support of upserts is
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one of its strongest sides that allows it to keep fast write
speeds even if there is a need to perform a search operation
before the write one. The COLA’s performance in such a
case degrades significantly and effectively cancels all the
benefits of write optimisation. Lastly, the memory footprint
of the Bε-tree is smaller than the one of (deamortised)
COLA that might be an important consideration in space-
limited environments.

6. FUTURE WORK
There are many areas to which the research about write-
optimised data structures can be directed. For the cache-
oblivious lookahead array, its space requirements and a way
to make it more space-friendly can be investigated. For the
Bε-tree, a variety of message-flushing policies can be looked
into to determine the most optimal one. Although some
optimisations to increase the data structures’ performance
for specific workloads were presented in [3] and [4], there
are might be more heuristics and optimisations to uncover
and experiments with.
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