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Abstract

Amajor goal in theoretical computer science is to obtain systems, such as software or hard­
ware, that are provably correct. One approach to reach this goal is to synthesize systems directly
from their specifications. In particular, we consider reactive systems, which are systems that
respond to events in their environment, such as infrastructure controllers, medical devices and
communication protocols. Properties of reactive systems are typically described in temporal
logics such as linear temporal logic (LTL). Unfortunately synthesizing a controller from an
LTL formula is computationally expensive and was deemed infeasible by many. However, re­
cent developments raise a renewed interest in this topic, aiming at scalable LTL synthesis for
use beyond small academic examples.

In nearly all domains of verification and synthesis, the state space explosion problem dom­
inates: to reason about slightly larger systems, we need to consider exponentially many more
possible system states. A method that can tackle this state space explosion is symbolic reason­
ing with e.g. binary decision diagrams (BDDs). BDDs can be used to represent sets of states
efficiently, and allow for reasoning over these sets directly without explicitly enumerating the
states within them.

In this thesis, we apply and evaluate a novel and partially symbolic LTL synthesis construc­
tion that uses a recently discovered normalization technique for LTL formulas. This allows us
to divide the formula into fragments that are in lower classes of the temporal logics hierarchy
which are relatively easy to translate to deterministic ω­automata. We symbolically combine
these ω­automata to obtain a symbolic deterministic parity automaton which we convert to a
game and solve. This results in a strategy that can be trivially translated to a Mealy machine
adhering to the specification.

We develop the construction in Otus, which is a new prototypical LTL reactive synthesis tool
based on the LTL and ω­automata library Owl. We evaluate it against Strix, which is another
reactive synthesis tool applying a similar but explicit approach. Strix represents the state of the
art as it has won the 2018, 2019 and 2020 SYNTCOMP synthesis competition and is, therefore,
an interesting comparison target. The results are mixed but very promising: although Otus is
not optimized, we find examples where Otus is in the order of 10 times faster than Strix.
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CHAPTER 1

Introduction

Computer systems play an ever­increasing role in our daily lives. We use these systems
not only for simple conveniences but also to manage critical infrastructure and to guarantee our
safety. It is therefore of vital importance that we can rely on these systems to behave correctly.
One of the main goals in theoretical computer science and the primary goal in the field of formal
methods is therefore the ability to produce provably correct systems.

One popular approach involves proving for an existing system that it adheres to some spec­
ification. Usually, this entails formally modelling the system such that the model accurately
reflects the system’s behaviour. Automata­based models are frequently used to model systems
because their semantics are close to real­world systems and they can be verified against some
formal specification. Modelling a system and verifying it against a specification is well­known
asmodel­checking [25]. The benefit of model­checking is that it is usually fully automatic. The
major problem with this approach, however, is that the models of the system become extremely
large in practice. This gives rise to the infamous state space explosion problem. Nevertheless,
model­checking has seen successful applications in practice already [55].

Instead of verifying a system against its specification, another approach is to construct a
system directly from it. Assuming that the constructed system is of good quality (i.e. is rea­
sonably small) and it is possible to provide a complete specification, this approach is preferable
over model­checking as it eliminates the need for the development of a system in the first place.
Although these assumptions are still challenges on their own [48,51], we focus on the scalability
of this technique since the state space explosion problem dominates here as well.

The process of automatically transforming a specification to a system that adheres to the
specification is known as synthesis. Of particular interest are those systems that continuously
respond to stimuli from their environment, as these systems are often found in domains where
a malfunction can have catastrophic consequences. Example domains include but are not lim­
ited to medical devices, infrastructure systems such as railway and aviation controllers, and
spacecrafts. This branch of synthesis is commonly referred to as reactive synthesis.

In this thesis, we consider the synthesis of reactive systems from linear temporal logic (LTL),
which is a logic that allows the expression of properties over time. A typical approach consists
of translating the LTL specification to a deterministic parity automaton, which is an automaton
that runs on infinite words. This is then converted to a 2­player game where the system plays
against its environment such that the specification is satisfiable if and only if the winner of this



game is the system player. The winning strategy of the system player is then converted to an
implementation of a reactive system that adheres to the specification.

Unfortunately, this approach does not scale well. To improve the scalability, symbolicmeth­
ods are often applied. These are methods that allow for a compact representation of sets. A
primary example of such a method is the encoding of sets in binary decision diagrams [56].
A binary decision diagram (BDD) is an efficient representation for propositional formulas,
which can also be used to encode sets. Using BDDs has shown to be very successful in model­
checking [80]. It has also already been applied to reactive synthesis by Sohail et al. [87] and
Morgenstern [70].

Both do not translate the full specification to a deterministic parity automaton directly as this
is not efficiently implementable symbolically. Instead, they try to decompose the specification
into fragments of LTL that have a simple translation to automata. They translate each fragment
separately and then symbolically compute the product to obtain a game for the full specification.
However, if there is no trivial decomposition, they use less efficient approaches that involve a
direct translation of the full specification.

Contribution. In this thesis, we revisit the approach by Sohail et al. and Morgenstern. In­
stead of relying on the specifications being trivially decomposable, we use a new normalization
technique for LTL [86] to extract LTL fragments from any specification. This means that we
can decompose any LTL formula into fragments and no longer need some inefficient fallback
strategy.

Apart from applying this normalization technique, our work differs from previous work in
the way we construct the game. Whereas previously the constructed game was a generalized
version of a so­called parity game, we use the work of Boker et al. [13] to construct a determin­
istic parity automaton, which we convert to a normal parity game instead. This is beneficial as
most parity game algorithms are not designed for generalized parity games and finding a solu­
tion for a normal parity game is more efficient. So far, no other implementation has applied this
result even though it lends itself for a symbolic implementation, unlike many other approaches
that rely on some form of appearance records to construct a deterministic parity automaton.

We implement this new approach in a new prototypical reactive synthesis tool Otus.1 We
compare it against Strix [59], the winner of the 2018­2020 SYNTCOMP reactive synthesis
competitions [39, 41]. Even though the tool is not fully optimized, we observe that for cer­
tain specifications Otus is in the order of 10× faster than Strix, showing that the approach is
promising.

Outline. We structure the rest of the thesis as follows. In Chapter 2, we cover the prelimi­
naries that are needed for a more detailed discussion on previous work and our contribution to
it. We then describe the related work, and we motivate and discuss our approach in Chapter 3.
Chapters 4­6 then describe the complete construction in detail. Next, we provide details on the
implementation in Chapter 7 and an empirical evaluation is presented in Chapter 8. Finally, we
reflect on our approach and provide pointers for future research in Chapter 9, and conclude in
Chapter 10.

1The tool and all results are available on http://doi.org/10.5281/zenodo.5046346.
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CHAPTER 2

Preliminaries

This chapter discusses a few preliminaries that are essential for a fruitful discussion about
the related work in reactive synthesis and our contribution to it. The reader needs to have a good
understanding of these topics before proceeding with the remainder of the thesis. Experienced
readers may want to skim through this chapter to get familiar with the definitions and notations
that will recur throughout this thesis.

This chapter is structured as follows. We start with some remarks on our notation. We
then introduce linear temporal logic, which is used to provide the specifications for reactive
synthesis. Finally, we discuss ω­automata and parity games as they form the foundation of
many reactive synthesis approaches, including ours.

Since this thesis builds upon a lot of preliminary knowledge, we only cover the most essen­
tial topics in this chapter. Any remaining preliminaries are covered in later chapters before they
are first used such as to not overwhelm the reader in this chapter.

2.1 Notational Remarks

In this thesis, we use various concepts from set theory, propositional and first­order logic
for which we use conventional notation that need no additional explanation. We assume the
reader is familiar with these concepts. Furthermore, we assume an undergraduate level of un­
derstanding of language and automata theory, and refer to Sudkamp [90] for a recap if needed.
Notation for new concepts is introduced when it is first used but we introduce some generic
notation here.

First of all, we use a non­standard notation for lists. We denote a list of two elements x0

and x1 by [x0, x1]. Furthermore, let L be a list, then Lx is the xth element in L starting at 0. We
use ⊔ to denote an append operation, so given two lists L andM of sizes l andm respectively,
L⊔M = [L0, L1, . . . , Ll−1,M0,M1, . . . ,Mm−1]. Finally, given elements xi for 0 ≤ i < n, we
use

⊔n
i=0[xi] to denote the list [x0, x1, . . . , xn].

Next, we occasionally use a compact notation to represent sets. Suppose we have some set
of two elements {a, b}, then we sometimes use ab as a shorthand notation instead. Furthermore
in the context of {a, b}, ab̄ represents the subset {a}. This is used in particular as a shorthand
notation for a symbol in a word since a symbol is a subset of atomic propositions as will become
clear in subsequent sections.



2.2 Linear Temporal Logic

Temporal logics are logics that allow reasoning over time. They are well suited for ex­
pressing specifications for reactive systems. We roughly identify two categories of temporal
logics: those that reason about states in the system, i.e. branching­time temporal logics, and
those that reason about paths, i.e. linear­time temporal logics. Although both types have their
limitations [97], linear­time temporal logics are more popular nowadays [11]. In this thesis, we
therefore also focus on a linear­time temporal logic, namely linear temporal logic (LTL). We
will first define LTL and then we define a hierarchy of LTL fragments.

2.2.1 Definition

LTL comes in many variations, but all variations are constructed from propositional logic
formulas combined with some temporal operators. Many temporal operators exist, and many
of them are in some way equivalent to some other temporal operators. In this thesis, we define
LTL as follows:

DEFINITION 2.1 Given some finite set of atomic propositionsAP , the following grammar defines
LTL recursively:

φ ::= a | ā | ⊤ | ⊥ | φ | φ ∧ φ | φ ∨ φ | X φ | φ U φ | F φ | G φ | φ R φ | φM φ | φW φ

where a is any element of AP

The atomic propositions AP define the alphabet Σ = 2AP . LTL formulas reason about infi­
nite words where each symbol is in Σ. Suppose we have a word w = w0w1 . . . and AP = {a},
then the semantics of the LTL formula a are such that w |= a ⇐⇒ a ∈ w0. Similarly,
w |= ā ⇐⇒ a /∈ w0. The semantics of X φ are such that w |= X φ ⇐⇒ w1w2 . . . |= φ, i.e.
X φ is true if and only if φ is true for the neXt symbol of the word. φ U ψ is true if and only if
there is some future point in time i such that for all states from the current state until (but not
including) i, φ is true, and at time i, ψ is true. Thus, φ U ψ expresses that φ is true Until ψ is
true. Formally:

w |= φ U ψ ⇐⇒ ∃ i ≥ 0. (wiwi+1 . . . |= ψ) ∧ ∀ 0 ≤ k < i. (wkwk+1 . . . |= φ)

.Finally, φ R ψ is true if and only if ψ is true up until and including the point that φ becomes
true, or φ never becomes true and ψ remains true forever. Thus, φ Releases ψ. Formally:

w |= φ R ψ ⇐⇒ (∃ i ≥ 0. (wiwi+1 . . . |= φ) ∧ ∀ 0 ≤ k ≤ i. (wkwk+1 . . . |= ψ))

∨ (∀ i ≥ 0.(wiwi+1 . . . |= ψ) ∧ (wiwi+1 · · · ̸|= φ))

We define the other temporal operators in terms of the until and release operators, but first, we
give some intuition for their meaning.

G φ means φ holds in all symbols (i.e. holds Globally) and F φ means φ holds some time

4



in the future (i.e. Finally holds). φM ψ is the same as φ R ψ except that φM ψ requires ψ to
eventually become true, i.e. a strong release. Finally φW ψ is the Weak until operator: it is
the same as φ U ψ but ψ may also never become true, in which case φ has to be true forever.
We formalize the semantics in terms of U and R as follows:

LEMMA 2.2 [3] Semantics of LTL operators in terms of U and R:

F φ ≡ ⊤ U φ

G φ ≡ ⊥ R φ

φM ψ ≡ ψ U (φ ∧ ψ)

φW ψ ≡ ψ R (φ ∨ ψ)
The remaining operators allow for boolean combinations of the temporal operators. Note

that we only allow for negation on an atomic proposition. At first, this may seem restrictive,
but it turns out that it is possible to transform any LTL formula with negations on higher levels
to an LTL formula with negations only on the atomic proposition by applying the so­called
duality rules [3]. This form is often referred to as positive normal form or negated normal form.
Since this transformation has a linear complexity and yields a formula of the same size, we can
assume w.lo.g. that every LTL formula is in this form. We, therefore, define negation simply as
a recursive syntactic substitution as below. Furthermore, this allows us to use implication and
bi­implication operators defined as usual in terms of negation, conjunction and disjunction.

DEFINITION 2.3 [3] For any LTL formula φ we define the negation ¬φ by a recursive applica­
tion of the duality rules as:

¬⊥ = ⊤

¬⊤ = ⊥

¬a = ā

¬ā = a

¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2

¬(φ1 ∨ φ2) = ¬φ1 ∧ ¬φ2

¬X φ1 = X ¬φ1

¬(F φ1) = G ¬φ1

¬(G φ1) = F ¬φ1

¬(φ1 U φ2) = ¬φ1 R ¬φ2

¬(φ1 R φ2) = ¬φ1 U ¬φ2

¬(φ1 M φ2) = ¬φ1 W ¬φ2

¬(φ1 W φ2) = ¬φ1 M ¬φ2

Although the definition of LTL that we use here is fairly common, there are many variations.
For example, several other operators are commonly used in literature: most notably a past­
time operator “previous” which comes with past­time equivalents of all future­time operators.
Although certainly helpful in some cases, adding past­time operators to LTL does not increase
the expressiveness [57]. Still, LTL with past­time operators is exponentially more succinct
than LTL without past­time operators [61]. For simplicity, however, we do not consider those
operators.

EXAMPLE 2.4 A classic example to illustrate LTL is by means of a coffee machine. Suppose we
have a coffee machine that after insertion of a coin gives out a cup of coffee. If we assume that
our set of atomic propositions is {coin, coffee} where coin indicates that we inserted a coin and
coffee that we received a coffee, then we can formalize the property that after an insertion of a

5



coin we receive a coffee as G (coin→ F coffee). The property expresses that at any time point
in time, if a coin is inserted then sometime later a coffee is received.

Note that the property does not state that each coin gives exactly one coffee, since inserting
five coins and receiving a single coffee still satisfies this specification, as does receiving unlim­
ited amounts of coffee without inserting any coins. This specification is therefore not complete
for the typical behaviour of a coffee machine. □

2.2.2 Hierarchy

LTL formulas can be classified in various classes of expressiveness using the temporal prop­
erty hierarchy [60]. We will see that this classification is essential for an efficient construction
of automata from these formulas. We can use a simple syntactic definition for these fragments
of LTL:

DEFINITION 2.5 [60] Given some set of atomic propositions AP , we define LTL fragment X as
the set of LTL formulas generated from the grammar rule X below, where φ stands for any
propositional formula over AP .

Σ1 ::= φ | X Σ1 | Σ1 M Σ1 | Σ1 U Σ1 | F Σ1 | Σ1 ∧ Σ1 | Σ1 ∨ Σ1

Π1 ::= φ | X Π1 | Π1 R Π1 | Π1 W Π1 | G Π1 | Π1 ∧ Π1 | Π1 ∨ Π1

∆1 ::= Σ1 | Π1 | ∆1 ∧∆1 | ∆1 ∨∆1

Σ2 ::= X Σ2 | Σ2 M Σ2 | Σ2 U Σ2 | F Σ2 | Σ2 ∧ Σ2 | Σ2 ∨ Σ2 | ∆1

Π2 ::= X Π2 | Π2 R Π2 | Π2 W Π2 | G Π2 | Π2 ∧ Π2 | Π2 ∨ Π2 | ∆1

∆2 ::= Σ2 | Π2 | ∆2 ∧∆2 | ∆2 ∨∆2

These fragments form a hierarchy as shown on the left side of Figure 2.1. Using terminol­
ogy from [60], we can give an intuitive description for each of the classes. We start with the
classes that are lowest in the hierarchy, namely Π1 and Σ1. These classes represent safety and
guarantee properties respectively. Each Π1­formula is equivalent to some LTL formula of the
form G φ, where φ only reasons about finite prefixes. Similarly, Σ1­formulas are equivalent to
an LTL formula of the form F φ. ∆1­formulas, also known as obligation properties, are boolean
combinations of Σ1­ and Π1­formulas. Any ∆1­formula is equivalent to an LTL formula that is
a conjunction of disjunctions of a Π1­ and a Σ1­formula.

The next layer of the hierarchy contains Σ2­ and Π2­formulas. They represent persistence
and recurrence properties respectively, with each property having a respective equivalent for­
mula of the form FG φ and GF φ (where φ again only reasons about finite prefixes). The
specification of Example 2.4 is an example of a recurrence property. Finally, boolean com­
binations of persistence and recurrence properties give rise to the most general class of LTL
formulas, namely ∆2 for reactivity properties, for which each formula is equivalent to some
conjunction of disjunctions of a Σ2­ and Π2­formula.

It is known that any LTL formula is equivalent to some ∆2­formula [21], however until
6
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FIGURE 2.1 The LTL hierarchy in three equivalent representations [60]. A ≺ B means that the language
of A is contained in the language of B.

recently there was no efficient approach to find such a formula. With a recent breakthrough, it is
now possible to convert any LTL formula to an equivalent formula in ∆2 using a normalization
[86]. We will see later how this can be used to efficiently construct automata from an LTL
formula. For that purpose, we now proceed with defining ω ­automata.

2.3 ω -Automata and Parity Games

In this section, we describe the various types of automata that we use in the construction. We
cover different kinds of ω­automata, which are automata that run on infinite words. ω­Automata
are closely related to LTL in that they essentially form another specification language. Although
ω­automata could be used instead of LTL to represent a specification directly, they are much less
convenient to write. However, an automata­based representation is useful as an intermediate
step because of its executional nature.

Wewill first formally give a generic definition of ω­automata. We then discuss several types
of ω­automata and their relation to LTL. Finally, we extend the definition of one particular type
of ω­automata to games.

2.3.1 Definition

Anω­automaton is a finite automaton that runs on infinite words as input. Consequently, the
commonly seen acceptance condition of a finite automaton on finite words, namely ending up
in a so­called “accepting” state [90], is no longer applicable. Instead, various other acceptance
conditions have been defined for ω­automata, and each of them comes with its own expres­
siveness. Before enumerating these acceptance conditions, let us formally define ω­automata.
We adapt the definition from Kupferman [52] but we use the unified notation of the Hanoi
Omega­Automata format [2] to describe the acceptance condition.

DEFINITION 2.6 [2, 52] Given a set of atomic propositions AP , an ω­automaton is a 5­tuple
A = (Q,Σ, I, δ, α) where

• Q is a set of states,

• Σ = 2AP is the alphabet,
7



• I ⊆ Q is a set of initial states,

• δ ⊆ Q× Σ×Q is a transition relation,

• α is the acceptance condition derived from f ::= ⊥ | ⊤ | inf (s) | fin(s) | f ∧ f | f ∨ f
where s ⊆ Q.

An infinite word w = w0, w1 . . . , where each i ∈ N and wi ∈ Σ, is accepted by an ω­
automaton (Q,Σ, I, δ, α) if there is at least one infinite run through the automaton satisfying α.
A run is an infinite sequence of states s0, s1, . . . such that s0 ∈ I and for each wi where i > 0,
there is a si ∈ Q such that (si−1, wi−1, si) ∈ δ. The semantics of α are then such that inf (s) is
true if and only if there is a run such that s is visited infinitely often. Similarly, fin(s) is true
if and only there is a run such that s is visited finitely often. The semantics of the remaining
symbols ofF are defined as normal propositional logic to create boolean combinations of these
conditions.

For simplicity, we often give just a partial description of the transition relation of an ω­
automaton. We can however assume, w.l.o.g., that every ω­automaton is complete, i.e. for
every s1 ∈ Q and w ∈ Σ we have that there is some s2 ∈ Q such that (s1, w, s2) ∈ δ, since
we can always introduce a (non­accepting) “sink state” ∫ and change the transition relation to
δ′ such that δ′ is defined as:

δ′ = δ ∪ {(s, w, ∫) | ¬∃s′.(s, w, s′) ∈ δ}

EXAMPLE 2.7 Consider the automaton ({A,B,C,D}, 2{a,b}, {A,B}, δ, inf ({C})) where

δ = {(A, {a, b}, C), (B, {a, b}, C), (B, ∅, B), (C, {a}, D), (D, {a}, C)}

The example is depicted in Figure 2.2. Now consider a word that starts with the symbol ab and
then continues with an infinite sequence of ab̄ (e.g. ab, ab̄, ab̄, ab̄, . . . ). This word is accepted
by this automaton because we infinitely often visitC. Next, consider the word that is an infinite
sequence of ab symbols. This word is not accepted, even though we reach C, because we get
stuck in the state C and therefore end up in the implicit sink state ∫ . Finally, consider the word
that consists of an infinite repetition of āb̄. The automaton then non­deterministically decides
to start in B and will not get stuck, but the acceptance condition inf ({B}) does not hold so this
word is also not accepted. □

2.3.2 Types of ω -Automata

We define the acceptance condition of an ω­automaton using notation from the Hanoi
Omega­Automata format [2]. ω­Automata with an arbitrarily complex acceptance condition
expressible in this format are known as Emerson­Lei automata, named after Emerson and Lei
who originally suggested this canonical form [32].

More often, we do not need or want this much freedom in the acceptance condition as this
freedom comes at the cost of more complex and computationally expensive translations. We,
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FIGURE 2.2 An example of an ω­automaton with acceptance condition inf ({C})

≻≺DBW
DCW
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DSW
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DRW

FIGURE 2.3 Automata classes and their expressiveness [85]. Automata classes of equal expressiveness
are in the same cloud. A ≺ B indicates that the language of the classes inA is contained in the language
of the classes in B.

therefore, identify various acceptance conditions that restrict this freedom such that the au­
tomata become easier to work with but also become possibly less expressive or succinct.

We start with the most restricted acceptance conditions that we will use in this thesis, namely
those of the form inf (s) and fin(s)where s is a set of states. ω­Automata with acceptance condi­
tions of the form inf (s) are automata are often referred to as Büchi automata [17]. Observe that
the example provided in Section 2.3.1 is also a Büchi automaton. Automata with fin(s) accep­
tance conditions are also known as co­Büchi automata, reflecting that these automata are dual
to Büchi automata. In other words, suppose we have some Büchi automaton (Q,Σ, I, δ, inf (s))
then the co­Büchi automaton (Q,Σ, I, δ, fin(s)) recognizes exactly the complement of the lan­
guage of the Büchi automaton [85].

Next, we consider boolean combinations of pairs of these acceptance conditions as follows.
Given sets of states si and ri for 0 ≤ i < N , ω­automata where the acceptance condition is
a disjunction of N pairs of the form fin(si) ∧ inf (ri) are referred to as Rabin automata [81].
Conversely, ω­automata with a conjunction of N pairs of fin(si) ∨ inf (ri) as the acceptance
condition are referred to as Streett automata [89]. These automata are also each other’s dual [85].

A special case of the Rabin automaton is when its condition can be represented as an (or­
dered) list α of n sets of states such that the sets induce a partitioning over Q and such that a
run is accepted if the least index i where 0 ≤ i < n for which α[i] is satisfiable infinitely often
is even. An automaton with this acceptance condition is called a parity automaton [74]. For
parity automata, we use this list representation for the acceptance condition as it is much more
convenient than the representation using fin and inf sets.

We have to note that there are many more automata classes. In particular, every class we
9



Name Abbrev. Acceptance condition A run is accepted iff…
Büchi B inf (s0) s0 is visited infinitely often
co­Büchi C fin(s0) s0 is visited finitely often

Rabin R
n−1∨
i=0

inf (si) ∧ fin(ri) si is visited infinitely often and
ri is visited finitely often for
some i such that 0 ≤ i < n

Streett S
n−1∧
i=0

fin(si) ∨ inf (ri) si is visited finitely often or ri
is visited infinitely often for all
i such that 0 ≤ i < n

Parity P
⌊ n−1

2 ⌋∨
j=0

(
inf (s2j) ∧ fin

(
¬
n−1∨
i=2j

si

))
The least index i such that si is
visited infinitely often is even
(with all si inducing a partition
on Q)

TABLE 2.1 Acceptance conditions of ω­automata [85]

have seen so far has a corresponding occurrence version where instead of considering whether
we visit a set of state infinitely or finitely often, we consider whether we visit the set at least
once or not at all. This allows the expression of safety and co­safety properties, but since we
do not use these automata in the construction, we do not formally define them and refer to
Schneider [85] and Cerná et al. [20] for more information.

We define the following ω­automaton classes formally, where we use the naming convention
NxW where N stands for non­deterministic, x is an abbreviation for the acceptance conditions
and W stands for words. DxW is used to refer to the deterministic counterpart of the same
automaton class, i.e. those automata where |I| = 1 and for each state s1 and word w, we have
that there is exactly one s2 such that (s1, w, s2) ∈ δ.

DEFINITION 2.8 [85] An ω­automaton A = (Q,Σ, I, δ, α) is referred to as NxW where x is the
abbreviation as in Table 2.1 if α is of the given form, in which si and ri for 0 ≤ i < n are sets
of states. Furthermore, we use DxW if additionally |I| = 1 and for each state s1 and word w,
we have that there is exactly one s2 such that (s1, w, s2) ∈ δ.

Unlike with finite automata on finite words, the deterministic version of an ω­automaton
class is not necessarily equally expressive as the non­deterministic version of the same class.
For example, a DBW is strictly less expressive than an NBW. Additionally, it is known that
DRW, DSW, NRW, NSW and NBW automata are all equally expressive [85]. NCW and DCW
automata are also equally expressive. We can visualize the expressiveness of the automata as
shown in Figure 2.3 [85].

It is important to realize that the equality of the expressiveness of two automata classes does
not imply that they can be efficiently translated to each other. For example, NCW and DCW
automata are equally expressive, but we will see later that determinizing an NCW causes an
exponential blowup in the number of states.
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2.3.3 Parity Games

ω­Automata can be seen as 1­player games, in which a player decides the transitions to be
taken in a run. The game is won if the run is accepting. In general, ω­automata can be extended
to 2­player games if the state set is partitioned such that each state is controlled by one of the
two players. One player wins if the run is accepting, the other wins if it is rejecting. In addition,
we also assume that the alphabet Σ is partitioned such that each symbol is owned by one of the
two players. Although we can generally extend any ω­automaton to a 2­player game [8], we
only define it for the deterministic parity automaton as this is the only automaton that we will
convert to a game later on:

DEFINITION 2.9 A parity game is a 7­tuple G = (Qc, Qe,Σc,Σe, I, δ, α) where

• Qc and Qe are sets of states belonging to player c and e respectively,

• Σc and Σe are sets of symbols belonging to player c and e respectively,

• I ∈ Qc ∪Qe is the initial state,

• δ ⊆ (Qc × Σc) ∪ (Qe × Σe)→ Qc ∪Qe is the transition function.

• α is an ordered partitioning of the states Qc ∪Qe such that αi represents the states with
priority i (starting with i = 0).

Furthermore, the arena of the game is the underlying DPW (Qc ∪Qe,Σc ∪ Σe, I, δ, α)

A parity game is played turn­based starting in I, where the player that owns the current state
determines the next move. Parity games can have finite and infinite plays, but just like with the
ω­automata, we assume that the game is complete and therefore only consider infinite plays.
Player c wins if the play is accepting on the arena, otherwise player e wins. Thus, the winner
of an infinite play is player c (resp. e) if the minimal priority i such that αi is visited infinitely
often is even (resp. odd).

Solving a parity game involves determining, for each node, which player can be guaranteed
to win after reaching this node. This is possible since it has been shown that parity games are
determined [62], i.e. every node is either won by player c or by player e. The solution to a
game thus partitions the nodes in two so­called winning regions. A solution to the parity game
(Qc, Qe,Σc,Σe, I, δ, α) is, therefore, a subsetW of Qc ∪Qe whereW is the winning region of
player c and (Qc ∪Qe) \W of player e.

Apart from finding these winning regions, we also want to know what the strategy of the
player should be to win these regions. It is known that these strategies are memoryless [30], i.e.
the players only need to consider the current node and not any nodes seen before. A strategy is
therefore a subset of the transitions of the game, containing just the transitions that are actually
used. For each node, only a single outgoing transition is present in the set.

A parity game can be solved in many different ways [5,45,94,99]. Without detailing exactly
how to obtain the solution for a parity game, we now provide an example and the corresponding
solution.
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FIGURE 2.4 A parity game where the rectangular nodes are controlled by c and the circular nodes by e.
The vertices are labelled with their priorities. The game starts in the node with priority 0.

EXAMPLE 2.10 An example of a parity game is presented in Figure 2.4. In the figure, we use
rectangles for nodes owned by c and circles for those owned by e. In this example Σc = {a, ā}
andΣe = {b, b̄} and transitions are labelled with elements fromΣc andΣe. Transitions outgoing
from a node owned by c (resp. e) use symbols from Σc (resp. Σe). Vertices are labelled with
their priorities and the vertex with priority 0 is the initial state.

This particular example is very simple in that there are only two possible strategies. Namely
the strategy where cmoves from the middle node to the right one using symbol ā and that where
c moves to top­left with an a. The latter is the winning strategy for c as that ensures that we
never leave the triangle of three vertices. The lowest priority in that triangle is 0, which is even,
and thus c wins the game. If c decides to move to the right instead, every play will enter the
cycle on the right in which the minimal priority is odd and thus c loses. □
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CHAPTER 3

Background

In this chapter, we discuss how the concepts introduced in the previous chapter are applied
in reactive synthesis. We first describe exactly what reactive synthesis is. Then, we discuss
different methods that have been applied in the past to do reactive synthesis and how we extend
upon that.

3.1 Reactive Synthesis

Reactive synthesis is the process of transforming a formal specification to a reactive system
that adheres to the specification. We often refer to such a system as a reactive controller (or
controller for short). Before discussing how we synthesize a controller, we first need a more
formal description of what a controller actually is.

There are two ways in which controllers are commonly modelled. One is through Mealy
machines [63] and the other is through Moore machines [69]. Both are finite state machines but
the difference is that the output of a Mealy machine depends on the current state and the input,
whereas for a Moore machine it only depends on the current state. Both can be implemented
in hardware circuits and thus serve a real­world purpose. They can also easily be converted to
each other [77]. We only consider Mealy machines as it turns out that the semantics of a Mealy
machine is better suited for our purposes than that of a Moore machine. We formally define
Mealy machines, adapting notation from Ehlers [29], as follows:

DEFINITION 3.1 A Mealy machineM is a 5­tuple (S,ΣI ,ΣO, s0, δ) where:

• S is a set of states

• ΣI is a set of input symbols

• ΣO is a set of output symbols

• s0 ∈ S is the initial state

• δ : S × ΣI → S × ΣO is the transition function.

Given an input word i = i0i1i2 . . . where all ik ∈ ΣI , k ∈ N, a run of a Mealy machine is a
sequence of states π = π0π1π2 . . . such that π0 = s0 and for all k ∈ N, δ(πk, ik) = (πk+1, ok)
for some ok ∈ ΣO. Thus, the result of a run is an output word o = o0o1o2 . . . .
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FIGURE 3.1 A Mealy machine

EXAMPLE 3.2 An example of a Mealy machine where ΣI = {a, ā} and ΣO = {b, b̄} is given in
Figure 3.1. The notation a/b on an edge from stateA toB indicates that δ(A, a) = (B, b). This
simple example essentially models a system that flips every second bit. To see why, consider
the input word i = aaaa . . . . This results in the output word b = bb̄bb̄ . . . . In terms of bits, we
can consider an input a as 1 and ā as 0. Similarly, output b (b̄ resp.) indicates the output is 1 (0
resp.). Then it is clear that an input i = 1111 . . . results in an output o = 1010 . . . . □

Now suppose we have some set of input and output variables ΣI and ΣO and we have some
specification S over these variables that describe the desired properties of a controller. The
process of reactive synthesis can then be understood as some function f that takes ΣI ,ΣO and
S and produces a Mealy machineM over ΣI and ΣO such thatM |= S. The problem of
finding such a function was originally introduced by Church [23,24] and later solved by Büchi
and Landweber [16].

In this thesis, we assume the specification S to be given as an LTL formula. Thus, we
summarize the process of reactive synthesis as the construction of a Mealy machine out of an
LTL formula such that the machine satisfies the formula. In the next section, we discuss several
approaches and how ours differs from previous work.

3.2 Related Work

LTL reactive synthesis has been extensively researched in the past and many techniques
exist to convert an LTL formula into a controller that satisfies the formula. A classic approach
consists of converting an LTL specification to an NBWwhich can be determinized using Safra’s
determinization construction [84] to obtain a DPW. A DPW can then be converted to a parity
game and solved. This parity game is a game in which the controller player c plays against
the environment player e. If e wins the game, then it is not possible to construct a controller
that satisfies the LTL specification, i.e. the specification is unrealizable. If c wins, then the
specification is realizable and the winning strategy can be transformed to a Mealy machine that
satisfies the specification.

Unfortunately, Safra’s construction does not lend itself for an efficient implementation
[1, 92]. Therefore ”Safraless” approaches [53, 54] were invented that avoid the need for deter­
minization. Unlike Safra’s construction, these approaches can also be efficiently implemented
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symbolically.
A symbolic implementation uses an abstract representation of the data. For example, instead

of representing an ω­automaton explicitly as a tuple of sets like in Definition 2.6, symbolic
implementations often use binary decision diagrams [56] to encode the sets, which is often
much more compact and efficient. We cover this topic in much more detail when we apply it in
Chapter 5.

A Safraless approach was successfully implemented in Lily [42], which was the first syn­
thesis tool that supported full LTL. Unfortunately, even though the approach is implementable
symbolically, Lily used an explicit implementation and could only be applied successfully on
small examples.

Instead of aiming to avoid determinization, new implementations were created that use the
observation that reactive systems are usually not specified as one large specification, but rather
consist of a conjunction of several “subspecifications” [4]. This allows each subspecification to
be independently converted to a deterministic automaton. This approach was first implemented
by Sohail et al. [87], in which they use an improved version of Safra’s construction by Piterman
[78]. The automata are constructed explicitly but combined into a single symbolic generalized
parity game, which is a parity game that consists of a conjunction of multiple parity conditions.
They then symbolically solve the game using a generalized version [22] of the well­known
recursive algorithm by Zielonka [99] for solving parity games.

The approach by Sohail et al. was later extended upon by Morgenstern et al. [72] by also
constructing the automata for the subspecifications symbolically. They exploit the LTL hierar­
chy to obtain a fully symbolic construction: first, they identify the LTL class of each subspeci­
fication, and then they apply specialized constructions such as the breakpoint construction [68]
for Π2­ and Σ2­formulas, which they implemented symbolically [73], to obtain deterministic
automata. For those specifications that are not suitable for the specialized constructions, they
apply a general ”fallback” symbolic determinization procedure that exploits special properties
that are always present in ω­automata generated from LTL specifications [71]. Unfortunately,
although their implementation outperformed Lily by their use of these specialized constructions,
the fallback algorithm did not scale very well [70].

Morgenstern et al. use an approach that is in many ways very similar to the approach by
Sohail et al. At first, it may seem that their approach is superior in that they use a fully symbolic
construction. However, it is not clear which approach works better as the automata constructed
from the subspecifications are expected to be relatively small. A symbolic approach may even
be inferior to an explicit approach as symbolic algorithms tend to perform less well than explicit
algorithms on small examples. For example, Lily outperformed the construction by Morgen­
stern et al. for small specifications [70]. Unfortunately, their work was never compared to
the work by Sohail et al. because the implementation of the latter was never made publicly
available.

A completely different approach to reactive synthesis was introduced by Schewe and
Finkbeiner which they call bounded synthesis [36]. Their approach is based on a Safraless
method [54] and sets a bound on the number of states. This simplifies the problem of reactive

15



synthesis so that it essentially becomes a search problem instead. Furthermore, the bound can be
used to find small controllers by iteratively increasing the bound until a solution is found. More
restrictions can be applied to find controllers of good quality, such as bounding the number of
cycles as well [35].

This approach is very promising and has had various implementations so far [12, 28, 33,
35,47]. It is particularly suitable for synthesizing distributed reactive systems [79] which is an
even harder problem than normal synthesis and is generally undecidable [79]. However, the
synthesis of distributed reactive systems is out of the scope of this thesis.

The final approach that we consider is that by Bloem et al. [10]. Their approach to improv­
ing the scalability of reactive synthesis is to limit the specifications such that only properties in
a specific format can be expressed and is also known as GR(1) synthesis. By limiting the ex­
pressibility of LTL, they can synthesize reactive controllers in polynomial time. Although not
all LTL formulas can be synthesized in this way, this approach has been successfully applied
on an industrial scale using the tool Anzu [38, 43].

Although both bounded synthesis and GR(1) synthesis are very promising approaches, we
focus in this thesis on the approach as also used by Sohail et al. and Morgenstern et al. The
reason being that recent developments in this field raise new opportunities and that tools based
on this technique have been performing surprisingly well in recent years. In particular, the tool
Strix [59] has shown in the 2018, 2019 and 2020 SYNTCOMP reactive synthesis competitions
[39, 41] that even an explicit parity­game­based approach can work very well when exploiting
the temporal logics hierarchy.

The recently discovered normalization technique for LTL formulas [86] now makes it pos­
sible to convert any LTL formula into a ∆2­formula, that is a boolean combination of Σ2­ and
Π2­formulas. This means it is no longer needed to assume that LTL specifications are provided
as a conjunction of subspecifications, as Sohail et al. do in their work. Furthermore, the fallback
strategy of Morgenstern et al. is also no longer needed, as we can now always apply, e.g., the
breakpoint construction [68] in favour of Safra’s construction [84] or Piterman’s procedure [78].

Furthermore, instead of converting the automata to a generalized parity game, we can use
the results of Boker et al. [13] to construct a normal parity game out of the product of a DRWand
a DSW. This approach may be beneficial as this game is easier to solve [22] and it allows the use
of a vast collection of recently discovered algorithms [5,45,94] in favour of the classic solution
by Zielonka [99] that was generalized by Chatterjee et al. [22]. Furthermore, the approach
presented by Boker et al. lends itself for a symbolic implementation, which makes it favourable
over alternative techniques to construct a parity game, such as using an index appearance record
[50], which has no obvious symbolic implementation.

We have implemented the approach in the new reactive synthesis tool Otus. In the next
section, we give a detailed outline of the construction. Subsequent chapters will describe each
part of the construction in more depth.
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3.3 Outline of the Construction

Given some LTL specification φ, we summarize the construction as implemented in Otus
in the following steps:

1) We start by normalizing φ using the results of Sickert et al. [86] to obtain an LTL for­
mula in ∆2, which itself consists of Σ2­ and Π2­fragments. This ∆2­formula is at most
exponential in the size of φ.

2) Each Σ2­ and Π2­fragment can then be translated to a so­called alternating weak automa­
ton (AWW), which is similar to an ω­automaton but more convenient for this purpose.
The sizes of the resulting automata are linear in the sizes of the formulas. They can then
be determinized to DCWs and DBWs using a slightly adapted version of the breakpoint
construction [68]. These automata are at most exponential in the sizes of the AWWs.

3) We now have a collection of explicit DCWs and DBWs. We convert them to a symbolic
representation and combine them to obtain a symbolic product automaton where the ac­
ceptance condition is constructed such that it respects the ∆2­formula of step 1. We will
see that this results in a DRW.

4) We repeat all previous steps for the negated formula ¬φ to obtain a DRW that represents
the complement of the language of φ. Because DRW and DSW automata are each others
dual, we can interpret the DRW as a DSW and we thus we obtain both a DRW and a DSW
for the language of φ.

5) We now combine these two automate into a single symbolic DPW using the construction
of Boker et al. [13].

6) Finally we convert the DPW to a symbolic parity game and solve the game using distrac­
tion fix­point iteration [58, 94] to obtain a winning strategy. This winning strategy can
then be used to construct a Mealy machine respecting the original LTL formula.

The reason for constructing both a DRW and a DSW for the language is that Boker et al. [13]
have shown that an ω­automaton which has both a DRW and a DSW condition that define the
same language can be converted to a DPW in polynomial time. Taking the product of the DRW
and the DSWwhile retaining only the acceptance condition of the DRW results in an automaton
recognizing φ that always guarantees this property. However, it is not needed to know the DSW
condition and thus occasionally we can skip the construction of the DSW altogether if it so
happens that the DRW automaton already has an equivalent DSW condition on that structure,
albeit unknown.

Furthermore, we have decided to construct the AWW automata and the DCW automata ex­
plicitly. The main reason is technical in that these constructions have already been implemented
explicitly before [49] so we reuse them. However, as discussed in the previous section, it is not
clear yet whether an explicit or symbolic approach is better as the work of Sohail et al. and
Morgenstern et al. lack a comparison.
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FIGURE 3.2 Visualization of the construction steps

We summarize the construction graphically in Figure 3.2 and note that the right part of the
figure is sometimes skipped in line with the previous discussion. The next three chapters will
describe the construction in more detail. Steps 1 and 2 will be discussed in Chapter 4. We then
cover steps 3, 4 and 5 in Chapter 5. Finally, step 6 is discussed in Chapter 6.
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CHAPTER 4

Constructing Explicit Automata

In this chapter, we show how we convert an LTL specification to a collection of DCW
and DBW automata. The approach we present here is adapted from Sickert and Esparza [86].
We start with the normalization of an LTL specification into a ∆2­formula from which we can
extractΣ2­ andΠ2­fragments. We then introduce alternating weak automata and the conversion
ofΣ2­ andΠ2­fragment to them. Finally, we show howwe determinize these automata to obtain
DCW and DBW automata.

4.1 Normalization

In this section, we discuss the normalization procedure as proposed by Sickert and Esparza
[86]. This normalization allows us to divide the formula into Σ2­ and Π2­fragments that are
easy to translate to automata. This section presents the results but for the proofs we refer to
Sickert and Esparza [86].

We start with an LTL formula φ. The normalization procedure is then based on the obser­
vation that having information about the limit­behaviour of words allows for simplifications
of the formula. Suppose φ = a U b. If we know, for example, that for all words, a U b holds
infinitely often, then we can simplify φ to a weaker version φ′ = aW b since we know that
b always eventually becomes true. We can use this concept systematically and enumerate all
possible assumptions to obtain a normal form structured as follows:

φ ≡
∨

assumptions
(simplified formula under assumption ∧ the assumption holds)

This is how the normal form as proposed by Sickert and Esparza is structured. It makes
various assumptions on the limit­behaviour of words, and simplifies the specification based on
each assumption. They do so by partitioning the infinite set of all words according to their
limit­behaviour. We briefly present their results and provide an example afterwards.

Let us first introduce some notation. We use sf (φ) to denote the set of all subformulas of φ
(including φ itself). We then define µ(φ) and ν(φ) in terms of sf (φ) as follows:

DEFINITION 4.1 [86] Let µ(φ) be defined as the set of all subformulas in sf (φ) of the form
φ1 U φ2, φ1 M φ2 or F φ1. Analogously, let ν(φ) be defined as the set of all subformulas in
sf (φ) of the form φ1 R φ2, φ1 W φ2 or G φ1.



Now let U denote the set of all possible words, GFφw denote all ψ ∈ µ(φ) that are infinitely
often true for the word w and FGφw denote all ψ ∈ ν(φ) that are eventually always true for the
word w. We can now define the partitioning as follows:

DEFINITION 4.2 [86] Let φ be an LTL formula,M ⊆ µ(φ) and N ⊆ ν(φ), then

PφM,N = {w ∈ U |M = GFφw ∧N = FGφw}

This partitions the words such that all words with the same limit­behaviour are in the same
partition. For each of these partitions, we can now derive a simplification for φ under the
assumption that the words are in this partition. We first repeat the substitutions and then present
the main theorem in Theorem 4.6.

DEFINITION 4.3 [86] Let φ be a formula andM ⊆ µ(φ) be a set of subformulas of φ. Then we
define φ[M ]Π1 inductively by case distinction as follows:

(φ1 U φ2)[M ]Π1 =

(φ1[M ]Π1 )W (φ2[M ]Π1 ) if φ1 U φ2 ∈M

⊥ otherwise

(φ1 M φ2)[M ]Π1 =

(φ1[M ]Π1 ) R (φ2[M ]Π1 ) if φ1 M φ2 ∈M

⊥ otherwise

(F φ1)[M ]Π1 =

⊤ if F φ1 ∈M

⊥ otherwise

The remaining cases are defined homomorphically, e.g. (G φ1)[M ]Π1 = G (φ1[M ]Π1 ).

DEFINITION 4.4 [86] Let φ be a formula and N ⊆ ν(φ) be a set of subformulas of φ. Then we
define φ[N ]Σ1 inductively by case distinction as follows:

(φ1 R φ2)[N ]Σ1 =

⊤ if φ1 R φ2 ∈ N

(φ1[N ]Σ1 )M (φ2[N ]Σ1 ) otherwise

(φ1 W φ2)[N ]Σ1 =

⊤ if φ1 W φ2 ∈ N

(φ1[N ]Σ1 ) U (φ2[N ]Σ1 ) otherwise

(G φ1)[N ]Σ1 =

⊤ if G φ1 ∈ N

⊥ otherwise

The remaining cases are defined homomorphically.

DEFINITION 4.5 Let φ be a formula andM ⊆ µ(φ) be a set of subformulas of φ. Then we define
φ[M ]Σ2 inductively by case distinction as follows:

(φ1 R φ2)[M ]Σ2 = (φ1[M ]Σ2 ∨ G (φ2[M ]Π1 ))M (φ2[M ]Σ2 )

(φ1 W φ2)[M ]Σ2 = (φ1[M ]Σ2 ) U ((φ2[M ]Σ2 ) ∨ G (φ1[M ]Π1 ))
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(G φ1)[M ]Σ2 = (G (φ1[M ]Π1 ))M (φ1[M ]Σ2 )

The remaining cases are defined homomorphically

THEOREM 4.6 [86] Let φ be an LTL formula, then

φ ≡
∨

M⊆µ(φ)
N⊆ν(φ)

φ[M ]Σ2 ∧
∧
ψ∈M

GF (ψ[N ]Σ1 ) ∧
∧
ψ∈N

FG (ψ[M ]Π1 )



The proof for this theorem is given by Sickert and Esparza [86] and outside the scope of this
thesis. The key idea is that we iterate over the partitions, which are essentially assumptions on
the limit behaviour of the words. For each assumption, φ[M ]Σ2 is the simplification of φ given
that the assumption holds. The remainder of the disjunct then ensures that the assumption indeed
holds. We now proceed with an example.

EXAMPLE 4.7 [86] Let φ = F (a ∧ G (b ∨ F c))). This formula is clearly not in ∆2. We first
illustrate informally how the normalization procedure can convert this formula to an equivalent
formula in ∆2, and then we partially apply the formal procedure to see how it arrives at the
same result.

To change φ to a ∆2­formula, we need to get rid of the innermost finally operator F c. We
therefore make a case distinction for the limit behaviour of F c. First, we assume F c holds
infinitely often, i.e. GF c holds. Then, we know that G (b ∨ F c) also holds. Thus, under the
assumption that GF c holds, we can simplify φ to F a. Now assume ¬GF c, i.e. FG c̄ holds.
Then we know that at some point in time (b ∨ F c) is equivalent to b. This means that we can
simplifyG (b∨F c) to (b∨F c) U G b since there is a point in time after whichG (b∨F c) can
only be satisfied by b and not by F c.Combining the two assumptions then gives us the formula
φ′ such that φ ≡ φ′ and φ′ ∈ ∆2:

φ′ = FG c̄ ∧ F (a ∧ ((b ∨ F c) U G b)) ∨GF c ∧ F a

≡ F (a ∧ ((b ∨ F c) U G b)) ∨ F a

Using Theorem 4.6, we can obtain the same results as follows. We start by identifying the
subformula sets µ(φ) and ν(φ). This gives us µ(φ) = {φ,F c} and ν(φ) = {G (b ∨ F c)}.
Then Theorem 4.6 will yield a disjunct for each of the |2µ(φ)| ∗ |2ν(φ)| = 8 combinations ofM
andN . We denote each of these disjuncts by φ′

M,N . We takeM = {φ} andN = {G (b∨F c)}
as an example and obtain φ′

{φ},{G (b∨F c)}:

φ′
{φ},{G (b∨F c)} = φ[{φ}]Σ2 ∧GF (φ[{G (b ∨ F c)}]Σ1 ) ∧ FG ((G (b ∨ F c))[{φ}]Π1 )

Let us now compute the result of each of the three substitutions in φ′
{φ},{G (b∨F c)} separately:

φ[{φ}]Σ2 = F (a ∧ ((G ((b ∨ F c)[{φ}]Π1 )) M ((b ∨ F c)[{φ}]Σ2 ))

= F (a ∧ ((G b) M (b ∨ F c)))
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φ[{G (b ∨ F c)}]Σ1 = F a

(G (b ∨ F c))[{φ}Π
1 ) = G b

Combining the results, we obtain:

φ′
{φ},{G (b∨F c)} = F (a ∧ ((G b) M (b ∨ F c))) ∧GF (F a) ∧ FG (G b)

Obviously, GF (F a) ≡ GF a and FG (G b) ≡ FG b. Furthermore GF a ∧ FG b implies
F (a ∧ ((G b) M (b ∨ F c))) so we simplify and obtain:

φ′
{φ},{G (b∨F c)} = GF a ∧ FG b

We repeat this for the remaining 7 disjunctions and after applying several simplification rules
[85], we again obtain the formula φ′ [86]. □

It is easy to see that the substitution φ[M ]Π1 for some φ and M results in a Π1­formula.
Similarly, φ[N ]Σ1 results in a Σ1­formula for some φ andN , and φ[N ]Σ2 results in a Σ2­formula.
This means that Theorem 4.6 normalizes any formula φ into a disjunction of pairs of Π2­ and
Σ2­formulas as follows:

∨
M⊆µ(φ)
N⊆ν(φ)

φ[M ]Σ2 ∧
∧
ψ∈M

GF (ψ[N ]Σ1 )
︸ ︷︷ ︸

Σ2

∧
∧
ψ∈N

FG (ψ[M ]Π1 )
︸ ︷︷ ︸

Π2


We use this observation in the next section to convert these Σ2­ and Π2­formulas into au­

tomata.

4.2 Translating LTL Fragments to Alternating Automata

In this section we introduce the construction from a ∆2­formulas to alternating automata
[86]. We first define alternating automata. Then we present the translation to an alternating
automaton [75, 86].

4.2.1 Alternating Automata

Unlike the automata classes we have seen in Section 2.3.2, alternating automata do not differ
from the other classes through the acceptance condition. Instead, alternating automata are ω­
automata with a special transition relation which we define later. It is important to understand
that alternating automata are not a class of ω­automata. Instead, for every ω­automata class we
have seen so far, an equivalent alternating automata class exists. Here, we assume alternating
automata to have a co­Büchi acceptance condition and we therefore only define them with such
a condition.

Alternating automata are similar to ω­automata in that they run on infinite words. The
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C

a, ba

a a

a

FIGURE 4.1 Alternating automaton ({A,B,C}, {a, b}, A, δ, {A,B,C})

difference lies in what we consider a run. In an ω­automaton, a run is always a sequence of
states. If multiple transitions are enabled for a symbol, a non­deterministic choice is made
between these transitions. The existence of an accepting run for a word determines whether the
word is accepted or not. In alternating automata, whenmultiple transitions are enabled, this may
also be resolved through a non­deterministic choice but there is also the option to instead take
all of the transitions simultaneously. This means that a run is no longer just a sequence of states,
but rather an infinite tree where each node represents a state of the automaton. The acceptance
condition is then defined such that a word is accepted if there exists a run such that every infinite
path through the run eventually stays in some set of states forever. Let B+(Q) denote the set
of positive boolean formulas over Q, i.e. the closure of Q ∪ {⊤,⊥} under disjunction and
conjunction, then we formally define an alternating automaton as follows:

DEFINITION 4.8 An alternating automaton is a 5­tuple A = (Q,Σ, I, δ, α) where

• Q is a set of states.

• Σ is a set of input symbols.

• I ∈ B+(Q) is the initial states formula.

• δ : Q× Σ→ B+(Q) is the transition formula.

• α ⊆ Q is the (co­Büchi) acceptance condition.

The transition formula distinguishes this automaton from a co­Büchi ω­automaton. For
example, suppose δ(s, a) = {{q, r}, {s, t}} for some states q, r, s, t ∈ Q and a ∈ Σ. This
means that we non­deterministically decide whether we take the transitions to q and r, or we
take the transitions to s and t. We represent this by encoding the range of δ using positive
boolean formulas over the states where for some s, t ∈ Q we have that s ∨ t denotes a non­
deterministic choice between s and t, and s ∧ t denotes that both transitions should be taken.
We refer to the former as an existential transition and the latter as a universal transition.

EXAMPLE 4.9 Consider the automaton in Figure 4.1. We use gray arcs between transitions to
indicate that they are universal. This automaton represents the language starting with aa and
then infinitely repeating a or b (e.g. aabbabba . . . ). A possible run of this automaton is depicted
in Figure 4.2 for the accepted word aaaa . . . . Notice that we take both a transitions in A since
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A

B

B

. . .

C

A

B

B

. . .

C

A

. . . . . .

FIGURE 4.2 Example run for the word aaaa . . . of the alternating automaton depicted in Figure 4.1 (Input
symbols have been omitted since we always read a in this example)

δ(A, a) is universal, whereas we only take a single transition in C since δ(C, a) is existential.
□

Some special attention is needed for the cases that any of the propositional formulas is ⊤
or ⊥. In case the initial state formula is ⊤, then the automaton accepts all words. Conversely,
if the formula is ⊥, then the automaton accepts no words. Runs where any branches reach a
state where the next state formula is ⊥ are rejecting, and branches of a run where the next state
formula is ⊤ are accepting.

4.2.2 LTL to Alternating Automata

The main benefit of alternating automata is that it is almost trivial to obtain an alternating
automaton recognizing any LTL formula. Given some LTL formula φ, the basic procedure
works as follows. We associate each LTL formula to a state and the state associated with φ is
the initial state. From there on, we build up the transition relation using a set of LTL equivalence
rules called expansion laws.

LEMMA 4.10 [3] For any LTL formula φ and ψ, the following expansion laws hold:

F φ ≡ φ ∨ XFφ

G φ ≡ φ ∧ XGφ

φ U ψ ≡ ψ ∨ (φ ∧ X (φ U ψ))

φ R ψ ≡ ψ ∧ (φ ∨ X (φ R ψ))

φW ψ ≡ ψ ∨ (φ ∧ X (φW ψ))

φM ψ ≡ ψ ∧ (φ ∨ X (φM ψ))
These laws allow a very intuitive extraction of the transition relation. This idea was first

presented by Muller et al. [75], but we present a slight variation of the construction by Sickert
and Esparza [86] because it is easier to determinize. However, we define it only for∆2­formulas
as we only need this construction for Σ2­ and Π2­formulas.

Let us start with some formula φ ∈ ∆2. We call the set of subformulas of φ that have a
temporal operator at the top level or that are (negated) atomic propositions s(φ). Then, we can
construct the automaton by associating to each ψ ∈ s(φ) states ⟨ψ⟩Γ where Γ is the least LTL
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class in {Π1,Σ1,∆1,Π2,Σ2,∆2} containing ψ. In case there is no single least class we create
a state for every least class. For example, the states belonging to X a are ⟨X a⟩Π1 and ⟨X a⟩Σ1 .
Finally, we assign to each formula φ ∈ ∆2 a boolean combination of these states denoted [φ]≤Γ

as follows:

• [⊤]≤Γ = ⊤
• [⊥]≤Γ = ⊥
• [φ1 ∨ φ2]≤Γ = [φ1]≤Γ ∨ [φ2]≤Γ

• [φ1 ∧ φ2]≤Γ = [φ1]≤Γ ∧ [φ2]≤Γ

• Else [φ]≤Γ = ∨
Γ′≤Γ⟨φ⟩Γ′

We now construct the automaton using the expansion laws from Lemma 4.10 such that the
initial state is [φ]≤∆2 and the acceptance condition contains all states of the form ⟨ψ⟩Πi

for
i ∈ {1, 2}.

THEOREM 4.11 [86] Given an LTL formula φ ∈ ∆2 over the atomic propositions AP , the alter­
nating automaton recognizing the language of φ is (Q,Σ, I, δ, α) where:

• Q = {⟨ψ⟩Γ | ψ ∈ s(φ),Γ ≤ ∆2}

• Σ = 2AP

• I = [φ]≤∆2

• α = {⟨ψ⟩Πi
| i ∈ {1, 2}, ⟨ψ⟩Πi

∈ Q}

• δ is the restriction toQ×Σ of the function δ′ : B+(Q)×Σ→ B+(Q) defined as follows:

δ′(⟨a⟩Γ, σ) =

⊤ a ∈ σ

⊥ otherwise

δ′(⟨ā⟩Γ, σ) =

⊤ a /∈ σ

⊥ otherwise

δ′(⊤, σ) = ⊤

δ′(⊥, σ) = ⊥

δ′(p ∨ q, σ) = δ′(p) ∨ δ′(q)

δ′(p ∧ q, σ) = δ′(p) ∧ δ′(q)

δ′(⟨X ψ⟩Γ, σ) = [ψ]≤Γ

δ′(⟨ψ1 U ψ2⟩Γ, σ) = δ′([ψ2 ∨ (ψ1 ∧ X (ψ1 U ψ2))]≤Γ, σ)

δ′(⟨ψ1 W ψ2⟩Γ, σ) = δ′([ψ2 ∨ (ψ1 ∧ X (ψ1 W ψ2))]≤Γ, σ)

δ′(⟨ψ1 R ψ2⟩Γ, σ) = δ′([ψ2 ∧ (ψ1 ∨ X (ψ1 R ψ2))]≤Γ, σ)

δ′(⟨ψ1 M ψ2⟩Γ, σ) = δ′([ψ2 ∧ (ψ1 ∨ X (ψ1 M ψ2))]≤Γ, σ)

δ′(⟨F ψ⟩Γ, σ) = δ′([ψ ∨ X F ψ]≤Γ)

δ′(⟨G ψ⟩Γ, σ) = δ′([ψ ∧ X G ψ]≤Γ)
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q2

q3

⊤

⊤

b
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⊤
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FIGURE 4.3 AWW for φ = a U b ∧ FG c where q0 = ⟨φ⟩Σ2 , q1 = ⟨a U b⟩Σ1 , q2 = ⟨FG c⟩Σ2 and
q3 = ⟨G c⟩Π1

This results in an automaton that has at most twice as many states as there are subformulas
in φ, meaning that this translation does not suffer from a blowup and is inexpensive. We will
consider more properties of these automata in the next section, but we first present an example
of the construction.

EXAMPLE 4.12 Consider the LTL formula a U b ∧ FG c. The AWW is presented in Figure 4.3.
For notational purposes we include ⊤ as a state in the diagram. It should be realized however
that this is not a real state and that it should be interpreted as discussed before. Furthermore, a
transition label a is shorthand for any σ ∈ Σ such that a ∈ σ. Finally, a transition labelled ⊤ is
enabled for any σ ∈ Σ. □

4.2.3 Characteristics of the Alternating Automata

Alternating automata with a co­Büchi acceptance condition are more expressive than LTL
formulas. To simplify the determinization, we identify a characteristic of the alternating au­
tomata that are created from the LTL formulas. It turns out that those automata are alternating
weak automata [75]:

DEFINITION 4.13 An alternating weak automaton (AWW) is an alternating automaton
(Q,Σ, I, δ, α) where there exists an ordered partitioning Q1, . . . Qn of Q such that for each
edge (q1, σ, q2) in any run of A, q1 ∈ Qi, q2 ∈ Qj and i ≤ j. Additionally, for each partition
Qi, either Qi ⊆ α or Si ∩ α = ∅.

Intuitively, this means that we can partition the set of states such that we are guaranteed to
always move in one direction through the partitions. In other words, any cycle in the AWW
is guaranteed to be fully contained in one of the partitions. Furthermore, either all states or
no states in a partition are accepting. For example, Figure 4.1 depicts an AWW where a valid
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partitioning is the list [{A,C}, {B}].
Next, we define the height of an AWW as the maximal number of times any run alternates

between accepting and non­accepting states, plus one. For example, the height of Figure 4.1 is 1,
since there is no alternation at all. The height of the AWWs obtained from the LTL construction
is at most 2 [86]. In the next section, we show how we use this property to arrive at a simple
determinization construction.

4.3 AWW Determinization

Since the height of the automaton obtained from the previous construction is at most 2, we
know that for any accepted word there is a run through the automaton such that at some point
in the run we stay in the set of accepting states forever [86]. Recall that this property is also
present in NCWs. We can therefore adapt the determinization of NCWs to be used for these
AWWs [86]. Let us first present how we can determinize an NCW. Then we adapt it slightly to
work on AWWs with an alternation depth of 2.

4.3.1 NCW Breakpoint Construction

An explicitly represented NCW can be determinized using the breakpoint construction [68]
to a DCW that is at most exponentially larger than the NCW. The breakpoint construction is
an extension of the well known Rabin­Scott subset construction [82] for determinizing non­
deterministic finite automata on finite words that is covered in any undergraduate’s introduction
to automata theory [90]. In the subset construction, each state in the deterministic automaton
corresponds with the set of states that can be reached in the non­deterministic automaton when
a certain symbol is read. Essentially, the construction collects all possible runs of the non­
deterministic automaton and collects them in a single state for each input symbol.

Unfortunately, this approach is not sufficient for the determinization of an NCW. We take
the example from Schneider [85] to illustrate why. Suppose we have a non­deterministic finite
automaton as illustrated in Figure 4.4, then the deterministic automaton as constructed using
the subset construction is shown in Figure 4.5.

The problem now arises when trying to find the acceptance condition for the DCW. The
only information we have is whether the states of the DCW contain states from the acceptance
condition of the NCW. Essentially, we have two options. We could define the acceptance con­
dition of the DCW such that a state in the DCW is accepting if all accepting NCW states are
in the subset of the state in the DCW. In that case, however, the language of the DCW in Fig­
ure 4.5 would be empty while the language of the NCW is clearly nonempty. The other option
is that a state in the DCW is accepting if any accepting NCW states are in the subset of the state
in the DCW. Also, this case would not work as that would mean that both states of the DCW
in Figure 4.5 become accepting, which means aaa . . . becomes a word that is accepted by the
DCW, while this word is not accepted by the NCW.

So, the subset construction alone is not sufficient. Observe that the problem arises because
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FIGURE 4.4 Example NCW where s0 and s2 are initial states and fin({s0, s1}) the acceptance condition

{s0, s2} {s1, s3}

ā

a

a

ā

FIGURE 4.5 DCW constructed from Figure 4.4 using the subset construction. Regardless of the accep­
tance condition, this automaton does not accept the same language as Figure 4.4.

we lose information about entering and leaving the set of accepting states. For example, every
run of aaa . . . in Figure 4.4 infinitely often visits the set of accepting states but in Figure 4.5
we lost this information and it seems as if we either never enter or never leave the set of ac­
cepting states (depending on which of the two above discussed options we take for defining
the acceptance condition). Therefore, we need to keep track of the moments where we leave
the set of accepting states. We call these moments breakpoints. We adapt the algorithm from
Schneider [85] and present the breakpoint construction in Algorithm 1.

The algorithm works by exploring the state space. Just like with the subset construction,
we collect all reachable states S ′

1 after reading some symbol σ. Additionally, we collect the
accepting states that we have stayed in since the last breakpoint. If we just left a breakpoint,
then this set is simply all accepting states of S ′

1. Otherwise, it is the set of successors of S2 that
are accepting. Each state in the deterministic automaton then becomes a tuple where the first
element is like in the subset construction and the second set is the set S ′

2. The final acceptance
condition of this automaton is the set of states for which the second element of the tuple is
empty, i.e. the set of breakpoints since any accepting word can only finitely often visit such a
breakpoint.

EXAMPLE 4.14 Consider again Figure 4.4. We now apply the breakpoint construction and obtain
the DCW as shown in Figure 4.6. We see that in addition to the state sets from the subset
construction, we now also track the states seen since the last breakpoint. The automaton is
deterministic and recognizes the same language as the NCW. □
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{s0, s2}, ∅ {s0, s2}, {s0}

{s1, s3}, {s1} {s1, s3}, ∅

ā

ā

ā

ā

a a a a

FIGURE 4.6 DCW constructed from Figure 4.4 using the breakpoint construction. Each state is labelled
with a pair of sets of states from Figure 4.4. The first set is obtained from the subset construction and
the second is the set of states seen since the last breakpoint.
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Algorithm 1 explBreakpoint(QA,Σ, IA, δA, fin(αA))
1: L← {(IA, ∅)}
2: S, δ, α← ∅
3: while L ̸= ∅ do
4: (S1, S2)← pick(L)
5: S ← S ∪ {(S1, S2)}
6: L← L \ {(S1, S2)}
7: for σ ∈ Σ do
8: S ′

1 ← {s|s′ ∈ S1, (s′, σ, s) ∈ δA}
9: if S2 = ∅ then
10: S ′

2 ← S ′
1 ∩ αA

11: else
12: S ′

2 ← {s|s′ ∈ S2, (s′, σ, s) ∈ δA} ∩ αA
13: end if
14: δ ← δ′ ∪ {((S1, S2), σ, (S ′

1, S
′
2))}

15: if (S ′
1, S

′
2) /∈ S then

16: L← L ∪ {(S ′
1, S

′
2)}

17: end if
18: end for
19: if S2 = ∅ then
20: α← α ∪ {(S1, S2)}
21: end if
22: end while
23: return (S,Σ, {(IA, ∅)}, fin(α))

4.3.2 Adapting the Construction for AWWs

In the explicit breakpoint construction of an NCW, each state of the DCW is associated with
two subsets of states of the NCW, representing which states we have seen since a point in time.
This is possible because NCWs only support existential transitions. To apply the construction
to AWWs we need to adapt it to support universal transitions. We can do so by using positive
boolean formulas over the states instead of subsets just like in the transition relation of an AWW.
For completeness, we repeat the algorithm in Algorithm 2 using this adjustment. The algorithm
is essentially equivalent to Algorithm 1 but uses positive boolean formulas instead of subsets.
Note also that we useφ[⊥/(SA\αA)] to denote a substitutionwherewe replace all non­accepting
states by ⊥ in φ.

It is important to realize that this adapted version of the breakpoint construction is not valid
for all AWWs in general. It only works for AWWs constructed from Σ2­formulas because these
have an alternation depth of 21 and their initial state formulas only contain states that are not
accepting (i.e. they are elements of B+(Q \ α)). A dual construction exists for Π2­formulas.
We refer to Sickert and Esparza [86] for the proof and further details.

The results of this chapter show howwe can transform a single LTL formula into a collection
of DCW and DBW automata. In the next chapter, we show how we can encode these automata
symbolically and how we combine them into a single symbolic DPW.

1This holds for AWWs constructed from ∆2­formulas
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Algorithm 2 aww2dcw(SA,Σ, IA, δA, αA)
1: L← {(IA,⊥)}
2: S, δ ← ∅
3: α← ∅
4: while L ̸= ∅ do
5: (φ, ψ)← pick(L)
6: S ← S ∪ {(φ, ψ)}
7: L← L \ {(φ, ψ)}
8: for σ ∈ Σ do
9: φ′ ← δA(φ, σ)
10: if ψ ≡ ⊥ then
11: ψ′ ← φ′[⊥/(SA \ αA)]
12: else
13: ψ′ ← δA(ψ, σ)
14: end if
15: δ ← δ ∪ {((φ, ψ), σ, (φ′, ψ′))}
16: if (φ′, ψ′) /∈ S then
17: L← L ∪ {(φ′, ψ′)}
18: end if
19: end for
20: if ψ ≡ ⊥ then
21: α← α ∪ {(φ, ψ)}
22: end if
23: end while
24: return (S,Σ, {(IA,⊥)}, α)
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CHAPTER 5

Constructing a Symbolic DPW

In this chapter, we show how we combine the automata from the previous chapter into a
symbolic DPW. We will first introduce symbolic computation in general. Then, we show how
we can encode ω­automata symbolically and howwe then combine the automata into a symbolic
DRW. Finally, we demonstrate how to symbolically convert a DRW to a DPW using the results
from Boker et al. [13]. 

5.1 Symbolic Computation

We understand symbolic computation in our context as the strategy to encode data for some
computationwithin a data structure that implicitly represents it. Operations on this data structure
then map to operations on the original data but aim to use less space and time than when applied
to the data directly. This technique can be very efficient, but, unfortunately not all computations
can easily be implemented symbolically. Implementing an algorithm symbolically requires a
suitable encoding of the data that supports all operations that the algorithm needs. Some data
structures are well­suited for symbolic implementations whereas others are not.

Fortunately, most theory on reactive synthesis directly or indirectly relies on set theory and
sets can be represented symbolically through propositional formulas. Many common set oper­
ations can be symbolically executed by operating on the formula. For example, consider the set
S = {a, b, c, d, e, f, g, h}, we can represent this set and any subset of this set as propositional
formulas over the variables p, q and r by associating each variable assignment with an element
of S. Suppose we use the following encoding:

{ a︸︷︷︸
pqr

, b︸︷︷︸
pqr̄

, c︸︷︷︸
pq̄r

, d︸︷︷︸
pq̄r̄

, e︸︷︷︸
p̄qr

, f︸︷︷︸
p̄qr̄

, g︸︷︷︸
p̄q̄r

, h︸︷︷︸
p̄q̄r̄

}

We can then, for example, encode the subset {a, b, c, d} as the propositional formula p. Gen­
erally, this means we can use x propositional variables to encode a set of 2x elements with a
propositional formula over x.

Encoding sets using propositional formulas is only useful if we have an efficient data struc­
ture to represent propositional formulas on which we can also apply operations that can be
mapped back to set operations. Originally introduced by Lee in 1959 [56], binary decision di­
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FIGURE 5.1 Two BDDs for the formula p ∧ q ∨ r ∧ s where the left and right BDD use the ordering
p, r, q, s and p, q, r, s respectively

agrams have exactly this property. A binary decision diagram is a binary tree structure that
can represent a propositional formula. It is based on the fact that any formula φ containing a
variable x can be rewritten as “if x then φ[x/⊤] else φ[x/⊥]”. This naturally allows for a tree
structure to encode any propositional formula, where the leaves represent the truth value of the
formula.

If we additionally structure the tree such that the order of evaluation of the variables is the
same, regardless of which branches of the tree we follow, we obtain an ordered binary decision
diagram. Furthermore, we can reduce this ordered binary decision diagram to obtain a reduced
ordered binary decision diagram by removing all duplicate and redundant nodes [15]. When
we consider binary decision diagrams (or BDDs for short), we assume the BDD is ordered and
reduced.

Two examples of a BDD for the formula p ∧ q ∨ r ∧ s are shown in Figure 5.1. We al­
ways traverse a binary decision diagram top­down. An outgoing dashed edge indicates that the
variable was false, and a solid edge indicates that it was true.

Observe that the size of a BDD is depending on the variable orderingwe choose. For exam­
ple, the left BDD in Figure 5.1 has 8 nodes but the right BDD only has 6 nodes. Unfortunately,
deciding the optimal variable ordering for a BDD is NP­hard [14]. Still, using certain heuristics
it is possible to find variable orderings which work well in practice.

We can estimate how well a variable ordering works by considering the compression ratio
of the BDD, which can be computed as the number of satisfying assignments over the number of
nodes in the BDD. The compression ratio essentially tells us how much information each node
contains. Note that compression ratios below 1 are also possible. This occurs, for example,
when the amount of variables exceeds the number of satisfying assignments. In these cases
using zero­suppressed decision diagram can be more efficient [67].

In this research, we did not aim to find a good variable ordering. Instead, we use a rather
naive variable ordering. We will see later that even a naive variable ordering can work very
well in some cases. In Section 9.4 we discuss future work regarding the ordering of variables
in the BDDs.

Given a good variable ordering, a BDD can be used to compactly represent a propositional
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formula. There also exist algorithms that implement common operations on propositional for­
mulas, such as negation, disjunction and conjunction, through BDDs. Additionally, there are
algorithms for composition (i.e. replacing a variable in a BDD by another BDD) and for deter­
mining the number of satisfying variable assignments. The latter is useful because it directly
maps to the number of elements in the set encoded by the BDD. Similarly, conjunction maps to
intersection, disjunction to union and negation to complementation. Finally, an operation we
will frequently encounter is the existential quantification over some set of variables. We denote
the existential quantification over the variables Q in formula φ as ∃Q φ.

We will not go into the details of these algorithms. Efficient implementations of these algo­
rithms are already widely available through libraries like BuDDy [26] and CUDD [88]. In our
implementation, we have used Sylvan [93] which is a modern multi­threaded BDD library.

5.2 Symbolically Encoding ω -Automata

Anω ­automaton can easily be represented symbolically by replacing sets with propositional
formula as seen in the previous section. In practice, this allows for a representation using BDDs.
In this chapter we abstract away the BDDs and use propositional formulas instead. In Chapter 7,
we will discuss in more detail how we use BDDs in practice.

From here on, we redefine ω ­automata symbolically. Instead of a set of states, we have a set
of state variables that encode the states of the automaton. Additionally, we now use the atomic
propositions AP to encode the alphabet Σ = 2AP of the automaton. To distinguish symbolic
automata from explicit automata, we use a slightly different notation which is based on that
used by Schneider [85].

DEFINITION 5.1 A symbolic ω­automaton is a 5­tuple A = (Q,AP, I,R,F) where

• Q is a set of state variables representing the set of states 2Q,

• AP is a set of atomic propositions representing the alphabet Σ = 2AP ,

• I is a propositional formula over Q, representing the set of initial states,

• R is a propositional formula over Q ∪ AP ∪ {qx | q ∈ Q}, representing the transition
relation δ ⊆ 2Q × 2AP × 2Q, where the qx variables encode the successor states,

• F is the acceptance condition derived from f ::= ⊥ | ⊤ | inf (φ) | fin(φ) | f ∧ f | f ∨ f
where φ is any propositional formula over Q.

EXAMPLE 5.2 We reconsider Example 2.7 and show its symbolic representation. For conve­
nience we repeat it here and present it in Figure 5.2.

Recall Example 2.7 as ({A,B,C,D}, {a, b}, {A,B}, δ, inf ({C})) where

δ = {(A, {a, b}, C), (B, {a, b}, C), (B, ∅, B), (C, {a}, D), (D, {a}, C)}
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āb̄

FIGURE 5.3 The automaton of Figure 5.2 with
a symbolic state labelling

We now arbitrarily choose an encoding for the state set {A,B,C,D} into state variables p and
q as follows:

{ A︸︷︷︸
pq

, B︸︷︷︸
pq̄

, C︸︷︷︸
p̄q

, D︸︷︷︸
p̄q̄

}

We use propositional formulas over p and q to represent I and F , and we ad­
ditionally use a, b, px, qx for R, from which we obtain the symbolic representation
({p, q}, {a, b}, p,R, inf (p̄ ∧ q)) with

R = p ∧ (a ∧ b ∧ p̄x ∧ qx ∨ q̄ ∧ ā ∧ b̄ ∧ px ∧ q̄x) ∨ p̄ ∧ a ∧ b̄ ∧ (q ↔ q̄x)

□

Let us now introduce some useful notation. First of all, given a set of variables Q, we use
Qx to denote the set of next state variables {qx | q ∈ Q}. Next, we use φ[X] where φ is a
propositional formula to denote the substitution of all non­successor state variables q by the
successor state variables qx. For example, suppose φ = a ∧ q where q is a state variable and
a an atomic proposition, then φ[X] = a ∧ qx. We denote the inverse substitution of φ[X] by
φ[X−1].

These substitutions allows for an easy computation of the direct successors of some state
formula φ overQ by (∃Q∪AP(R∧φ))[X−1]. Similarly, we can compute the direct predecessors
of φ by ∃Qx∪AP(R∧ (φ[X])).

5.3 Combining the Automata

We now symbolically encode the DBWandDCWautomata obtained in the previous chapter
and combine them into a single Rabin automaton. For this, we observe that Theorem 4.6 can
be reversely applied in the context of automata: We extracted from the specification a boolean
combination of subspecifications, and translated each subspecification into a DBW or a DCW.
Using that same boolean combination, we can combine all the DBWs and DCWs and obtain a
DRW recognizing the full specification.
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Recall that Theorem 4.6 has given us a disjunction of n conjunctions of a Σ2­ and a Π2­
formulas. Each Σ2­formula φi is translated to a DCW Ai = (QAi

,AP, IAi
,RAi

,FAi
) and each

Π2­formulaψi to a DBWBi = (QBi
,AP, IBi

,RBi
,FBi

). We construct the intersection of these
automata as follows:

Ai ×Bi = (Qi = QAi
∪QBi

,AP, Ii = IAi
∧ IBi

,Ri = RAi
∧RBi

,Fi = FAi
∧ FBi

)

Finally we take the disjunction of these automata over all 0 < i ≤ n and we obtain the automa­
ton C:

C =
(

n⋃
i=1
Qi,

n∧
i=1
Ii,

n∧
i=1
Ri,

N∨
i=1
Fi
)

Since this automaton has an acceptance condition that is a disjunction of a conjunction of
a DCW and a DBW condition, this automaton is a Rabin automaton. Furthermore, since it is a
product of deterministic automata, it itself is also deterministic and therefore a DRW. Finally,
it results directly from Theorem 4.6 that this automaton recognizes the specification that we
started with in the previous chapter.

In the next section, we continue with the construction from the DRW to the DPW. A crucial
requirement for that is that there exists a Streett condition on the structure of the DRW that
recognizes the same language as the Rabin condition. This is not generally true and for those
cases where it is not, we proceed as follows:

Suppose our specification is the LTL formula φ. Then we repeat the complete construction
for the negated specification ¬φ up until this point. Because of the duality between DRW and
DSW automata, the resulting DRW automaton can be interpreted as a DSW automaton recog­
nizing φ by simply negating the acceptance condition to obtain a conjunction of disjunctions
instead of a disjunction of conjunctions. Finally, we take the intersection of the DRW and the
DSW automata like before, but we drop the DSW acceptance condition. The result is a DRW
on which both a DRW and a DSW condition exist that recognize the same language.

Before we continue to transform this DRW to a DPW, we first need to discuss how we can
symbolically compute the SCC decomposition of an automaton since this is a requirement for
the algorithm that gives us a DPW. In the next section we present this symbolic SCC decom­
position. The section thereafter will discuss the DPW construction.

5.4 SCC Decomposition

Decomposing a graph into its strongly connected components is a frequently occurring task
in graph theory and has been thoroughly researched already. Two well known linear­time ex­
plicit SCC decomposition algorithms were invented by Tarjan [91] and Dijkstra [27]. These
algorithms are not suitable for symbolic computation, however, since they require an enumer­
ation of the state space. Instead, we use a semi­symbolic O(n log n) time algorithm based on
the observation that an SCC containing a node v is exactly the intersection of the forward and
backward reachability sets of v. The algorithm was originally invented by Xie and Beerel [98]
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and was optimized by Bloem et al. [9] to reach O(n log n) time complexity.
The algorithm is presented in Algorithm 3 (where initially V = ⊤). It is semi­symbolic

since it enumerates one state of each SCC. This also means that the algorithm performs better
in the case that the automaton has a few large SCCs than when it has many small SCCs.

Intuitively, the algorithm recursively computes the SCCs by taking an arbitrary node and
computing the forward and backward reachability sets of that node simultaneously, while keep­
ing track of which set converges first.1 The intersection of the two sets is the SCC C and the
remaining SCCs are computed in two recursive calls. First, we compute the SCCs of the re­
maining elements of the set that converged first. Second, we compute the SCCs of the nodes
that remain.

Algorithm 3 sccs(A = (Q,AP, I,R,F), V )
1: if V ≡ ⊥ then
2: return ∅
3: end if
4: F,B, S, P ← pick(V )
5: while (S ̸≡ ⊥) ∧ (P ̸≡ ⊥) do
6: S ← (∃Q∪AP R∧ S)[X−1] ∧ V ∧ ¬F
7: P ← (∃Qx∪AP R∧ (P [X])) ∧ V ∧ ¬B
8: F ← F ∨ S
9: B ← B ∨ P
10: end while
11: if S ≡ ⊥ then
12: J ← F
13: else
14: J ← B
15: end if
16: while (S ∧B ̸≡ ⊥) ∨ (P ∧ F ̸≡ ⊥) do
17: S ← (∃Q∪AP R∧ S)[X−1] ∧ V ∧ ¬F
18: P ← (∃Qx∪AP R∧ (P [X])) ∧ V ∧ ¬B
19: F ← F ∨ S
20: B ← B ∨ P
21: end while
22: C ← F ∧B
23: return {C} ∪ sccs(A, J ∧ ¬C) ∪ sccs(A, V ∧ ¬J)

5.5 DPW Construction

Using the SCC decomposition, we can now present the DPW construction as given by Boker
et al. [13] in the form of a constructive proof. We present it here in the form of a set of algorithms
but we do not repeat the proof. An example is provided at the end of this section. For the details
as to why this approach is correct, we refer to Boker et al.

1Recall that we symbolically compute the successor states of S by (∃Q∪AP R ∧ S)[X−1] and the predecessor
states of P by (∃Qx∪AP R∧ (P [X])).
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The construction is based on the notion of hopeless states. We will first define hopeless
states. Afterwards, we present an algorithm that can compute these states using the SCC de­
composition algorithm of the previous section.

DEFINITION 5.3 [13] Given a DRW A = (Q,AP, I,R,F), and a state s ∈ 2Q, s is said to be
hopeless if and only if all runs of A containing s infinitely often are rejecting.

Algorithm 4 hopeless

(
A =

(
Q,AP, I,R,

N−1∨
i=0

inf (φi) ∧ fin(ψi)
)
, V

)
1: R← V
2: for 0 < i < N do
3: C ← sccs(A,¬ψi ∧ V )
4: H ← ⊥
5: for c ∈ C do
6: if c ∧ φi ≡ ⊥ then
7: H ← H ∨ c
8: end if
9: end for
10: R← R ∧ (ψi ∨H)
11: end for
12: return R

Algorithm 4 symbolically computes all hopeless states for an automaton A restricted to
some state formula V . We iterate through the Rabin pairs A. For each pair, we compute the
SCCs of the automaton restricted to states ¬ψi. Any state satisfying ψi is hopeless for this pair
since visiting it infinitely often would violate fin(ψi).

Next, we check for each SCC whether the SCC contains no states that need to be visited
infinitely often according to this pair. If so, this SCC is hopeless for this pair since there is no
infinite run in this SCC that is accepting. We collect all these SCCs in the formula H . The
hopeless states for this Rabin pair are then the states in H together with the states ψi. The
hopeless state formula for A is then simply the disjunction of these for all pairs.

Using this algorithm, we can present the results of Boker et al. [13] in Algorithms 5 and
6.2 The algorithm recursively computes the parity condition for each SCC of the automaton,
and then merges these conditions back into a single condition. For each SCC, the algorithm
is recursive on the number of pairs in the acceptance condition. When the acceptance condi­
tion consists of a single pair inf (φ) ∧ fin(ψ), we can construct the parity condition as the list
[⊥, ψ ∧ V, φ ∧ ¬ψ ∧ V,¬φ ∧ ¬ψ ∧ V ].

If we havemore than one pair then we look for a pair with index k such thatψk∧V ≡ ⊥. The
main result of Boker et al. is that such a pair always exists if there exists an equivalent Streett
condition on the automaton. Thus, if we use a DRW constructed as described in Section 5.3
then the algorithm always succeeds.

We use this pair to split the acceptance conditionF into two parts. The part that contains the
words accepted by the kth pair, which is simply the words where φk is visited infinitely often,

2Remember that we use the notation introduced in Section 2.1 for lists.
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Algorithm 5 dpwscc

(
A =

(
Q,AP, I,R,F =

N−1∨
i=0

inf (φi) ∧ fin(ψi)
)
, V

)
1: if N = 1 then
2: return [⊥, ψ0 ∧ V, φ0 ∧ ¬ψ0 ∧ V,¬φ0 ∧ ¬ψ0 ∧ V ]
3: end if

4: k ← min
i≥0

i ψi ∧ V ≡ ⊥
N otherwise

5: if k = N then
6: return failure
7: end if
8: F ′ ←

k−1∨
i=0

(inf (φi ∧ V ) ∧ fin((ψi ∨ φk) ∧ V )) ∨
N−1∨
i=k+1

(inf (φi ∧ V ) ∧ fin((ψi ∨ φk) ∧ V ))

9: H ← hopeless((Q,AP, I,R,F ′), V )
10: C ← sccs(A,¬H ∧ V )
11: γS ←

⋃
c∈C
{dpwscc((Q,AP, I,R,F ′), c)}

12: n← max
γc∈γS

|γc|

13: γ ←
n−1⊔
i=0

[ ∨
γc∈γS

γc[i]
]

▷ if i ≥ |yc| then γc[i] = ⊥

14: return [φk ∧ V,¬φk ∧H] ⊔ γ

Algorithm 6 dpw

(
A =

(
Q,AP, I,R,F =

N−1∨
i=0

inf (φi) ∧ fin(ψi)
))

1: H ← hopeless(A,⊤)
2: C ← sccs(A,¬H)
3: γS ←

⋃
c∈C
{dpwscc(A, c)}

4: n← max
γc∈γS

|γc|

5: γ ←
n−1⊔
i=0

[ ∨
γc∈γS

γc[i]
]

▷ if i ≥ |yc| then γc[i] = ⊥

6: return [⊥, H] ⊔ γ
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and the part that contains the words accepted by F but not accepted by the kth pair. The latter
is represented by F ′ and consist of all but the kth pair where φk is not allowed to be visited
infinitely often.

Next, we compute the SCCs of the automaton with acceptance condition F ′ but without the
hopeless states. For each SCC, we recursively compute the parity condition for F ′. We can
now compute the parity condition γ that is equivalent with the Rabin conditionF ′ by “zipping”
all parity conditions of the SCCs.

Finally, we combine γ with the parity condition of the kth pair. The parity condition of
the kth pair is trivially [φk ∧ V,¬φk ∧ H]. To combine this with γ we simply prepend this
acceptance condition to γ. This preserves the partitioning induced by the parity condition, since
φk is hopeless for γ and therefore disjoint from γ.

EXAMPLE 5.4 We will consider a DRW for the language of GF a ∨ FG b as presented
in Figure 5.4. This example has a Rabin condition that consist of two pairs, namely
inf (p ∨ q ∨ r) ∧ fin(p̄ ∧ q) and inf (p̄ ∧ (q ↔ r̄)) ∧ fin(⊥). Clearly, an equivalent Streett
condition consisting of one pair exists on this automaton, namely fin(p̄∧ q)∨ inf (p̄∨ (q ↔ r̄)).
Thus, we can apply the DPW construction as follows:

We start by computing the hopeless states of the automaton. We do this for each pair sepa­
rately: the hopeless states of the first pair are p̄∧(q∨(q̄∧ r̄) and for the second pair are p̄∧ q̄∧ r̄.
The intersection of both gives us the single hopeless state p̄q̄s̄. To see why this state is hopeless,
recall that the hopeless states are those states through which all infinite runs are rejecting. Since
there are no infinite runs through p̄q̄s̄, it is hopeless.

The next step is to compute the SCCs of the automaton without the hopeless states. It is
trivial to see that after removal of p̄q̄s̄, the automaton consists of a single SCC containing all
states. We now call Algorithm 5 for this SCC.

On line 4 of Algorithm 5, we find the Rabin pair where the fin set is empty. In our case, this
is trivial as one of our pairs is fin(⊥). We now extract this pair from the acceptance condition
on line 8. The result is a new acceptance condition:

F ′ = inf (p ∨ q ∨ r) ∧ fin(p̄ ∧ q ∨ p̄ ∧ (q ↔ r̄)) ≡ inf (p ∨ q ∨ r) ∧ fin(p̄ ∧ (q ∨ r))

We now compute the hopeless states with respect to the SCC and this new acceptance condition
and obtain H = p̄ ∧ (q ∨ r). This leaves us with a new SCC that is a single non­hopeless state
with which we continue recursively on line 11. This time, we only have a single pair and return
immediately with the parity condition to obtain γS:

γS = {[⊥,⊥, p ∧ q̄ ∧ r̄,⊥]}

Line 12 and 13 then merge the parity sets for the different SCCs back together, but since we
only have a single SCC and therefore only a single parity set, nothing changes and we return
from Algorithm 5 with γS on line 3 of Algorithm 6:

γS = {[p̄ ∧ (q ↔ r̄), p̄ ∧ q ∧ r,⊥,⊥, p ∧ q̄ ∧ r̄,⊥]}
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FIGURE 5.4 DRW ofGF a∨FG bwith condition inf (p∨q∨r)∧fin(p̄∧q)∨ inf (p̄∧(q ↔ r̄))∧fin(⊥).
An equivalent Streett condition on the same structure is fin(p̄ ∧ q) ∨ inf (p̄ ∨ (q ↔ r̄)).

Again, we do not need to merge the conditions as there is only one so we proceed and finally
include the hopeless state p̄q̄s̄ again so that the parity condition is indeed a partitioning of states,
resulting in the parity condition:

Fparity = [⊥, p̄ ∧ q̄ ∧ r̄, p̄ ∧ (q ↔ r̄), p̄ ∧ q ∧ r,⊥,⊥, p ∧ q̄ ∧ r̄,⊥]

In other words, each state is added to a parity set with index as follows:
• p̄q̄r̄ : 1
• p̄q̄r : 2
• p̄qr̄ : 1
• p̄qr : 3
• pq̄r̄ : 6

□
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CHAPTER 6

Generating a Mealy Machine

In this chapter, we discuss how we convert the symbolic DPW to a Mealy machine. First,
we convert the DPW to a parity game. Then we solve the game and the solution will give us a
strategy. This strategy is then used to construct a Mealy automaton.

6.1 DPW to Parity Game

At this point in the construction, it becomes relevant which of the atomic propositions are
inputs and which are outputs. Given this information, we can split the DPW into a parity game
in which the system plays against its environment. We let the environment and the system
control the inputs and outputs respectively. We first describe the approach informally. Then we
illustrate it using an example and finally, we formalize it.

Suppose we have a symbolic DPW (Q,AP, I,R,F). We denote the atomic propositions
controlled by the environment and the system byAPe andAPc respectively. We now construct a
game such that the environment first decides the valuation ofAPe after which the system decides
the valuation of APc. This means that we will need intermediate states for each transition to
represent the situations where the environment has decided on the valuation and the system
still has to decide. These intermediate states hold the valuation of APe. They are therefore
valuations of the variables Q ∪ APe. From these intermediate states, we have transitions over
APc to non­intermediate states. To distinguish both sets of states, we introduce an extra variable
i that is set to true for intermediate states. Finally, we assign the priorities such that all states
where i is true are assigned priority |F|+ 1, and all other states are assigned the index of F for
which the valuation is satisfying.

EXAMPLE 6.1 Consider the DPW in Figure 6.1 as an example. Now suppose a and b are con­
trolled by the environment and the system respectively. We can convert this DPW to a parity
game as in Figure 6.2. Starting in the initial state pqīā with the environment player, the game is
played by alternating between both players such that the environment decides whether to play a
or ā and the system decides b or b̄. States are identified by state variables p and q. To “remem­
ber” the choices of the environment in the system states, the variables APe are also included as
state variables (defaulting to false for environment states). Note that for simplicity, the implicit
sink state as discussed in Section 2.3.1 is not shown. □

We now formalize this construction as follows. First, we convert Definition 2.9 to a sym­



bolic definition similarly to how we symbolically represent an ω­automaton as discussed in
Section 5.2. Then we provide the lemma that formalizes the idea discussed above.

DEFINITION 6.2 A symbolic parity game is a 7­tuple G = (Q,Qc,APc,APe, I,R,F) where

• Q is a set of state variables representing the set of states 2Q,

• Qc is a propositional formula representing the states controlled by the system,

• APc and APe are atomic propositions belonging to player c and e respectively,

• I is a propositional formula over Q representing the initial state of the game,

• R is a propositional formula over Q ∪ APc ∪ APe ∪ {qx | q ∈ Q}, representing the
transition relation where the qx variables encode the successor states,

• F is a list of propositional formulas over Q that induce a partitioning of the states 2Q

such that Fi represents the states with priority i (starting with i = 0).

Furthermore, the arena of the game is the underlying symbolic DPW (Q,APc ∪ APe, I,R,F)

LEMMA 6.3 Given a symbolic DPW (QA,AP, IA,RA,FA) and the environment variables
APe ⊆ AP such that APc = AP \ APe, the corresponding symbolic parity game is given
by (Q,Qc,APc,APe, I,R,F) where

Q = QA ∪ {a′ | a ∈ APe} ∪ {i}

Qc = i

I = IA ∧ ī ∧
∧

a∈APe

ā′

R = Rc ∨Re

F =

 ⊔
f∈FA

[f ∧ ī]

 ⊔ [⊥, i]

and where

Rc =

 ∧
a∈APe

ā ∧ ā′
x

 ∧ i ∧ īx ∧RA[a/a′]

Re =

 ∧
a∈APe

ā′ ∧ (a↔ a′
x)

 ∧
 ∧
b∈APc

b̄

 ∧ ī ∧ ix ∧
∧
q∈Q

q ↔ qx



and where a′ and b′ denote a new variable representing the state variable corresponding to the
atomic proposition of the environment and the system respectively. The substitution RA[a/a′]
is the substitution of all environment atomic propositions a by the state variables a′.
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FIGURE 6.1 DPW where F = [p ∧ q, p̄, p ∧ q̄,⊥]

The idea of the construction is simple, but its symbolic representation is difficult to deci­
pher. Let us decompose the symbolic encoding of the transition relation to illustrate how this
lemma implements the idea previously described informally. First of all, we split the transition
relation into two parts,Rc andRe representing the transitions controlled by the system and the
environment respectively.

We start with Re. This formula contains the transitions from the environment states to the
system states. They are therefore transitions from ī to i, hence the term ī∧ ix. Furthermore, on
these transitions the system atomic propositions are unused so we set them to false by

∧
b∈APc

b̄.
Since these transitions move to intermediate states, the state variables remain the same and so
we set each successor state variable qx to the value of q in

∧
q∈Q q ↔ qx. Finally, we ensure

the assignment of the environment atomic propositions a ∈ APe are transferred to their new
equivalent state variables a′, and we set those state variables to false in the current state in∧
a∈APe

āx∧ (a↔ a′
x). The intersection of these components results in a transition relation that

simplymoves from every non­intermediate (environment) state to an intermediate (system) state
by copying over the assignment of environment atomic propositions to an assignment of their
corresponding state variables.

In Rc, we now move back from i to ī so we obtain i ∧ īx. We set the atomic propositions
of the environment as they are not used for these transitions. Furthermore, we also set the suc­
cessor equivalent of the state variable corresponding to the environment atomic propositions
to false as these state variables are all set to false in the environment states. This gives us∧
a∈APe

ā ∧ ā′
x. Finally, we substitute each environment atomic proposition in the automaton’s

transition relation by the corresponding state variable as these state variables hold the environ­
ment’s assignment of its atomic propositions. Again, the conjunction of these components gives
us the transition relation for the system player.

6.2 Solving the Game

Now that we have a parity game, we have to determine the winner. Furthermore, we are
interested in the strategy that the controller needs to adhere to in order to win, as this strategy
is essentially an implementation of the controller. For this purpose, we use the distraction
fixpoint iteration algorithm by van Dijk and Rubbens [94]. There are many other algorithms
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p̄qīā

p̄qiā
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FIGURE 6.2 Parity game constructed from the DPW in Figure 6.1 where the circle nodes and square
nodes are controlled by the environment and system respectively. Each node is labelled with its variable
assigment. The acceptance condition is F = [q ∧ p ∧ ¬i,¬p ∧ ¬i,¬q ∧ p ∧ ¬i,⊥,⊥, i] and the game
starts in pqīā.

for this purpose [5,45,99] but we use distraction fixpoint iteration because of its simplicity and
because it is well­suited for an efficient symbolic implementation.

The algorithm works by iteratively evaluating for each immediate successor of every state
of a certain priority, whether it is a good move for the player that owns that state or whether the
successor is a so­called “distraction”. In every iteration, the set of next distractions is updated
based on the set of current distractions until a fixpoint is reached. The states are considered in
the order of their priority, starting at the lowest priority (and thus the highest index) and moving
to the highest priority. Every time the set of distractions changes, all distractions with a lower
priority than that of the current iteration are removed and the algorithm starts again with the
lowest priority (thus resulting in an exponential­time algorithm).

Given a symbolic parity game G =
(
Q,Qc,APc,APe, I,R,

⊔d
p=0Fp

)
, let Veven denote the

states with even priority, i.e. Veven = ∧⌊ d
2 ⌋
p=0F2p. Similarly, let Vodd denote the states with odd

priority. Then given the set of distractions for some game G as a propositional formula Z, the
winning regions of G can be estimated as follows:

DEFINITION 6.4 [94] Given a game G, a propositional formula Z representing the set of dis­
traction and a player a, the states estimated to be won by a are defined as:

wonBy(G,Z, a) =

Veven ∧ ¬Z ∨ Vodd ∧ Z a = c

Veven ∧ Z ∨ Vodd ∧ ¬Z a = e
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A state v with priority p is considered a distraction if p is even (resp. odd), the state is
owned by c (resp. e) and all of its successors are in wonBy(G,Z, e) (resp. wonBy(G,Z, c)) or it
is owned by e (resp. c) and there is a successor that is inwonBy(G,Z, e) (resp. wonBy(G,Z, c)).
Initially, the even and odd states are distractions for e and c respectively. We can formalize a
single distraction computation as follows.

DEFINITION 6.5 [94] Given a parity game G = (Q,Qc,APc,APe, I,R,
⊔d
p=0Fp) where

AP = APc ∪ APe and a propositional formula representing the current set of distractions
Z, the new set of distractions is defined as:

onestep(G,Z) = Veven ∧ (Qc ∧ ¬ (∃Qx∪APR∧ ¬wonBy(G,Z, e)[X])

∨Qe ∧ (∃Qx∪APR∧ wonBy(G,Z, e)[X]))

∨ Vodd ∧ (Qc ∧ (∃Qx∪APR∧ wonBy(G,Z, c)[X])

∨Qe ∧ ¬ (∃Qx∪APR∧ ¬wonBy(G,Z, c)[X]))

We present the algorithm in Algorithm 7 where we use V to denote the set of reachable
states.1 It is heavily inspired by the symbolic algorithm presented by Lijzinga and van Dijk [58],
which in turn is a symbolic adaption of the algorithm presented by van Dijk and Rubbens [94].
This algorithm does some additional bookkeeping to also obtain the winning strategies. We can
use this algorithm to determine whether the original specification is realizable by verifying that
the initial state of the game is in Wc, i.e. the initial state is in the system’s winning region. If
so, Sc is a strategy that adheres to the specification. If not, Se is a counter­strategy that violates
the specification. More details about the computation of these strategies and the algorithm in
general can be found in the paper by van Dijk and Rubbens [94].

6.3 Strategy Determinization

As noted by Lijzinga and van Dijk [58], the algorithm of the previous section does not
usually yield a single strategy. Instead, the propositional formula holding the strategy essentially
encodes all possible winning strategies. In other words, for some states of the game, the strategy
for some player a leaves the choice of the successor state open since no matter the choice, the
game is won by a anyhow. Of course, this “nondeterminism” is inconvenient when the goal
is to create a system of which the behaviour should be fixed. For that reason, we need to do a
small postprocessing step to ensure that we have exactly one strategy.

Up until now, we have abstracted away from the BDDs that underlie the propositional for­
mulas and used operations of which we know that efficient BDD equivalents exist. However,
as we will see in a minute, for an efficient solution to this problem, this is not sufficient. There­
fore, we design a custom BDD operation that “determinizes” our strategy. Let us first describe
the problem in more detail and solve it naively.

Essentially, we need a symbolic representation of a function that takes the current state and
1This is symbolically computed using a fixpoint operation starting with I and iteratively computing the direct

successors and adding them to the next iteration.
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Algorithm 7 dfi(G = (Q,Qc,APc,APe, I,R,
d⊔
p=0
Fp))

1: Z ← ⊥
2: C0, . . . , Cd ← ⊥
3: S ← ⊥
4: p← d
5: while p ≥ 0 do

6: a←

c p mod 2 = 0
e otherwise

7: X ← Fp ∧ ¬Z ∧
d∧
i=0
¬Ci

8: Z ′ ← X ∧ onestep(G,Z)
9: Z ← Z ∨ Z ′

10: S ← S ∧ ¬X
∨X ∧Qc ∧R ∧ wonBy(G,Z, c)[X]
∨X ∧Qe ∧R ∧ wonBy(G,Z, e)[X]

11: V>p ←
d∧

i=p+1
Fi

12: if Z ′ ≡ ⊥ then
13: Cp ← Cp ∧ ¬V>p
14: p← p− 1
15: else
16: W ← wonBy(G,Z, a)

17: Cp ← Cp ∨ V>p ∧
d∧
i=0
¬Ci ∧ V ∧ ¬W

18: Z ← ¬W ∧ Z
19: p← d
20: end if
21: end while
22: Wc ← wonBy(G,Z, c)
23: We ← wonBy(G,Z, e)
24: Sc ← Wc ∧ Vc ∧ S
25: Se ← We ∧ Ve ∧ S
26: returnWc,We, Sc, Se

47



the input atomic propositions, and outputs the next state and the output atomic propositions.
Symbolically, this means if we have an assignment of current state variables and input atomic
propositions (i.e. the input assignment) then the conjunction of that with the strategy should
yield a BDD which has exactly one satisfying assignment for the next state variables and the
output atomic propositions (i.e. the output assignment). We can obtain such a determinized
strategy as follows:

Suppose we have a game G = (Q,Qc,APc,APe, I,R,
d⊔
p=0
Fp) and some strategy Sc that is

winning for c as obtained from Algorithm 7. Then we can easily determinize it by collecting for
all possible input assignments i, a single satisfying assignment from i∧ Sc. However, doing so
nullifies the compression obtained from using a BDD as we explicitly iterate over assignments
of state variables and input atomic propositions.

Instead of such an explicit iteration, we need to take advantage of the BDD structure. For
that, we recall that every satisfying assignment is a unique path through the BDD. Essentially
what we are after is a BDD S ′

c such that Sc → S ′
c and that there is exactly one unique path

through S ′
c for a single input assignment. If we order the BDD such that input variables precede

the output variables, then we can obtain these paths using a pruned depth­first search algorithm.
Before presenting this algorithm, let us first introduce some notation:

DEFINITION 6.6 Given a propositional formula φ, we refer to the root node of the BDD repre­
senting φ with variable ordering O as ⟨φ⟩O. Furthermore, we use var(⟨φ⟩O) to refer to the
variable associated with that node. Finally, we use high(⟨φ⟩O) (resp. low(⟨φ⟩O)) to refer to
the successor node of ⟨φ⟩O if var(⟨φ⟩O) is true (resp. false).

We now present the algorithm in Algorithm 8 (where initially S = ∅) for which we use
any variable ordering O (as a list of variables) such that all the input variables precede the
output variables o. We use firstout(O) for the first output variable occurring inO. This variable
essentially separates the input variables from the output variables in the ordering.

The algorithm is a depth­first search algorithm that keeps track of the variables it encounters
on each path. The algorithm explores each path of the input variables, but as soon as it reaches
an output variable, it will only take a single path to true. Whenever it reaches the true terminal,
it checks all variables that have been encountered on the path. If there are output variables
that have not been encountered then that means that for these output variables any assignment
is satisfying. We, therefore, take the conjunction of negations of those variables to fix them
to false, enforcing a single satisfying assignment. The result is a BDD for which every input
assignment identifies a unique satisfying assignment.

6.4 Strategy to Mealy Machine

A deterministic strategy for a parity game intuitively resembles a reactive controller already,
but for completeness sake, we have to consider some technicalities to convert the strategy to a
Mealy machine. In an implementation of the construction, this step is highly dependent on the
desired output format. We informally describe the generic approach here using themathematical
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Algorithm 8 stratdet(⟨φ⟩O, o, S)
1: if ⟨φ⟩O = ⟨⊥⟩O then
2: return ⟨φ⟩O
3: end if
4: if ⟨φ⟩O = ⟨⊤⟩O then
5: return

∧
s∈o\S

s̄

6: end if
7: x← var(⟨φ⟩O)
8: S ← S ∪ {x}
9: L← stratdet(low(⟨φ⟩O, o, S))
10: if (firstout(O) ∈ S) ∧ (L ̸= ⟨⊥⟩O) then
11: return ⟨x̄⟩O ∧ L
12: end if
13: H ← stratdet(high(⟨φ⟩O, o, S))
14: if firstout(O) ∈ S then
15: return ⟨x⟩O ∧H
16: end if
17: return ⟨x⟩O ∧H ∨ ⟨x̄⟩O ∧ L

representation of a Mealy machine and but in the next chapter, we cover more concretely how
this step is done in the implementation.

To convert the strategy to a Mealy machine, we interpret the strategy as a (restricted) tran­
sition relation that we then explicitly explore breadth­first, starting at the initial state. As we
explore the strategy, we replace the intermediate states with transitions that directly go from the
state of each incoming transition to the state of each outgoing transition. We then set the envi­
ronment’s variables to the input of the transition and the controller variables to the output. More
concretely, suppose we have some input atomic proposition a and an output atomic proposition
b. Also, suppose we have some strategy Sc that tells us that if the environment decides to play
from some state A to the intermediate state i using atomic proposition a then the system should
respond by moving to state B using atomic proposition b. Then the Mealy transition belonging
to this strategy is a transition from stateA to stateB with input a and output b as also graphically
represented in Figure 6.3.
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FIGURE 6.3 Transforming intermediate states from a parity game to a Mealy transition
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CHAPTER 7

Implementation

In this chapter, we discuss how the construction is realized in the tool Otus. We start with
a description of the overall architecture and dependencies of Otus. We then discuss how we
use binary decision diagrams. Finally, we provide implementation details on each part of the
construction separately.

7.1 Framework

Otus is implemented as part of the LTL and ω­automata library Owl [49]. Owl is used
for parsing, simplifying and normalizing the LTL formulas. Furthermore, it implements the
explicit automata constructions as discussed in Chapter 4. Owl is written in Java but is compiled
to a native executable using GraalVM native image [76] to reduce the startup latency that is
inherently present in Java applications.

Otus is developed as a module in Owl’s module architecture. The module that implements
the construction is ltl2aig. It accepts an LTL formula and returns an and­inverter graph, which
we discuss later. The benefit of this modular approach is that it is possible to add any pre­ and
post­processing modules. For example, LTL simplification modules can be executed prior to
the construction. Furthermore, if simplification modules for and­inverter graphs are later added
to Owl, they can simply be added after the ltl2aig module. Currently the recommended con­
figuration is to run the following modules in sequence: ltl, simplify-ltl, ltl2aig, string.

The ltl module is responsible for parsing the LTL formulas and can accept input from
various sources. The input format is a plain LTL formula. Atomic propositions start with a
lowercase letter and are optionally quoted. Owl uses “&” for conjunction, “|” for disjunction
and “!” for negation as is common in other tools that deal with boolean logic. Furthermore,
the⊤ and⊥ literals are represented by “1” and “0” respectively. Alternative syntax is available
but we refer to the grammar that is embedded in the implementation for more information.
Furthermore, Owl’s readme file contains more information on the configuration parameters for
input and output as well as instructions on how to execute and combine the modules.



7.2 Binary Decision Diagrams

Binary decision diagrams are at the core of Otus. The library used for processing binary
decision diagrams essentially serves as the engine for the tool. A good performance of the
BDD library is critical for Otus to deliver timely results.

Owl includes the BDD library JBDD [64], which is a pure Java library that is not very
performant. It is used in the construction of the explicit automata provided by Owl. It was also
used during development for its simplicity and because its pure Java nature allows the usage
of debuggers that support the Java Debug Interface. However, for performance, we use an
alternative library called Sylvan [93].

Sylvan is a highly optimized BDD library that uses the work­stealing framework Lace [96]
to parallelize BDD operations. Sylvan is a native library so we dynamically link it to Owl as part
of the native image generation. GraalVM native image’s C interface is used to communicate
with Sylvan. However, we do not communicate with Sylvan directly, but rather through an
intermediate wrapper implemented in C for reasons that will become clear later. A downside of
using the native image C interface is that Sylvan is only enabled if Owl is compiled to a native
image. If it is compiled to normal Java bytecode then Sylvan is disabled and JBDD is used
instead.

We configure Sylvan with an 8 GB memory cap, a table ratio of 0 and an initial ratio of
10 and use 6 workers threads with a task deque size of 1000000. For the meaning of these
parameters, we refer to Sylvan [93]. The parameters have been chosen such that they are well
suited for the machines that run the empirical evaluation (which is discussed in Chapter 8).

Sylvan, like any BDD library, needs a way to know which nodes are still in use and which
can be reclaimed. This is commonly achieved by keeping a manual reference count. However,
keeping such a reference count has similarities with manual memory management which is
rather unorthodox in Java, as it uses garbage collection for memory management instead. We,
therefore, use a cleaner solution in which we create wrapper Java objects for each root node that
results from a BDD operation and let BDD nodes be garbage collected automatically.

For eachwrapper object, wemaintain a weak reference (i.e. a reference that does not prevent
garbage collection) in some central location. This enables us to ensure that there is always only
a single wrapper object for one BDD node. This not only means we efficiently cache these
wrapper objects but also that we can check for the equality of two BDDs simply by comparing
thememory addresses of the objects. However, themain reason formaintaining these references
is to support garbage collection.

Garbage collection is initiated by Sylvan as a response to a BDD operation request if during
the operation there is not enough space to hold all the nodes. If this happens, Sylvan calls a
callback function of the C wrapper, which in turn wakes up a special thread that then requests
the list of nodes from the Java implementation. Unfortunately, we cannot let Sylvan request this
information from there directly as it is necessary for the thread to be registered with the native
image for it to call into the Java implementation. We, therefore, use a “exchange” thread that is
started in Java during the initialization of the application. This thread then repeatedly waits for
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a signal from Sylvan to request the list of nodes.
As soon as the signal is received, the wrapper calls back into Java and immediately triggers

a Java garbage collection. Next, the list of weak references is pruned such that the list only
contains references to objects that have not been garbage collected. We now allocate a block of
raw unmanaged memory in Java and write the BDD node identifiers of the list to this block of
memory. A pointer to this block of memory is then returned and communicated to Sylvan.

We graphically summarize this process in Figure 7.1.

7.3 Constructing Explicit Automata

The constructions of Chapter 4 are pre­existing in Owl. Otus simply combines these con­
structions to obtain the DCWs and DBWs. First, the input LTL formula is converted to positive
normal form, for which we use an existing implementation that applies Definition 2.3 to ob­
tain a LTL formula in line with Definition 2.1. Then, a list of pairs of Σ2­ and Π2­formulas is
extracted. For this, a pre­existing implementation is used that applies the idea as discussed in
Section 4.1, and performs some additional intermediate syntactic simplifications.

In the next step, these formulas are translated to DBWs and DCWs. Again, this step uses
pre­existing implementations. The implementation inlines the AWW construction to obtain an
on­the­fly DBW and DCW construction. Internally, this uses JBDD to compactly encode the
LTL formulas that are associated with each state. For simplicity, we do not replace this with
Sylvan. Furthermore, since the sizes of these BDDs are likely considerably smaller, we do not
expect a large performance improvement from using Sylvan for this part of the construction.

7.4 Constructing a Symbolic DPW

Each of the DBWs and DCWs is converted to a symbolic representation. The encoding
consists of two BDDs for each automaton. A BDD representing the initial state and a BDD for
the transition relation. Note that unlike what is discussed in Section 5.2 there are no separate
BDDs for the acceptance condition. Instead, we encode the acceptance sets in the transition
relation using a BDD variable for each acceptance set. The acceptance condition is then simply
constructed from these variables.

The variable ordering chosen for each of the BDDs is based on the kind of variable and is
ordered as (1) atomic propositions, (2) current state, (3) acceptance sets and finally (4) the suc­
cessor state. The orders of atomic proposition and acceptance set variables are simply identical
to their order in the explicit representation, i.e. the first atomic proposition is assigned the first
atomic proposition variable in the encoding. States are encoded naively by assigning a unique
integer to each explicit state and setting the BDD variables according to the binary representa­
tion of the integer. Thus, the transition relation of an automaton with N states, a acceptance
sets and p atomic propositions is encoded in a BDD consisting of 2⌈log2(N)⌉+a+p variables.

Next, the product DRW is constructed. The transition relation is constructed such that all
atomic proposition variables are removed from the individual automata and placed at the top of
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FIGURE 7.1 Sequence diagram of a single BDDoperation. The vertical dashed line indicates the boundary
between the Java native image (left) and other native components (right)
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FIGURE 7.2 A visualization of the variable ordering for Example 7.1. Every bar visualizes the BDD
ordering where the leftmost variable in the bar maps to the variable at the root of the BDD and the
rightmost to that closest to the terminal nodes. The arrows indicate how the variables are reordered in
each step of the construction. We use p, s, a and x for variables of the types “atomic proposition”, “state”,
“acceptance set” and “successor state” respectively.

the BDD representing the product transition relation. The remaining variables of the DBWs and
DCWs are then concatenated to obtain the product transition relation. The initial state formulas
are concatenated similarly.

After the construction of the DRW, the DPW conversion is attempted. If successful, the
DSW construction is skipped. Otherwise, the DSW is constructed similarly to the DRW and
the DPW conversion is applied on the product of the DSW and DRW which is constructed
just as how the DBWs and DCWs are combined. Finally, the acceptance sets of the DPW are
appended.

Apart from the variable ordering, the implementation of the DPW construction and the SCC
decomposition as discussed in Chapter 5.2 are identical to the theoretical presentation. We,
therefore, do not discuss them further and proceed with an example on the variable ordering.

EXAMPLE 7.1 Suppose a DRW and a DSW are constructed for a specification consisting of two
atomic propositions p1 and p2. Also suppose both the DRW and the DSW are constructed from
a DCW and a DBW, each of which consists of 4 states and 1 acceptance set. We label the DBWs
as BR and BS and the DCWs CR and Cs where R (resp. S) refers to DRW (resp. DSW). If we
use p for an atomic proposition variable, x to denote a successor state variable, s to denote a
state variable and a for an acceptance variable, then we give the ordering of the variables during
the construction as in Figure 7.2.

Each bar represents a BDD for the transition relation of the automaton. p1 is at the root of
each BDD, followed by p2. In each DCW and DBW, we then have, in order, the state variables,
acceptance set variables and next state variables. Since each automaton has 4 states, we need
log(4) = 2 state variables and 2 successor state variables.

For the product DRW and DSW, we concatenate all variables except for p1 and p2 which
are still at the top of the BDD. We repeat this for the DPW. Finally, we assume the DPW is
constructed with 3 acceptance sets, so we append 3 variables and obtain the final result. □
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Perceptive readers might note that it is unnecessary to use 3 variables to encode 3 DPW
acceptance sets since the acceptance sets of a DPW induce a partition and therefore only require
⌈log2 n⌉ variables for n acceptance sets. Although certainly true from a theoretical perspective,
it is more convenient to use n variables from an engineering perspective as this ensures no
special treatment for DPW acceptance conditions is necessary. We leave this optimization as
future work.

7.5 Generating a Mealy Machine

The final step in the construction is to convert the DPW to a game which is then solved
and the result is converted to a Mealy machine. There are two important differences in the
implementation from the theory presented in Chapter 6. First of all, we do not construct the
game explicitly but instead, we run the distraction fix­point iteration algorithm directly on the
DPW. In the next section, we will discuss how this is achieved.

The second difference is in the final product. In Chapter 6, we discussed the translation
to a mathematical model of a Mealy machine. For Otus, we of course want something closer
to reality. For that purpose, we produce a Mealy machine as an and­inverter graph, which we
discuss in more detail in Section 7.5.2.

7.5.1 Strategy

Rather than constructing a parity game as a separate step, we inline this construction in the
distraction fix­point algorithm. We do so by adapting Algorithm 7 to work on a DPW instead
of a game. We use idea the as described in Section 6.1 to split Algorithm 7 such that we track
system states and environment states separately. This is possible since we know that the sets
of system states and environment states induce a bipartition on the game if constructed from
a DPW. This means that all transitions in the DPW will go from the set of system states to
the set of environment states or vice versa. Just like discussed in Section 6.1, we assume the
environment’s atomic propositions are part of the state variables as to “remember” the actions
of the environment. However, instead of defining new state variables we simply use the existing
variables for this. This means that these variables now not only represent an atomic proposition
but also a state variable. We start by trivially lifting the definition of wonBy to a DPW and then
we redefine onestep.

DEFINITION 7.2 Given a symbolic DPW A, a propositional formula Z representing the set of
distraction and a player a, the states estimated to be won by a are defined as:

wonBy(A,Z, a) =

Veven ∧ ¬Z ∨ Vodd ∧ Z a = c

Veven ∧ Z ∨ Vodd ∧ ¬Z a = e

where Veven (resp. Vodd) represents the states of even (resp. odd) priority analogous to the
definition for parity games.
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DEFINITION 7.3 Given a symbolic DPW A = (Q,AP, I,R,⊔dp=0Fp), the controlled atomic
propositions APc ⊆ AP , two propositional formulas Zc and Ze representing the current set of
distractions for player c and e respectively, a player a and a priority p, the new set of distractions
for a is defined as:

onestep(A,APc, Z
c, Ze, a, p) =



¬∃Qx∪APcwonBy(A,Ze, c)[X] ∧R (a = c) ∧ even(p)

∃Qx∪AP¬Zc (a = e) ∧ even(p)

∃Qx∪APcwonBy(A,Ze, c)[X] ∧R (a = c) ∧ odd(p)

¬∃Qx∪AP¬Zc (a = e) ∧ odd(p)

We distinguish four cases by considering the parity of the provided priority and the player.
The purpose of the priority is to indicate whether we want to compute the one­step­distractions
for the even or the odd states and the purpose of the player is to select the owner of the considered
states. For each case, we can compute the one­step­distractions separately.

Consider the first case: If the player is c then the one­step­distractions for even states are
those states where c is forced to play to a state won by the environment. In other words, those
states where there is no transition such that the system wins. Since the environment’s atomic
propositions are included in the states, this can be computed simply by taking the successor
substitution of wonBy formula for player c, intersecting that with the transition formula of the
automaton, and using an existential quantification such that we take those assignments where
there is no satisfying assignment of successor variables and system atomic propositions. If
instead the states currently considered are odd, then these states are distractions for e if there is
a transition such that the system wins, thus we obtain the dual of the first case.

Now consider the second case, where we take the states controlled by e that are even. The
one­step­distractions for c are then those states where the environment can make a move to a
state won by itself. Recall now that the transitions of the environment are simply transitions
that set the environment’s atomic propositions in the state variables but leave the other state
variables untouched. Thus, the environment’s transitions are independent of the transition for­
mula and we can simply compute the one­step­distractions for c as an existential quantification
over the atomic propositions for the wonBy formula of the environment. Now since we are
only considering even states, we can simplify wonBy to simply the complement of controller
distractions. Again, this argument can be dualized to obtain the last case.

Using this redefinition, we now present the algorithm in Algorithm 9. The algorithm fol­
lows the same approach as Algorithm 7 but it keeps track of the environment states and the
system states separately. Recall that we assign the lowest priority (and thus highest index) to
the intermediate states, i.e. those owned by the system. This priority is, of course, implicit
and thus we need to treat the system states specially. For example, lines 22 and 23 correspond
with V>p ∧

∧d
i=0 ¬Ci in Algorithm 7. Furthermore, we apply similar reasoning as in onestep to

simplify calls to wonBy. Other than that, the algorithm is identical to Algorithm 7 except that
we now use the new definitions for onestep and wonBy to track system states and environment
states separately.
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Algorithm 9 dpwdfi(A = (Q,AP, I,R,
d⊔
p=0
Fp),APc)

1: Zc, Ze ← ⊥
2: Cc

0, . . . , C
c
d ← ⊥

3: Ce
0 , . . . , C

e
d ← ⊥

4: Sc, Se ← ⊥
5: p← d
6: while p ≥ 0 do

7: a←

c p mod 2 = 0
e otherwise

8: Xc ← Fp ∧ ¬Zc ∧
d∧
i=0
¬Cc

i

9: Xe ← Fp ∧ ¬Ze ∧
d∧
i=0
¬Ce

i

10: Z ′c ← Xc ∧ onestep(G,Zc, Ze, c, p)
11: Z ′e ← Xe ∧ onestep(G,Zc, Ze, e, p)
12: Zc ← Zc ∨ Z ′c

13: Ze ← Ze ∨ Z ′e

14: Sc ← Sc ∧ ¬Xc ∨Xc ∧R ∧ wonBy(A,Ze, c)[X]
15: Se ← Se ∧ ¬Xe ∨ ∃Qx∪APcX

e ∧ ¬Zc

16: V>p ←
d∧

i=p+1
Fi

17: if (Z ′c ≡ ⊥) ∧ (Z ′e ≡ ⊥) then

18: Cc
p ←

⊥ p = d

Cc
p otherwise

19: Ce
p ← Ce

p ∧ ¬V>p
20: p← p− 1
21: else

22: Xc ←


⊥ p = d
d∧
i=0

otherwise

23: Xe ← V>p ∧
d∧
i=0
¬Ci

24: W c ← Xc ∧

Zc a = c

¬Zc otherwise
25: W e ← wonBy(G,Z, a)
26: Cc

p ← Cc
p ∨Xc ∧ ¬W c

27: Ce
p ← Ce

p ∨Xe ∧ ¬W e

28: Zc ← ¬W c ∧ Zc

29: Ze ← ¬W e ∧ Ze

30: p← d
31: end if
32: end while
33: W c ← wonBy(G,Ze, c)
34: W e ← wonBy(G,Zc, e)
35: returnWc,We, Sc, Se
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7.5.2 And-Inverter Graph

After having obtained the strategy, we apply the strategy determinization as discussed in
Section 6.3. The implementation closely reflects the theory so we do not discuss this step
further. Instead, we cover the step thereafter, namely how to convert the determinized strategy
to a Mealy machine.

The approach for this highly depends on the desired output format. We chose the AIGER
format [7] as this is the format used by the SYNTCOMP competition [41]. This format describes
how to represent an and­inverter graph (AIG) with Mealy semantics. As the name suggests,
and­inverter graphs are graphs consisting of logical AND and NOT gates. In particular, they
represent circuits consisting of these gates, thus having a set of inputs and outputs. The AIGER
format additionally describes latches explicitly such that our circuit does not need a clock circuit.
The idea now is that the environment atomic propositions are each associated with an input. and
the controller atomic propositions to an output. The latches are used to hold state information of
the Mealy machine. The input value of a latch becomes the output value in the next iteration of
the implicit clock. Finally, the Mealy machine is encoded in AND and NOT gates using these
inputs, outputs and latches.

Like a BDD, an AIG is essentially just another representation of propositional formulas. It
is therefore not hard to translate our strategy to an AIG. However, the AIG we want needs to
have distinct inputs, outputs. It represents a boolean function that maps inputs and latch outputs
to outputs and latch inputs. Our BDD currently encodes a boolean function that maps all the
variables to a single truth value.

To convert the strategy BDD S to an AIG in the desired format, we extract a BDD for each of
the outputs to the function (i.e. the next state variables and the controller atomic propositions).
For each output o, we substitute ⊤ for o in S and project out the remaining input variables.
Formally, for each o ∈ Qx ∪ APc, we obtain:

So = ∃(Qx∪APc)\{o}(S[o/⊤])

Each So is a boolean function from the inputs to a truth value for output o. We now translate each
So from a BDD to an AIG by traversing the nodes of the BDD.We associate the root of the BDD
of So with the output o in the AIG. Then, for each visited node of the BDD, we associate the
BDD variables to AIG inputs as follows: if the variable is a state variable, it is associated with a
corresponding latch output and if it is an environment atomic proposition, it is associated with an
input. Now recall that a BDD node x can be recursively interpreted as x∧high(x)∨ x̄∧ low(x).
In terms of AND and NOT gates, this is equivalent to ¬(¬(x̄∧ low(x))∧¬(x∧high(x))). Thus
we recursively translate each BDD node to an and­inverter graph as shown in Figure 7.3.

To ensure the and­inverter graph is compact, we do not create new gates for each node. After
all, if we encounter the same BDD nodemultiple times during our traversal, we can simply reuse
the previously generated gate. We, therefore, maintain a mapping of BDD nodes to gates and
share this mapping for all So. Furthermore, we also do not apply the full translation of Figure 7.3
if one or both of the recursive steps results in ⊤ or ⊥, but rather we first simplify to obtain a
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x

high low

… … … …
low x high

… … ……

FIGURE 7.3 Conversion from a BDD (left) to an AIG (right) where the nodes labelled high and low
represent the recursive applications of this conversion. Each white circular node in the AIG is an AND
gate and each black node is a NOT gate. The rectangular node is the input and the dangling edge at the
top is the output.

smaller circuit.
Finally, we finish with a small remark on the initial states. So far, we have only covered

how we translate the strategy to an and­inverter graph, which means the and­inverter graph
now encodes the transition relation of the Mealy machine but not the initial states. The AIGER
format [7] is defined such that each latch is initialized to false, which means that we implicitly
assumed that, in the DPW, I = ⊥. This is clearly not always the case so we need to “initialize”
our Mealy machine correctly.

Recall that our DPW is deterministic and that there is therefore only a single satisfying
assignment for I. For every variable that is equal to false in this assignment, we need not do
anything as the latch is correctly initialized. For those variables that are set to true, we add extra
gates between the latch output and the connections to it. The gate simply copies the output of
this “state” latch except in the initial state, in which case the gate always outputs true. To detect
the initial state, we use a special latch that is connected to itself such that its output is false in
the initial state and true thereafter. Suppose we call the output of this special latch L, and the
output of the state latch S, then the gates between S and the rest of the circuit can be represented
as ¬(L ∧ S̄).
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CHAPTER 8

Empirical Evaluation

This chapter presents the empirical evaluation of Otus, for which we have executed sev­
eral benchmarks. We first cover some common methodology. Then we present and discuss
the results of each benchmark. For those diagrams that rely on colours, we provide a tabular
alternative in Appendix A.

8.1 Methodology

For the evaluation of Otus, we use a collection of specifications in the high­level TLSF
format [40] that have been used in previous years of the SYNTCOMP synthesis competition.1

We use Syfco [40] to pre­process these high­level specifications into the format as described in
Section 7.1.

We execute several benchmarks as part of this evaluation. All benchmarks are run on a clus­
ter of Dell PowerEdge M610 servers with two Xeon E5520 processors and each specification
is assigned 8 cores and 56 GB memory. We use two configurations for Otus: One in which
Sylvan is used as the primary BDD library, referred to as Otus­Sylvan and one where that is
JBDD, referred to as Otus­JBDD. We say primary BDD library as JBDD is in any case used
for constructing the explicit automata as discussed in Section 7.2. We evaluate Otus using both
BDD libraries to draw a comparison between the libraries later.

We compare Otus against the state­of­the­art synthesis tool Strix [59]. Strix applies a con­
struction very similar to ours. However, Strix does not apply the ∆2­normalization but instead
applies a best­effort decomposition like Morgenstern [70] and Sohail et al. [87] have done be­
fore.2 Strix applies the construction explicitly and uses a latest appearance record to construct a
DPW. It is an ideal comparison target because of its similar but explicit approach, and because
it has won the SYNTCOMP reactive synthesis competitions of 2018, 2019 and 2020 [39, 41].3

For Strix, we use the winning configuration4 of the 2020 SYNTCOMP synthesis competi­
tion [41], but we disable postprocessing using ABC [6]. ABC is a toolset for logical circuits that
is used by Strix to minimize the circuit. For a fair computation time comparison with Otus, we

1Available on https://github.com/meyerphi/syntcomp-reference
2That is at the time of this evaluation. Strix is still in active development and is likely released with ∆2­

normalization soon.
3The results of 2021 are pending at the time of this thesis.
4We use strix -f ”$formula” --ins ”$ins” --outs ”$outs” --no-compress-circuit --auto -e pq -c

https://github.com/meyerphi/syntcomp-reference


Stage label Description
DRW_DCW Normalization and construction of the symbolic DCW automata that will

form the DRW.
DRW_PRODUCT Combining the DCW automata into a single DRW automaton.
DPW1 Attempting to construct the DPW from the DRW directly.
DSW_DCW Normalization and construction of the symbolic DCW automata that will

form the DSW.
DSW_PRODUCT Combining the DCW automata into a single DSW automaton.
DRW_DSW_PRODUCT Combining the DRW and DSW automata to obtain a new DRW on which an

equivalent DSW acceptance condition exists.
DPW2 Constructing a DPW from the combination of the DRW and DSW.
DFI Applying distraction fix­point iteration to solve the parity game.
SD Modifying the strategy such that there always is a single output assignment

for each input assignment.
AIG Splitting the strategy into a BDD for each output variable and constructing

an and­inverter graph.

TABLE 8.1 Stage labels and their descriptions.

disable this minimization in Strix. Instead, we runABC externally (without timemeasurements)
for both Otus and Strix to see how much minimization can be achieved.

Using this approach, we execute a number of benchmarks. We will now discuss each bench­
mark. For each, we discuss its purpose and some methodological aspects, and we present and
discuss the results.

8.2 Exploratory Benchmark

An initial “exploratory” benchmark is performed to discover which specifications can be
completed within five minutes. This benchmark is used to select the specifications to be used
in the next benchmark. In total 421 realizable specifications and 157 unrealizable specifications
are evaluated.

For each specification, we only collect whether the tool was able to successfully terminate
within five minutes. The correctness of the result of the tool is not verified in this benchmark.
Instead, those specifications that were completable within five minutes are verified in the next
benchmark. Finally, for Otus, we additionally collect during which stage a timeout occurred as
this can give a first impression on the bottleneck of the construction.

We label the stages of Otus as shown in Table 8.2. Note that not always all stages are visited.
For example, for some specifications, the DPW can be constructed directly from the DRW in
which case the DSW construction is skipped. Furthermore, specifications that are unrealizable
will not enter the SD and AIG stage. The data for this benchmark is given in Appendix B.
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153 4

Strix (unrealizable)

314
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Otus-JBDD (realizable)

82
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Otus-JBDD (unrealizable)

321

100

Otus-Sylvan (realizable)

85

70

2

Otus-Sylvan (unrealizable)

Success
Timeout
Error

FIGURE 8.1 Number of specifications completedwithin 5minutes. “Error” indicates that the specification
could not be solved because of an error due to resource exhaustion, such as a full node table. A tabular
representation can be found in Table A.1.
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35

26
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Otus-Sylvan (unrealizable)

DRW_DCW
DRW_PRODUCT
DPW1
DSW_DCW
DPW2
DFI
SD

FIGURE 8.2 Stage at five minute timeout. A tabular representation can be found in Table A.2.

Figure 8.1 presents the number of specifications completed. We observe that Strix is able to
complete significantly more specifications within 5 minutes than Otus­Sylvan and Otus­JBDD.
This is especially true for the unrealizable specifications. We also observe that Otus­Sylvan can
complete a total of ten specifications more than Otus­JBDD.

For those specifications that have timed out, we report on the stage during which the timeout
occurred. Figure 8.2 presents the results. We observe that the timeout occurs most frequently
in the first stage, in which the DCW and DBW automata are generated. We also note that it
occurs very frequently in the DPW construction.

However, from these results, we cannot immediately conclude that the first stage of the
construction is the bottleneck. It could be that many of the specifications are so difficult to
solve that it is unreasonable to expect the first stage to complete within fiveminutes. Subsequent
stages may still take much longer to complete than the first stage, given sufficient time.

Yet, the relatively high number of timeouts occurring in the DPW1 and DPW2 stages is remark­
able. Although the DPW algorithm is polynomial, the runtime may be relatively high due to
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its dependence on the SCC decomposition. Under poor circumstances, the SCC decomposition
algorithm could force an explicit enumeration of the state space which nullifies the potential
performance improvements from a symbolic encoding.

8.3 Evaluatory Benchmark

The previous benchmark has given an initial idea of which specifications are feasible to
solve in 5 minutes. For each tool, we take those specifications solvable in 5 minutes and repeat
the experiment 5 times to reduce the influence of external factors on the measurements. For
Strix, we collect the total execution time for each specification and the number of used gates
for each realizable specification as a measure of the circuit’s size. For Otus, we additionally
collect the duration of the stages of Table 8.2 for a more detailed execution analysis.

In this benchmark, we additionally verify the correctness of the results. We check whether
realizability is correctly identified, and for the realizable specification, we also attempt to ver­
ify the generated controllers. For that purpose, we use a script5 which conveniently combines
a collection of tools that together allow for the verification of AIGER circuits against a TLSF
specification using the state of the art symbolic model checker nuXmv [19]. We attempt the
verification for at most three minutes, after which we move on to synthesizing the next specifi­
cation.

The data from this benchmark can be found in Appendix C. For each specification, we have
compared the average total execution time of Strix, Otus­JBDD and Otus­Sylvan over the 5
runs. We first present the results for these total execution times and then we present the detailed
execution times of Otus­JBDD and Otus­Sylvan using the stages of Table 8.2.

8.3.1 Total Execution Time Comparison

Comparisons of the average total execution time over 5 runs for Strix, Otus­JBDD andOtus­
Sylvan are presented in Figure 8.3 and Figure 8.4 for realizable and unrealizable specifications
respectively. Because many of the execution times are concentrated in the initial second(s) of
the five minute execution, we present each plots in three different magnification levels. Note
that each plot only shows specifications where both tools solved the specification in under five
minutes.

We observe that the total execution time when comparing Otus­JBDD and Otus­Sylvan to
Strix varies substantially for realizable specifications. Extreme differences exist in favour of
Strix as well as Otus­JBDD and Otus­Sylvan. These relative extremes are observed regardless
of the observed absolute execution time. This result suggests that using a symbolic encoding can
have a positive impact on the total execution time in some cases, yet harm others. However,
it is not certain that the performance difference can be attributed to an (in)efficient variable
ordering or whether the cause is in other characteristics of the construction. Further research
through an explicit implementation of the construction of Otus could provide more insights into

5Available on https://github.com/meyerphi/syntcomp-reference
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Total execution time comparison for realizable specifications

FIGURE 8.3 Comparison of the average total execution times over five runs of all realizable specifications
solvable in five minutes.
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FIGURE 8.4 Comparison of the average total execution times over five runs of all unrealizable specifica­
tions solvable in five minutes.
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the performance impact that the symbolic encoding has. Nevertheless, it shows that there are
cases where our approach outperforms Strix.

We highlight those specifications where the differences in total execution times are the high­
est as these cases are interesting targets for further research and can act as inspiration for possible
variable order improvements. We present the top and bottom ten specifications for the ratio of
the total execution time of Otus­Sylvan over that of Strix in Table 8.2. We refrain from present­
ing a similar table for Otus­JBDD and Strix since the results are similar, and refer to Appendix C
instead. We also refer to Appendix C for the equally interesting cases where only one of the
tools has been able to solve the specification within 5 minutes.

Interesting to observe is that the lower ratios are much more extreme, indicating that in
those cases Strix is in the order of hundred times faster than Otus­Sylvan whereas Otus­Sylvan
is “only” at most 41 times faster than Strix. More research is needed into the specifics of
these specifications to understand what causes the large differences to occur. It is interesting
to see whether these specifications share some property that makes them particularly suited for
synthesis using Strix or Otus.

In addition to the comparison against Strix, we also compared the total execution time of
Otus­JBDD and Otus­Sylvan and the difference is expectedly more consistent. We observe
that Otus­Sylvan outperforms Otus­JBDD for almost all specifications where both need at least
ten seconds. This is as expected since Sylvan is a multi­threaded BDD library engineered for
high performance. For the simpler specifications (where both need less than two seconds), we
observe that Otus­JBDD is consistently faster than Otus­Sylvan. This is also expectable since
the concurrent design of Sylvan naturally comes with some overhead which can become notable
for the simpler specifications.

Although this is true for most of the specifications, there are some outliers. For example,
the specification TwoCountersDisButA9 takes, on average, 220 seconds to solve using Otus­
Sylvan yet only takes 86 seconds to solve using Otus­JBDD. Since the constructions used in
Otus­Sylvan and Otus­JBDD are equal, the observed difference can only be attributed to either
the BDD libraries themselves or the interface that connects the BDD library to Owl. Part of this
interface is the garbage collection technique as discussed in Section 7.2. If Sylvan is frequently
collecting garbage, this could cause a bottleneck and explain the observation. However, after
rerunning this specification with garbage collection logging enabled, we conclude that this is
not the case since the garbage collection via Sylvan is not triggered. Therefore, further research
is desirable to understand what causes these differences to occur.

8.3.2 Detailed Execution Time Analysis

To get a better understanding of which parts of the construction are themost time consuming,
we have measured the average time spent in all stages of Table 8.2 for the specifications selected
for the evaluatory benchmark. We have studied the results for Otus­Sylvan as well as Otus­
JBDD but since the results for Otus­JBDD are expectedly very similar, we do not present them.
We grouped the specifications by their realizability and by the condition that a DSW automaton
is constructed since the stages visited during the construction depend on these factors. We
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Specification Time Otus-Sylvan (s) Time Strix (s) Ratio
collector_v1_5.tlsf 0.57 23.33 41.21413
amba_decomposed_lock_10.tlsf 1.82 37.97 20.86229
amba_decomposed_lock_6.tlsf 0.39 4.16 10.64465
LedMatrix.tlsf 30.13 225.08 7.47000
ltl2dba_beta_5.tlsf 2.64 14.82 5.61316
amba_decomposed_lock_8.tlsf 0.52 2.74 5.25470
tictactoe.tlsf 3.91 19.76 5.06053
amba_decomposed_encode_10.tlsf 1.95 9.81 5.02077
lilydemo22.tlsf 0.27 1.26 4.64845
collector_v1_4.tlsf 0.35 1.45 4.11395
… … … …
detector_5.tlsf 30.43 0.15 0.00478
collector_v3_7.tlsf 80.42 0.35 0.00436
ltl2dba_C1_6.tlsf 35.73 0.15 0.00434
escalator_smart.tlsf 246.85 0.93 0.00378
EscalatorSmart.tlsf 242.23 0.81 0.00335
prioritized_arbiter_6.tlsf 117.53 0.32 0.00268
ltl2dpa03.tlsf 89.87 0.17 0.00195
ltl2dba_C2_6.tlsf 200.47 0.16 0.00079
detector_6.tlsf 200.01 0.15 0.00077
ltl2dba_C1_7.tlsf 212.84 0.15 0.00069

TABLE 8.2 The ten specifications with the highest and lowest total execution time ratio of Otus­Sylvan
over Strix. Execution times are presented in seconds and are rounded to two decimals. Ratios are com­
puted using the unrounded execution times.
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FIGURE 8.5 Average relative time division in Otus­Sylvan over all specifications in the evaluatory bench­
mark where each slice is computed as the average fraction of time spent in a stage for each specification
over 1. A tabular representation can be found in Table A.3.

aggregate the results in two ways.
Figure 8.5 displays the average relative time division where all specifications contribute

equally. We compute the average relative time division for each specification independently,
resulting in a set of fractions corresponding to the stages that together sum to 1 for each speci­
fication. The average of all fractions over one stage forms a slice in the diagram.

Additionally, Figure 8.6 displays the average relative time division weighted according to
the total duration of each specification. One slice corresponds to the total duration spent in one
stage over all specification.

Immediately noticeable is the large fraction of time spent in the second DPW construction
if the first construction was unsuccessful. On average, this construction takes approximately
7× longer than the first DPW construction for realizable specifications and 11× longer for
unrealizable specifications. We also notice that in those cases where no DSW is constructed,
the majority of the time is spent normalizing the formula and constructing the explicit automata.

The relatively high amount of time spent in the DPW construction reinforces the results of
the exploratory benchmark, in which we noticed a remarkably high number of timeouts in the
DPW stages. As discussed before, the SCC algorithm in the DPW construction likely causes a
(partially) explicit state­space exploration which we can expect to have a significant detrimental
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FIGURE 8.6 Weighted average relative time division in Otus­Sylvan over all specifications in the evalu­
atory benchmark where each slice is computed as a fraction of the combined time spent in one stage for
all specifications over the total combined time. A tabular representation can be found in Table A.4.
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FIGURE 8.7 Average number of gates in the controllers synthesized by Otus­Sylvan and Strix before ABC
at three different magnification levels

effect on the performance.
One might now think that this explains the poor execution time ratios observed for some

specifications such as the bottom ten specifications of Table 8.2. Indeed, this is likely to play a
role, but it cannot explain all observations. For example, among those bottom ten specifications
are three specifications that have skipped the DPW2 stage. Further research is therefore still
needed.

8.3.3 Controller Quality

Obtaining controllers of good quality was out of the scope of this research. Nevertheless,
we evaluated the quality of the controllers by their circuit size and compared the results for Strix
and Otus­Sylvan. In its default configuration, Strix uses ABC [6] to minimize the circuits. This
has been disabled since this would lead to an unfair total execution time comparison. Instead,
ABC was executed externally for both Strix and Otus. We present the results before ABC in
Figure 8.7 and after ABC in Figure 8.8, in which we use three different magnification levels for
the x­axis.

It is clear that the quality of the controllers generated by the construction is subpar. All
specifications yield a smaller circuit when generated by Strix. Furthermore, circuits generated
by Otus­Sylvan are commonly in the order of a thousand times larger than those generated by
Strix. On one hand, this can be explained by the fact that the implementation is not engineered
to produce controllers of good quality. On the other hand, we believe this is also a result of
using symbolic algorithms that operate on the entire state space, versus an explicit algorithm
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FIGURE 8.8 Average number of gates in the controllers synthesized by Otus­Sylvan and Strix after ABC
at three different magnification levels

that often only partially needs to explore the state space.
We observe that, on average, ABC can reduce the circuits of Strix by 17% and of Otus­

Sylvan by 47%. Furthermore, we observe that even after using ABC, the circuits generated by
Strix are on average 15 times smaller than those generated by Otus­Sylvan. This indicates that
the circuits generated by Otus­Sylvan still contain many redundant gates and that the quality
can thus still be significantly improved through intermediate minimizations.

8.4 Parameterized Specification Benchmark

Many of the specifications in the benchmark set are parameterized specifications. It is in­
teresting to see whether there are any parameterized specifications for which the total execution
time increases differently for Strix and Otus. This could help identify classes of specifications
for which one of the tools performs particularly well.

For this purpose, we select several parameterized specifications with a variable amount of
parameters. Each parameterized specification is allocated 8 hours of execution time in total. In
these 8 hours, we start with the smallest specification (the lowest parameter) and increase the
parameter after each is completed until we either complete the specification for all parameters
or we reach the 8­hour timeout. Results are not verified since it is expected that the generated
circuits are too large to verify in a reasonable amount of time. Furthermore, this experiment is
only run once and only for Strix and Otus­Sylvan because of the exorbitant computation power
required.

We present the results of the parameterized specification benchmark using bar charts that
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visualize the execution time against the used parameter for Otus­Sylvan and Strix. In this sec­
tion, we highlight the most interesting results. The results for all parameterized specifications
can be found in Appendix D.

In all bar charts, we annotate the bars with the execution time. If an execution timed out
or was not started within the allocated 8 hours, this is indicated by T. If execution failed due to
resource exhaustion, such as a lace task queue overflow or a full BDD node table, we use E.

In general, we often observe that Strix performs much better than Otus­Sylvan. For exam­
ple, Figure 8.9 shows a specification where Strix is able to finish all specifications within the
8 hours, whereas Otus­Sylvan cannot even complete the first one. There is an interesting ex­
ception, however. Figure 8.10 shows an example where Otus­Sylvan clearly outperforms Strix.
Additionally, there are more parameterized specifications (see Appendix D) where Otus­Sylvan
outperforms Strix but these are specifications where both tools finish in a few seconds which
makes them less interesting.

These results raise the question of whether amba_decomposed_lock is an easy specification
for Otus­Sylvan or a hard specification for Strix. In any case, a more detailed analysis of this
specification can help understand and improve the execution time of bothOtus­Sylvan and Strix.
Similarly, a detailed execution analysis of Otus for full_arbiter_enc can help understand what
makes this specification particularly difficult.

8.5 Sylvan Benchmark

It is interesting to see whether any performance gain in the evaluatory benchmark from
using Sylvan in favour of JBDD can be attributed to the parallelization introduced by Sylvan.
For that purpose, we select the 5 specifications with the greatest performance improvement and
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see if the speedup increases as we increase the number of workers.
We assign all 16 cores to the benchmark and vary the number of workers from 1 to 16.

We take the average of the total execution time over 5 runs thus totalling 80 runs for each
specification. If the extra parallelization is indeed improving the performance, we expect to see
the speedup increase as we increase the number of workers. Since there are also other threads
running in the application, we expect that the performance increases less or decreases as we
reach the largest number of workers. The benchmark results are given in Figure 8.11.

We can clearly see that the extra parallelization has a significant impact on the performance
of the construction. There are limitations, however, as we see that the performance improve­
ments stagnate as we addmore workers. Furthermore, we see a slight performance decline when
assigning 16 workers. This is not surprising considering that the machine has 16 cores and the
application then uses more than 16 threads. These results suggest that the construction could
benefit from additional parallelization apart from the BDD operations, such as parallelization of
the DCW and DBW constructions. Further research is needed to find the balance between the
number of worker threads, which process the BDD operations, and the number of other threads,
which schedule the BDD operations.
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CHAPTER 9

Discussion

The results shown in the previous chapter are promising, showing examples where Otus
outperforms Strix. However, there are still many optimizations possible, some of which we
have briefly covered in previous chapters. We discuss these optimizations here together with
other suggestions that are worth exploring further.

9.1 Explicit Automata Construction

We observed that a large portion of the execution time is in the explicit automata construc­
tion. It is therefore natural to consider optimizations in this stage. The main reason for using
explicit automata for this stage is for simplicity as the construction was already implemented
in Owl [49]. It is still interesting to see what the effect of a symbolic approach would be. In
Section 3.2 we discussed how both Sohail et al. [87] and Morgenstern [70] have investigated a
similar approach to synthesis, where Sohail et al. have chosen for an explicit construction and
Morgenstern for a symbolic one. Unfortunately, the two approaches have not been compared
and thus it is still unknown whether a symbolic construction for the DBWs and DCWs is better.

For this reason, we could extend Otus with a symbolic construction and compare it against
our current approach. A translation of Σ2­formulas to symbolic NCWs is presented by Schnei­
der [85]. Using the symbolic breakpoint construction of Morgenstern et al. [73], we can then
symbolically convert these NCWs to DCWs as done by Morgenstern [70].

Unfortunately, the symbolic breakpoint construction requires an explicit state space iteration
of the NCW and thus the compression effect of a symbolic encoding is partially nullified. We,
therefore, do not expect a large performance improvement from using this symbolic approach,
but to our knowledge, there is no symbolic determinization algorithm that has no explicit it­
eration of the automaton’s states. Further research into symbolic determinization is therefore
desired.

With the absence of such a determinization algorithm, we can also consider optimizing
our current approach. For example, it would be interesting to see what the effect would be of
increasing the number of constructed DBW and DCW automata. After normalization, it may
be possible to split the LTL formulas even further such that we construct more DBW and DCW
automata but each of them will be even smaller.

Finally, we could use Sylvan for this construction instead of JBDD. Currently, we always



use JBDD for this construction. The main reason is that this is easier from an engineering
perspective. Nevertheless, it is of course possible to use Sylvan for this construction as well. It
is not clear yet whether this will yield an improved performance since the BDDs used in this
construction are smaller than those in subsequent steps. We have seen in the previous chapter
that JBDD tends to perform better when the specification is easy to synthesize. Still, Sylvan
appears to scale much better so further experimentation is needed to see the effect of using
Sylvan for this construction.

9.2 DPW Construction

As seen in the previous chapter, the DPW construction constitutes a considerable portion of
the total execution time. It is therefore natural to focus our optimizations efforts on this part of
the construction. In particular, we suggest two approaches.

First, since we observed that the DPW construction on the DRW and DSW product au­
tomaton is considerably more expensive than the DPW construction on the DRW alone, we can
consider reducing the number of times we have to construct a DPW on the product automaton.
We have already seen that in the majority of the cases, the initial DPW construction using only
the DRW is sufficient. If it is not, we immediately proceed with constructing the DRW and
DSW product automaton.

Instead of immediately constructing the DPW from the DRWandDSWproduct, we can also
attempt the DPW construction on the DSW. Perhaps many of the cases where the construction
fails on the DRWwould succeed on the DSW.We could even construct the DPW from the DRW
and the DSW in parallel.

Next, instead of reconsidering our application of the DPW algorithm, we can also revise
the design of the algorithm itself. As already briefly hinted at in the previous chapter, the SCC
decomposition algorithm used in this construction may enforce a partially explicit state space
enumeration if the automaton contains very many relatively small SCCs. This is because the
SCC decomposition algorithm explicitly enumerates every SCC. It is not clear whether this is
actually a problem in practice as we have not measured the sizes of the SCCs.

In addition, the relatively poor performance could also be explained by an imbalance in
the size of the parity condition compared to the SCC sizes. Observe that in each recursive
step of Algorithm 5, we reduce the size of the parity condition by one and compute the SCC
decomposition of the current SCC without the hopeless states. Given a sufficiently large parity
condition, the algorithm will run a nested SCC decomposition eventually enumerating every
state as its own SCC. This nullifies the benefits of a symbolic encoding. Again, further research
is needed to determine if this occurs in practice.

9.3 Amount of BDD Variables

The amount of variables used in a BDD determines its size. Reducing the number of vari­
ables decreases the number of nodes in the BDD which can increase the amount of information
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each BDD node contains. This effectively compresses the BDD which will make operations on
it more efficient. Decreasing the number of variables, in general, is not trivial, but we identify
a few options.

A quickway to reduce the number of variables is by revising the encoding of parity sets in the
DPW. As discussed in Section 7.4, the number of variables used for the parity sets is currently
linear in the number of parity sets whereas it can theoretically be logarithmic. Although this
will only slightly reduce the number of variables, it can have a large impact on performance
since the number of BDD nodes is at most exponential in the number of variables.

Another approach that could significantly reduce the number of variables is the removal of
acceptance set variables that are no longer used in the acceptance condition. Currently, accep­
tance set variables are never removed. For example, the product automaton of the DRW and the
DSW still contains the DSW acceptance set variables. Furthermore, the DPW still contains the
acceptance set variables of the DRW and the DSW. Although it would seem like one could sim­
ply project the BDDs to remove these variables, this approach does not work. Unfortunately,
we lack a sufficiently small counter­example to be able to provide a formal argument, but we
have encountered many large ones in practice. We expect that the exact reason is due to the
structural changes to the automaton that occur by the removal of these variables and believe
that it should be possible to find a small counter­example.

Perhaps the problem can be resolved by using edge­based acceptance sets instead of state­
based acceptance sets. Removal of acceptance sets has a different effect on the structure of
the automaton if the acceptance sets are on the edges instead of on the states. Although the
symbolic encoding of the automata remains the same when using edge­based acceptance sets,
the interpretation changes. The algorithms used in the construction will therefore all need to
be adapted to use edge­based acceptance sets. However, it is not clear whether this will in fact
resolve the before­mentioned problem.

9.4 Variable Ordering

In this implementation, we have chosen for a very simple variable ordering as discussed in
Section 7.4. Different variable orderings yield different compression ratios as outlined in Sec­
tion 5.1. Experimentation using different variable orderings can help optimize the construction.

For example, we can change the order of the variable categories and see which works best.
Furthermore, we can choose a completely different strategy that does not assign ranges to cate­
gories of variables but instead interleaves variables of different categories. We can also choose
to combine the BDDs of automata in the product construction differently. A particularly in­
teresting variable ordering that is worth investigating is a variable ordering that orders input
variables before output variables. This prevents the need for a variable reordering as part of
determinizing the strategy as discussed in Section 6.3.

In addition, we can also reconsider the strategy used for encoding the explicit automaton.
For atomic proposition variables and acceptance set variables, we cannot think of a better strat­
egy than the current one because of its simplicity. However, for the state and next state variables,
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we think it is possible to use a different encoding. Currently, we simply assign an integer to
every explicit state and use its binary representation as the encoding. This encoding is very
generic. Instead of this encoding, a more specific encoding that uses the structural properties of
the automata­based constructions such as the AWW translation and the breakpoint construction
could be better. Although it is not clear yet how this would work, we believe that this additional
information can be used in some way to create a better encoding strategy.

Finally, finding good variable orderings for BDDs is an actively researched field and ded­
icated algorithms exist to find a good static ordering [65]. Instead of relying on a static order,
it is also possible to use a dynamic ordering, i.e. an ordering that changes in­between opera­
tions [83]. Applications of these techniques could improve the performance of the construction
significantly.

9.5 Parity Game Algorithms

It is known that solving parity games is in the complexity class UP ∩ co­UP [44], which is a
class that is contained inNP∩ co­NP [31]. Sincemany problems inNP∩ co­NP have eventually
been shown to be in P, it is widely believed that a polynomial­time algorithm for solving parity
games must exist. Currently, the best­known solutions are quasi­polynomial [18, 34, 46] but a
polynomial algorithm is still not found.

In Otus, we use distraction fix­point iteration [94] which is exponential but also simple and
easy to implement symbolically [58]. Since finding a solution for the parity game constitutes
only about 3% of the total execution time, we believe distraction fix­point iteration is sufficient
for our purpose. However, we want to emphasize that parity games are still actively researched
and so we can expect that improved algorithms will appear in the future. Using a different
algorithm for solving the parity game is currently not of the highest priority, but this may change
if further improvements are made to the other parts of the construction causing the relative time
spent on solving the game to increase.

9.6 Controller Quality

Controller quality has not been of much concern in the development of Otus. We have seen
that the quality of the controllers created by Otus is currently low. We think the quality can be
improved in several ways.

First, we can revise the strategy determinization such that it selects a strategy that will result
in a high­quality controller, instead of any arbitrary strategy. The simplest approach would be
to consider all strategies and selecting the one that results in the smallest BDD, however, this
will hurt the performance. Perhaps we can instead devise a heuristic that selects a strategy that
results in a small circuit.

The controller quality can also be improved by finding ways to reduce the sizes of the au­
tomata. This can be achieved, for example, by identifying and removing (groups of) states that
are bisimilar, i.e. that have the same behaviour [66]. Symbolic bisimulation minimization ap­
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proaches exist that are interesting for further research [95]. This could be applied at various
stages in the construction, such as when the explicit automata are converted to symbolic au­
tomata, or after one or several of the product constructions. It is also interesting to see what
effect these minimizations have on the execution time.

Finally, improving the variable ordering as discussed in Section 9.4 is another way to reduce
the size of the controller. An improved variable ordering ensures that fewer BDD nodes are
needed, which then also means that we need fewer gates in the AIG.

9.7 Empirical Evaluation

The empirical evaluation has given rise to many new questions. In particular, it would be
interesting to see whether the specifications for which Strix or Otus performs exceptionally
good or bad share some property that could explain the observations. This could help identify
a class of specifications for which one of the constructions perform very well.

For example, we observed that amba_decomposed_lock is solved faster by Otus than by Strix
(see Figure 8.10). On the other hand, Strix was able to solve all full_arbiter_enc specifica­
tions whereas Otus could not complete any of them (see Figure 8.9). This raises the question
what makes these specification particularly hard or easy for Strix or Otus. The same can be
asked for those specifications presented in Table 8.2.

9.8 Engineering

Finally, we expect that the performance could be further increased through engineering im­
provements. For example, we currently rely on Sylvan for the parallelization of the construc­
tion, but there are other possibilities for parallelization as well. A brief glance at Figure 3.2
shows ample opportunities for additional parallelization and Section 8.5 shows that additional
parallelization could actually be beneficial for the performance. More research is needed to
determine which level of parallelization is optimal.

Apart from introducing additional parallelization, further engineering improvements for the
interface to Sylvan are possible. As discussed in Section 7.2, Sylvan is currently strongly cou­
pled with the Java garbage collector. While we have not encountered any examples where this
is problematic, it could hurt performance if the garbage collection is triggered too frequently.
Manually managing the references to BDD nodes, while not particularly convenient for the
developer, could reduce the amount of garbage collection runs.

Finally, the load on the Java garbage collector can also be reduced by creating fewer inter­
mediate results. This could be achieved by using the builder pattern [37] to chain multiple BDD
operations without returning an intermediate BDD. However, we expect that these engineering
details will have at most a minor effect on the performance as we have not encountered any
congestion on the garbage collector.
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CHAPTER 10

Conclusion

We have researched, implemented and evaluated a new LTL reactive synthesis construction
which combines the recently discovered normalization technique for LTL formulas [86] and a
technique that allows the construction of a DPW from a product of a DRW and a DSW [13]
to construct a parity game from an LTL specification in a mostly symbolic manner. We first
normalize the LTL formula into simpler fragments and construct explicit DCW and DBW au­
tomata for these fragments. We then symbolically compute the product of these automata and
attempt to construct a DPW from the resulting DRW. If successful, we convert the DPW to a
parity game and solve it. If not successful, we repeat the construction using the negated LTL
formula to obtain a DSW that is equivalent to the original formula. The product of the DSW
and DRW is then used to construct a DPW, which is then interpreted as a game and solved.

The construction was implemented in a new prototypical synthesis tool called Otus, which
is based on the LTL and ω­automata library Owl [49]. It was evaluated in various benchmarks
and was compared against the current state­of­the­art synthesis tool Strix [59] which uses a
very similar but explicit approach. We have observed mixed but promising result. There are
specifications where Otus outperforms Strix regarding execution time by factors in the order of
10. However, there are also specifications where Strix outperforms Otus by factors in the order
of 1000.

Nevertheless, these results are very promising and motivate further research into the con­
struction. We have identified abundant future work which could still significantly improve the
performance of the construction. Furthermore, the controllers generated by Otus are commonly
in the order of 1000× larger than those generated by Strix. Further research in, for example,
the ordering of the variables in the BDDs and the use of bisimulation minimizations could both
reduce the size of the controllers as well as reduce the execution time significantly.
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APPENDIX A

Empirical Evaluation Tabular Results

This chapters presents the results of the empirical evaluation in tabular form for those that
have difficulty to distinguish colors or that have a black and white copy.

Tool Realizable Success Timeout Error

Strix Yes 385 36 0

Strix No 153 5 0

Otus­JBDD Yes 314 107 0

Otus­JBDD No 82 73 2

Otus­Sylvan Yes 321 100 0

Otus­Sylvan No 85 70 2

TABLE A.1 Tabular representation of Figure 8.1

Tool Realizable DRW_DCW DRW_PRODUCT DPW1 DSW_DCW DPW2 DFI SD

Otus­JBDD Yes 56 2 35 1 12 1 0

Otus­JBDD No 34 5 24 0 10 0 0

Otus­Sylvan Yes 55 1 30 1 10 1 2

Otus­Sylvan No 35 0 26 0 9 0 0

TABLE A.2 Tabular representation of Figure 8.2



Stage Realizable, DSW

Constructed

Realizable, No

DSW Constructed

Unrealizable,

DSW Constructed

Unrealizable, No

DSW Constructed

DRW_DCW 5.29 46.78 3.97 74.51

DRW_PRODUCT 0.41 2.97 1.37 1.01

DPW1 8.11 20.72 6.80 17.26

DSW_DCW 2.92 0.00 5.64 0.00

DSW_PRODUCT 0.31 0.00 0.77 0.00

DRW_DSW_PRODUCT 0.25 0.00 1.22 0.00

DPW2 58.20 0.0 72.32 0.00

DFI 7.35 16.12 7.91 7.22

SD 15.75 11.73 0.00 0.00

AIG 1.41 1.69 0.00 0.00

TABLE A.3 Tabular representation of Figure 8.5

Stage Realizable, DSW

Constructed

Realizable, No

DSW Constructed

Unrealizable,

DSW Constructed

Unrealizable, No

DSW Constructed

DRW_DCW 0.63 37.34 0.72 75.71

DRW_PRODUCT 0.01 0.20 0.01 0.06

DPW1 2.82 40.91 4.07 22.84

DSW_DCW 0.44 0.00 3.17 0.00

DSW_PRODUCT 0.01 0.00 0.04 0.00

DRW_DSW_PRODUCT 0.01 0.00 0.01 0.00

DPW2 69.89 0.0 89.87 0.00

DFI 3.79 3.74 2.09 1.39

SD 21.31 16.24 0.00 0.00

AIG 1.09 1.85 0.00 0.00

TABLE A.4 Tabular representation of Figure 8.6

94



#workers ltl2dba_beta_6 ltl2dba_beta_5 ltl2dba_E_8 ltl2dba_S_8 ltl2dba_S_7

1 1.00 1.00 1.00 1.00 1.00

2 1.54 1.39 1.47 1.42 1.30

3 2.26 1.93 1.95 1.83 1.57

4 2.78 2.23 2.27 2.11 1.75

5 3.25 2.57 2.53 2.32 1.85

6 3.72 2.77 2.78 2.55 1.99

7 4.02 2.83 2.93 2.66 2.01

8 4.33 2.97 3.01 2.69 2.00

9 4.46 3.03 3.09 2.77 2.18

10 4.58 3.04 3.06 2.80 1.98

11 4.70 3.12 3.11 2.82 2.16

12 4.80 3.15 3.13 2.80 2.01

13 4.94 3.08 3.15 2.76 2.21

14 5.06 3.14 3.18 2.88 2.04

15 5.09 3.16 3.17 2.94 2.07

16 4.63 2.63 2.52 2.18 1.52

TABLE A.5 Tabular representation of Figure 8.11
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APPENDIX B

Exploratory Benchmark Results

This appendix presents the raw results of the exploratory benchmark. The specification
columns refers to the filename of the specification (without extension) as available on https:

//github.com/meyerphi/syntcomp-reference.1 The abbreviations of Table 8.2 are used to
indicate in which stage the construction timed out (if applicable).

B.1 Realizable Specifications

Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

ActionConverter Success Success - Success -

amba_case_study_2 Timeout Timeout DRW_DCW Timeout DRW_DCW

amba_case_study_3 Timeout Timeout DRW_DCW Timeout DRW_DCW

amba_case_study_4 Timeout Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_arbiter_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_arbiter_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_arbiter_2 Success Success - Success -

amba_decomposed_arbiter_3 Success Timeout DPW1 Timeout DPW1

amba_decomposed_arbiter_4 Success Timeout DPW1 Timeout DPW1

amba_decomposed_arbiter_5 Success Timeout DPW1 Timeout DPW1

amba_decomposed_arbiter_6 Success Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_arbiter_7 Success Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_arbiter_8 Success Timeout DRW_DCW Timeout DRW_DCW

amba_decomposed_decode Success Success - Success -

amba_decomposed_encode_10 Success Success - Success -

amba_decomposed_encode_12 Success Success - Success -

amba_decomposed_encode_2 Success Success - Success -

amba_decomposed_encode_4 Success Success - Success -

amba_decomposed_encode_6 Success Success - Success -

amba_decomposed_encode_8 Success Success - Success -

amba_decomposed_lock_10 Success Success - Success -

amba_decomposed_lock_12 Timeout Success - Success -

amba_decomposed_lock_2 Success Success - Success -

amba_decomposed_lock_4 Success Success - Success -

amba_decomposed_lock_6 Success Success - Success -

amba_decomposed_lock_8 Success Success - Success -

amba_decomposed_shift Success Success - Success -

amba_decomposed_tburst4 Success Success - Success -

amba_decomposed_tincr Success Success - Success -

amba_decomposed_tsingle Success Success - Success -

Automata16S Success Success - Success -

Automata32S Success Success - Success -

Automata Success Success - Success -

button Success Success - Success -

Button Success Success - Success -

Cockpitboard Success Success - Success -

1Commit 66ced6d6207d7be919f905546c40701303a46aa3

https://github.com/meyerphi/syntcomp-reference
https://github.com/meyerphi/syntcomp-reference


Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

collector_v1_2 Success Success - Success -

collector_v1_3 Success Success - Success -

collector_v1_4 Success Success - Success -

collector_v1_5 Success Success - Success -

collector_v1_6 Success Success - Success -

collector_v1_7 Success Success - Success -

collector_v2_2 Success Success - Success -

collector_v2_3 Success Success - Success -

collector_v2_4 Success Success - Success -

collector_v2_5 Success Timeout DPW2 Timeout DPW2

collector_v2_6 Success Timeout DPW1 Timeout DPW2

collector_v2_7 Success Timeout DPW1 Timeout DPW1

collector_v3_2 Success Success - Success -

collector_v3_3 Success Success - Success -

collector_v3_4 Success Success - Success -

collector_v3_5 Success Success - Success -

collector_v3_6 Success Success - Success -

collector_v3_7 Success Success - Success -

collector_v4_2 Success Success - Success -

collector_v4_3 Success Success - Success -

collector_v4_4 Success Success - Success -

collector_v4_5 Success Success - Success -

collector_v4_6 Success Timeout DPW2 Timeout DPW2

collector_v4_7 Success Timeout DPW1 Timeout DPW2

detector_10 Success Timeout DPW1 Timeout DPW1

detector_12 Success Timeout DRW_DCW Timeout DRW_DCW

detector_1 Success Success - Success -

detector_2 Success Success - Success -

detector_3 Success Success - Success -

detector_4 Success Success - Success -

detector_5 Success Success - Success -

detector_6 Success Timeout DPW2 Success -

detector_7 Success Timeout DPW2 Timeout DPW2

detector_8 Success Timeout DPW2 Timeout DPW2

EnemeyModule Success Success - Success -

escalator_bidirectional_init Success Success - Success -

EscalatorBidirectionalInit Success Success - Success -

escalator_bidirectional Success Success - Success -

EscalatorBidirectional Success Success - Success -

escalator_counting_init Success Success - Success -

EscalatorCountingInit Success Success - Success -

escalator_counting Success Success - Success -

EscalatorCounting Success Success - Success -

escalator_non-counting Success Success - Success -

EscalatorNonCounting Success Success - Success -

escalator_non-reactive Success Success - Success -

EscalatorNonReactive Success Success - Success -

escalator_smart Success Timeout DPW2 Success -

EscalatorSmart Success Timeout DPW2 Success -

full_arbiter_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_2 Success Success - Success -

full_arbiter_3 Success Timeout DPW1 Timeout DPW1

full_arbiter_4 Success Timeout DPW1 Timeout DPW1

full_arbiter_5 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_6 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_7 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_8 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_enc_10 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_enc_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_enc_2 Success Timeout DPW1 Timeout DPW1

full_arbiter_enc_4 Success Timeout DPW1 Timeout DPW1

full_arbiter_enc_6 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_enc_8 Success Timeout DRW_DCW Timeout DRW_DCW

Gamelogic Success Success - Success -

GamemodeChooser Success Success - Success -

Gamemodule Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

genbuf2 Timeout Timeout DPW1 Timeout DPW1

genbuf3 Timeout Timeout DRW_DCW Timeout DRW_DCW

genbuf4 Timeout Timeout DRW_DCW Timeout DRW_DCW

genbuf5 Timeout Timeout DRW_DCW Timeout DRW_DCW

generalized_buffer_2 Timeout Timeout DPW1 Timeout DPW1

generalized_buffer_3 Timeout Timeout DRW_DCW Timeout DRW_DCW

generalized_buffer_4 Timeout Timeout DRW_DCW Timeout DRW_DCW

generalized_buffer_5 Timeout Timeout DRW_DCW Timeout DRW_DCW

generalized_buffer_6 Timeout Timeout DRW_DCW Timeout DRW_DCW

increment Success Success - Success -

Increment Success Success - Success -

KitchenTimerV0 Success Success - Success -

KitchenTimerV10 Success Success - Success -

KitchenTimerV1 Success Success - Success -

KitchenTimerV2 Success Success - Success -

KitchenTimerV3 Success Success - Success -

KitchenTimerV4 Success Success - Success -

KitchenTimerV5 Success Success - Success -

KitchenTimerV6 Success Success - Success -

KitchenTimerV7 Success Success - Success -

KitchenTimerV8 Success Success - Success -

KitchenTimerV9 Success Success - Success -

LedMatrix Success Success - Success -

lilydemo03 Success Success - Success -

lilydemo04 Success Success - Success -

lilydemo05 Success Success - Success -

lilydemo06 Success Success - Success -

lilydemo07 Success Success - Success -

lilydemo08 Success Success - Success -

lilydemo09 Success Success - Success -

lilydemo10 Success Success - Success -

lilydemo12 Success Success - Success -

lilydemo13 Success Success - Success -

lilydemo14 Success Success - Success -

lilydemo17 Success Success - Success -

lilydemo18 Success Success - Success -

lilydemo19 Success Success - Success -

lilydemo20 Success Success - Success -

lilydemo21 Success Success - Success -

lilydemo22 Success Success - Success -

lilydemo23 Success Success - Success -

lilydemo24 Success Success - Success -

load_balancer_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

load_balancer_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

load_balancer_2 Success Success - Success -

load_balancer_3 Success Timeout DPW1 Timeout DFI

load_balancer_4 Success Timeout DPW1 Timeout DPW1

load_balancer_5 Success Timeout DPW1 Timeout DPW1

load_balancer_6 Success Timeout DRW_DCW Timeout DRW_DCW

load_balancer_7 Success Timeout DRW_DCW Timeout DRW_DCW

load_balancer_8 Timeout Timeout DRW_DCW Timeout DRW_DCW

load_balancer_unreal2_2 Success Success - Success -

loadcomp2 Success Success - Success -

loadcomp3 Success Timeout DPW1 Timeout DPW1

loadcomp4 Success Timeout DPW1 Timeout DPW1

loadcomp5 Success Timeout DPW1 Timeout DPW1

loadfull2 Success Success - Success -

loadfull3 Success Timeout DPW1 Timeout DPW1

loadfull4 Success Timeout DPW1 Timeout DPW1

loadfull5 Success Timeout DRW_PRODUCT Timeout DPW1

ltl2dba01 Success Success - Success -

ltl2dba02 Success Success - Success -

ltl2dba03 Success Success - Success -

ltl2dba04 Success Success - Success -

ltl2dba05 Success Success - Success -

ltl2dba06 Success Success - Success -

ltl2dba07 Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

ltl2dba08 Success Success - Success -

ltl2dba09 Success Success - Success -

ltl2dba10 Success Success - Success -

ltl2dba11 Success Success - Success -

ltl2dba12 Success Success - Success -

ltl2dba13 Success Success - Success -

ltl2dba14 Success Success - Success -

ltl2dba15 Success Success - Success -

ltl2dba16 Success Success - Success -

ltl2dba17 Success Success - Success -

ltl2dba18 Success Success - Success -

ltl2dba19 Success Success - Success -

ltl2dba20 Success Success - Success -

ltl2dba21 Success Success - Success -

ltl2dba22 Success Success - Success -

ltl2dba23 Success Success - Success -

ltl2dba24 Success Success - Success -

ltl2dba25 Success Success - Success -

ltl2dba26 Success Success - Success -

ltl2dba_alpha_10 Success Success - Success -

ltl2dba_alpha_12 Success Success - Success -

ltl2dba_alpha_1 Success Success - Success -

ltl2dba_alpha_2 Success Success - Success -

ltl2dba_alpha_3 Success Success - Success -

ltl2dba_alpha_4 Success Success - Success -

ltl2dba_alpha_5 Success Success - Success -

ltl2dba_alpha_6 Success Success - Success -

ltl2dba_alpha_7 Success Success - Success -

ltl2dba_alpha_8 Success Success - Success -

ltl2dba_beta_10 Timeout Timeout DRW_DCW Timeout DRW_PRODUCT

ltl2dba_beta_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_beta_1 Success Success - Success -

ltl2dba_beta_2 Success Success - Success -

ltl2dba_beta_3 Success Success - Success -

ltl2dba_beta_4 Success Success - Success -

ltl2dba_beta_5 Success Success - Success -

ltl2dba_beta_6 Success Success - Success -

ltl2dba_beta_7 Success Timeout DPW1 Success -

ltl2dba_beta_8 Success Timeout DRW_PRODUCT Timeout DPW1

ltl2dba_C1_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_C1_12 Success Timeout DPW1 Timeout DPW1

ltl2dba_C1_1 Success Success - Success -

ltl2dba_C1_2 Success Success - Success -

ltl2dba_C1_3 Success Success - Success -

ltl2dba_C1_4 Success Success - Success -

ltl2dba_C1_5 Success Success - Success -

ltl2dba_C1_6 Success Success - Success -

ltl2dba_C1_7 Success Success - Success -

ltl2dba_C1_8 Success Timeout DPW1 Timeout DPW1

ltl2dba_C2_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_C2_12 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_C2_1 Success Success - Success -

ltl2dba_C2_2 Success Success - Success -

ltl2dba_C2_3 Success Success - Success -

ltl2dba_C2_4 Success Success - Success -

ltl2dba_C2_5 Success Success - Success -

ltl2dba_C2_6 Success Timeout DPW2 Success -

ltl2dba_C2_7 Success Timeout DPW2 Timeout DPW2

ltl2dba_C2_8 Success Timeout DPW2 Timeout DPW2

ltl2dba_E_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_E_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_E_1 Success Success - Success -

ltl2dba_E_2 Success Success - Success -

ltl2dba_E_3 Success Success - Success -

ltl2dba_E_4 Success Success - Success -

ltl2dba_E_5 Success Success - Success -

ltl2dba_E_6 Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

ltl2dba_E_7 Success Success - Success -

ltl2dba_E_8 Success Success - Success -

ltl2dba_Q_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_Q_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_Q_1 Success Success - Success -

ltl2dba_Q_2 Success Success - Success -

ltl2dba_Q_3 Success Success - Success -

ltl2dba_Q_4 Success Success - Success -

ltl2dba_Q_5 Success Success - Success -

ltl2dba_Q_6 Success Success - Success -

ltl2dba_Q_7 Success Timeout DPW1 Success -

ltl2dba_Q_8 Success Timeout DPW1 Timeout DPW1

ltl2dba_R_1 Success Success - Success -

ltl2dba_S_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_S_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_S_1 Success Success - Success -

ltl2dba_S_2 Success Success - Success -

ltl2dba_S_3 Success Success - Success -

ltl2dba_S_4 Success Success - Success -

ltl2dba_S_5 Success Success - Success -

ltl2dba_S_6 Success Success - Success -

ltl2dba_S_7 Success Success - Success -

ltl2dba_S_8 Success Success - Success -

ltl2dba_U1_10 Success Timeout DFI Timeout SD

ltl2dba_U1_12 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_U1_1 Success Success - Success -

ltl2dba_U1_2 Success Success - Success -

ltl2dba_U1_3 Success Success - Success -

ltl2dba_U1_4 Success Success - Success -

ltl2dba_U1_5 Success Success - Success -

ltl2dba_U1_6 Success Success - Success -

ltl2dba_U1_7 Success Success - Success -

ltl2dba_U1_8 Success Success - Success -

ltl2dba_U2_10 Success Success - Success -

ltl2dba_U2_12 Success Success - Success -

ltl2dba_U2_1 Success Success - Success -

ltl2dba_U2_2 Success Success - Success -

ltl2dba_U2_3 Success Success - Success -

ltl2dba_U2_4 Success Success - Success -

ltl2dba_U2_5 Success Success - Success -

ltl2dba_U2_6 Success Success - Success -

ltl2dba_U2_7 Success Success - Success -

ltl2dba_U2_8 Success Success - Success -

ltl2dpa01 Success Success - Success -

ltl2dpa02 Success Success - Success -

ltl2dpa03 Success Success - Success -

ltl2dpa04 Success Success - Success -

ltl2dpa05 Success Success - Success -

ltl2dpa06 Success Success - Success -

ltl2dpa07 Success Success - Success -

ltl2dpa08 Success Success - Success -

ltl2dpa09 Success Success - Success -

ltl2dpa10 Success Success - Success -

ltl2dpa11 Success Success - Success -

ltl2dpa12 Success Success - Success -

ltl2dpa13 Success Success - Success -

ltl2dpa14 Success Success - Success -

ltl2dpa15 Success Success - Success -

ltl2dpa16 Success Success - Success -

ltl2dpa17 Success Success - Success -

ltl2dpa18 Success Success - Success -

ltl2dpa19 Success Success - Success -

ltl2dpa20 Success Success - Success -

ltl2dpa21 Success Success - Success -

ltl2dpa22 Success Timeout DPW1 Timeout DPW1

ltl2dpa23 Success Success - Success -

ltl2dpa24 Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

ModdifiedLedMatrix5X Success Success - Success -

music_app_feedback Success Success - Success -

MusicAppFeedback Success Success - Success -

music_app_motivating_2 Success Success - Success -

music_app_motivating Success Success - Success -

MusicAppMotivating Success Success - Success -

music_app_simple Success Success - Success -

MusicAppSimple Success Success - Success -

mux_10 Success Success - Success -

mux_12 Success Success - Success -

mux_2 Success Success - Success -

mux_4 Success Success - Success -

mux_6 Success Success - Success -

mux_8 Success Success - Success -

narylatch_10 Timeout Success - Timeout DRW_DCW

narylatch_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

narylatch_2 Success Success - Success -

narylatch_4 Success Success - Success -

narylatch_6 Success Success - Success -

narylatch_8 Success Success - Success -

OneCounterGuiA9 Success Success - Success -

OneCounterInRangeA3 Success Success - Success -

OneCounter Success Success - Success -

prioritized_arbiter_10 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_12 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_1 Success Success - Success -

prioritized_arbiter_2 Success Success - Success -

prioritized_arbiter_3 Success Success - Success -

prioritized_arbiter_4 Success Success - Success -

prioritized_arbiter_5 Success Success - Success -

prioritized_arbiter_6 Success Timeout DPW1 Success -

prioritized_arbiter_7 Success Timeout DPW1 Timeout DPW1

prioritized_arbiter_8 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_enc_10 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_enc_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_enc_2 Success Success - Success -

prioritized_arbiter_enc_4 Success Success - Success -

prioritized_arbiter_enc_6 Success Timeout DPW1 Success -

prioritized_arbiter_enc_8 Timeout Timeout DRW_DCW Timeout DRW_DCW

Radarboard Success Success - Success -

RegManager Success Success - Success -

RotationCalculator Success Success - Success -

round_robin_arbiter_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_2 Success Success - Success -

round_robin_arbiter_3 Success Timeout DPW2 Timeout DPW2

round_robin_arbiter_4 Success Timeout DPW2 Timeout DPW2

round_robin_arbiter_5 Success Timeout DSW_DCW Timeout DSW_DCW

round_robin_arbiter_6 Success Timeout DPW1 Timeout DPW1

round_robin_arbiter_7 Success Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_8 Timeout Timeout DRW_DCW Timeout DRW_DCW

Scoreboard Success Success - Success -

SensorInit Success Success - Success -

SensorPart Success Success - Success -

SensorRegister Success Success - Success -

SensorSelector Success Success - Success -

SensorSubmodulChooser Success Success - Success -

Sensor Success Success - Success -

shift_10 Success Success - Success -

shift_12 Success Success - Success -

shift_2 Success Success - Success -

shift_4 Success Success - Success -

shift_6 Success Success - Success -

shift_8 Success Success - Success -

simple_arbiter_10 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_12 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_2 Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

simple_arbiter_3 Success Success - Success -

simple_arbiter_4 Success Success - Success -

simple_arbiter_5 Success Success - Success -

simple_arbiter_6 Success Success - Success -

simple_arbiter_7 Success Success - Success -

simple_arbiter_8 Success Timeout DRW_DCW Timeout SD

simple_arbiter_enc_10 Timeout Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_enc_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_enc_2 Success Success - Success -

simple_arbiter_enc_4 Success Success - Success -

simple_arbiter_enc_6 Success Success - Success -

simple_arbiter_enc_8 Success Timeout DRW_DCW Timeout DRW_DCW

slider_default Success Success - Success -

SliderDefault Success Success - Success -

slider_delayed Success Success - Success -

SliderDelayed Success Success - Success -

slider_scored Success Success - Success -

SliderScored Success Success - Success -

SPIPureNext Success Success - Success -

SPIReadClk Success Success - Success -

SPIReadManag Success Success - Success -

SPIReadSdi Success Success - Success -

SPI Success Success - Success -

SPIWriteClk Success Success - Success -

SPIWriteManag Success Success - Success -

SPIWriteSdi Success Success - Success -

tictactoe Success Success - Success -

torcs_accelerating Success Success - Success -

TorcsAccelerating Success Success - Success -

torcs_gearing Success Success - Success -

TorcsGearing Success Success - Success -

torcs_simple Success Success - Success -

TorcsSimple Success Success - Success -

torcs_steering_improved Success Success - Success -

TorcsSteeringImproved Success Success - Success -

torcs_steering_simple Success Success - Success -

TorcsSteeringSimple Success Success - Success -

torcs_steering_smart Success Success - Success -

TorcsSteeringSmart Success Success - Success -

TwoCounters3 Success Success - Success -

TwoCounters4 Success Success - Success -

TwoCountersInRangeA6 Success Success - Success -

TwoCountersRefinedRefined Success Success - Success -

UnderapproxStrengthenedDemo Success Success - Success -

zoo0 Success Success - Success -

Zoo0 Success Success - Success -

zoo10 Success Success - Success -

Zoo10 Success Success - Success -

zoo5 Success Success - Success -

Zoo5 Success Success - Success -

B.2 Unrealizable Specifications

Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

amba_case_study_unreal1_2_2 Success Timeout DRW_DCW Timeout DRW_DCW

amba_case_study_unreal1_2_2 Success Timeout DRW_DCW Timeout DRW_DCW

amba_case_study_unreal2_2 Timeout Timeout DRW_DCW Timeout DRW_DCW

detector_unreal_10 Success Error - Error -

detector_unreal_12 Success Error - Error -

detector_unreal_2 Success Success - Success -

detector_unreal_4 Success Success - Success -

detector_unreal_6 Success Timeout DPW2 Timeout DPW2

detector_unreal_8 Success Timeout DPW1 Timeout DPW2

full_arbiter_unreal1_2_12 Success Timeout DPW1 Timeout DPW1
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

full_arbiter_unreal1_2_15 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_2_18 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_2_3 Success Success - Success -

full_arbiter_unreal1_2_6 Success Success - Success -

full_arbiter_unreal1_2_9 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal1_3_10 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_3_12 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_3_1 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal1_3_2 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal1_3_3 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal1_3_4 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal1_3_5 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_3_6 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal1_3_8 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal2_2 Success Success - Success -

full_arbiter_unreal2_3 Success Timeout DPW1 Timeout DPW1

full_arbiter_unreal2_4 Success Timeout DRW_DCW Timeout DRW_DCW

full_arbiter_unreal2_5 Success Timeout DRW_DCW Timeout DRW_DCW

genbuf6 Timeout Timeout DRW_DCW Timeout DRW_DCW

generalized_buffer_unreal1_2_2 Success Timeout DRW_PRODUCT Timeout DPW1

generalized_buffer_unreal2_2 Timeout Timeout DRW_PRODUCT Timeout DPW1

lilydemo01 Success Success - Success -

lilydemo02 Success Success - Success -

lilydemo11 Success Success - Success -

lilydemo15 Success Success - Success -

lilydemo16 Success Success - Success -

load_balancer_unreal1_2_10 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_2_12 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_2_2 Success Success - Success -

load_balancer_unreal1_2_4 Success Success - Success -

load_balancer_unreal1_2_6 Success Success - Success -

load_balancer_unreal1_2_8 Success Success - Success -

load_balancer_unreal1_4_1 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_4_2 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_4_3 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_4_4 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal1_4_5 Success Timeout DRW_DCW Timeout DRW_DCW

load_balancer_unreal1_4_6 Success Timeout DRW_DCW Timeout DRW_DCW

load_balancer_unreal2_3 Success Timeout DPW1 Timeout DPW1

load_balancer_unreal2_4 Success Timeout DRW_PRODUCT Timeout DPW1

load_balancer_unreal2_5 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba27 Success Success - Success -

ltl2dba_psi_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_psi_12 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_psi_1 Success Success - Success -

ltl2dba_psi_2 Success Success - Success -

ltl2dba_psi_3 Success Success - Success -

ltl2dba_psi_4 Success Success - Success -

ltl2dba_psi_5 Success Success - Success -

ltl2dba_psi_6 Success Timeout DPW2 Success -

ltl2dba_psi_7 Success Timeout DPW2 Timeout DPW2

ltl2dba_psi_8 Success Timeout DPW2 Timeout DPW2

ltl2dba_R_10 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_R_12 Timeout Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_R_2 Success Success - Success -

ltl2dba_R_3 Success Success - Success -

ltl2dba_R_4 Success Timeout DPW1 Timeout DPW1

ltl2dba_R_5 Success Timeout DPW1 Timeout DPW1

ltl2dba_R_6 Success Timeout DPW1 Timeout DPW1

ltl2dba_R_7 Success Timeout DPW1 Timeout DPW1

ltl2dba_R_8 Success Timeout DRW_PRODUCT Timeout DPW1

ltl2dba_theta_10 Success Timeout DPW1 Timeout DPW1

ltl2dba_theta_12 Success Timeout DRW_DCW Timeout DRW_DCW

ltl2dba_theta_1 Success Success - Success -

ltl2dba_theta_2 Success Success - Success -

ltl2dba_theta_3 Success Success - Success -

ltl2dba_theta_4 Success Success - Success -

103



Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

ltl2dba_theta_5 Success Timeout DPW2 Success -

ltl2dba_theta_6 Success Timeout DPW2 Timeout DPW2

ltl2dba_theta_7 Success Timeout DPW2 Timeout DPW2

ltl2dba_theta_8 Success Timeout DPW1 Timeout DPW2

ltl2dpa25 Success Timeout DPW2 Timeout DPW2

ModdifiedLedMatrix4X Success Success - Success -

OneCounterGuiA0 Success Success - Success -

OneCounterGuiA1 Success Success - Success -

OneCounterGuiA2 Success Success - Success -

OneCounterGuiA3 Success Success - Success -

OneCounterGuiA4 Success Success - Success -

OneCounterGuiA5 Success Success - Success -

OneCounterGuiA6 Success Success - Success -

OneCounterGuiA7 Success Success - Success -

OneCounterGuiA8 Success Success - Success -

OneCounterGui Success Success - Success -

OneCounterInRangeA0 Success Success - Success -

OneCounterInRangeA1 Success Success - Success -

OneCounterInRangeA2 Success Success - Success -

OneCounterInRange Success Success - Success -

prioritized_arbiter_unreal1_3_10 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_unreal1_3_2 Success Success - Success -

prioritized_arbiter_unreal1_3_4 Success Success - Success -

prioritized_arbiter_unreal1_3_6 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_unreal1_3_8 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_unreal2_2 Success Success - Success -

prioritized_arbiter_unreal2_3 Success Success - Success -

prioritized_arbiter_unreal2_4 Success Timeout DRW_DCW Timeout DRW_DCW

prioritized_arbiter_unreal2_5 Success Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_unreal1_2_12 Success Timeout DPW1 Timeout DPW1

round_robin_arbiter_unreal1_2_15 Success Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_unreal1_2_18 Success Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_unreal1_2_3 Success Success - Success -

round_robin_arbiter_unreal1_2_6 Success Success - Success -

round_robin_arbiter_unreal1_2_9 Success Timeout DPW2 Success -

round_robin_arbiter_unreal2_2 Success Success - Success -

round_robin_arbiter_unreal2_3 Success Timeout DPW2 Timeout DPW2

round_robin_arbiter_unreal2_4 Success Timeout DRW_DCW Timeout DRW_DCW

round_robin_arbiter_unreal2_5 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_unreal1_4_1 Success Success - Success -

simple_arbiter_unreal1_4_2 Success Success - Success -

simple_arbiter_unreal1_4_3 Success Success - Success -

simple_arbiter_unreal1_4_4 Success Timeout DPW1 Timeout DPW1

simple_arbiter_unreal1_4_5 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_unreal1_4_6 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_unreal2_2 Success Success - Success -

simple_arbiter_unreal2_3 Success Success - Success -

simple_arbiter_unreal2_4 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_unreal2_5 Success Timeout DRW_DCW Timeout DRW_DCW

simple_arbiter_unreal2_6 Success Timeout DRW_DCW Timeout DRW_DCW

TwoCounters2 Success Success - Success -

TwoCounters5 Success Timeout DRW_DCW Timeout DRW_DCW

TwoCountersDisButA0 Success Success - Success -

TwoCountersDisButA1 Success Success - Success -

TwoCountersDisButA2 Success Success - Success -

TwoCountersDisButA3 Success Success - Success -

TwoCountersDisButA4 Success Success - Success -

TwoCountersDisButA5 Success Success - Success -

TwoCountersDisButA6 Success Success - Success -

TwoCountersDisButA7 Success Success - Success -

TwoCountersDisButA8 Success Success - Success -

TwoCountersDisButA9 Success Success - Success -

TwoCountersDisButAC Success Timeout DRW_PRODUCT Timeout DRW_DCW

TwoCountersGui Success Success - Success -

TwoCountersInRangeA0 Success Success - Success -

TwoCountersInRangeA1 Success Success - Success -

TwoCountersInRangeA2 Success Success - Success -
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Specification Strix Otus-JBDD Timeout stage Otus-JBDD Otus-Sylvan Timeout stage Otus-Sylvan

TwoCountersInRangeA3 Success Success - Success -

TwoCountersInRangeA4 Success Success - Success -

TwoCountersInRangeA5 Success Success - Success -

TwoCountersInRangeM0 Success Success - Success -

TwoCountersInRangeM1 Success Success - Success -

TwoCountersInRangeM2 Success Success - Success -

TwoCountersInRangeM3 Success Success - Success -

TwoCountersInRangeM4 Success Success - Success -

TwoCountersInRangeM5 Success Success - Success -

TwoCountersInRange Success Success - Success -

TwoCountersRefined Success Success - Success -

TwoCounters Success Success - Success -

UnderapproxDemo2 Success Success - Success -

UnderapproxDemo Success Success - Success -
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APPENDIX C

Evaluatory Benchmark Results

This appendix presents the raw results from the evaluatory benchmark. We present the
average total execution time in milliseconds, the average circuit size (i.e. number of gates)
before and after ABC and the verification results over 5 runs for Strix, Otus­JBDD and Otus­
Sylvan. Additionally, we include the relative standard deviation as an indication of the precision
of these averages. The data of the detailed execution time analysis is not included for brevity.
This data is available on request.

We use ExSyTz to represent the verification results over the five runs where x is the number
of verification errors, y is the number of verification successes and z is the number of verifica­
tion timeouts such that x+y+z = 5. Zeros are omitted for conciseness. Note that a verification
error is an error that prevented verification from completing successfully. It does not indicate
that the tool generated an erroneous result.



C.1 Realizable Specifications

Column number Column description

1 Specification

2 Average total execution time Strix (ms)

3 Relative standard deviation total execution time Strix

4 Average circuit size Strix before ABC

5 Relative standard deviation circuit size Strix before ABC

6 Average circuit size Strix after ABC

7 Relative standard deviation circuit size Strix after ABC

8 Verification result Strix

9 Average total execution time Otus­JBDD (ms)

10 Relative standard deviation total execution time Otus­JBDD

11 Average circuit size Otus­JBDD before ABC

Column number Column description

12 Relative standard deviation circuit size Otus­JBDD before ABC

13 Average circuit size Otus­JBDD after ABC

14 Relative standard deviation circuit size Otus­JBDD after ABC

15 Verification result Otus­JBDD

16 Average total execution time Otus­Sylvan (ms)

17 Relative standard deviation total execution time Otus­Sylvan

18 Average circuit size Otus­Sylvan before ABC

19 Relative standard deviation circuit size Otus­Sylvan before ABC

20 Average circuit size Otus­Sylvan after ABC

21 Relative standard deviation circuit size Otus­Sylvan after ABC

22 Verification result Otus­Sylvan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ActionConverter 262.60 0.11 4.00 0.00 4.00 0.00 S5 128.60 0.03 31.80 0.01 10.80 0.04 S5 449.00 0.30 31.40 0.02 10.40 0.05 S5

amba_case_study_2 - - - - - - - - - - - - - - - - - - - - -

amba_case_study_3 - - - - - - - - - - - - - - - - - - - - -

amba_case_study_4 - - - - - - - - - - - - - - - - - - - - -

amba_decomposed_arbiter_10 - - - - - - - - - - - - - - - - - - - - -

amba_decomposed_arbiter_12 - - - - - - - - - - - - - - - - - - - - -

amba_decomposed_arbiter_2 2297.40 0.04 21.00 0.00 16.00 0.00 S5 2516.20 0.18 6415.00 0.10 3151.00 0.12 S5 5442.60 0.21 6405.20 0.14 3147.80 0.14 S5

amba_decomposed_arbiter_3 669.80 0.22 273.00 0.00 196.00 0.00 S5 - - - - - - - - - - - - - -

amba_decomposed_arbiter_4 1439.00 0.10 795.00 0.00 617.00 0.00 S5 - - - - - - - - - - - - - -

amba_decomposed_arbiter_5 3732.80 0.07 1490.20 0.03 1124.80 0.05 S5 - - - - - - - - - - - - - -

amba_decomposed_arbiter_6 17857.20 0.08 2164.60 0.06 1496.00 0.05 S5 - - - - - - - - - - - - - -

amba_decomposed_arbiter_7 58510.40 0.00 3169.60 0.09 2048.20 0.06 S5 - - - - - - - - - - - - - -

amba_decomposed_arbiter_8 284075.60 0.00 4389.40 0.04 2598.00 0.06 S5 - - - - - - - - - - - - - -

amba_decomposed_decode 157.20 0.01 3.00 0.00 3.00 0.00 S5 53.80 0.14 13.80 0.03 7.80 0.05 S5 237.60 0.37 14.00 0.00 8.00 0.00 S5

amba_decomposed_encode_10 9813.60 0.01 118.00 0.00 81.00 0.00 S5 859.20 0.14 617.20 0.04 381.40 0.04 S5 1954.60 0.22 611.40 0.05 376.60 0.05 S5

amba_decomposed_encode_12 5746.20 0.02 197.00 0.00 166.00 0.00 S5 1830.80 0.03 704.40 0.09 439.00 0.10 S5 3587.60 0.15 718.00 0.04 444.40 0.02 S5

amba_decomposed_encode_2 149.40 0.11 7.00 0.00 7.00 0.00 S5 64.20 0.11 61.20 0.22 27.20 0.22 S5 183.40 0.15 53.80 0.31 24.20 0.29 S5

amba_decomposed_encode_4 263.80 0.09 24.00 0.00 23.00 0.00 S5 127.80 0.17 130.00 0.11 69.40 0.10 S5 286.20 0.15 145.80 0.03 78.00 0.07 S5

amba_decomposed_encode_6 491.40 0.03 58.00 0.00 46.00 0.00 S5 229.40 0.16 284.60 0.05 150.40 0.11 S5 461.40 0.13 283.20 0.06 152.40 0.13 S5

amba_decomposed_encode_8 1922.40 0.06 60.00 0.00 57.00 0.00 S5 299.40 0.07 367.60 0.07 225.00 0.12 S5 725.00 0.22 375.60 0.04 237.00 0.07 S5

amba_decomposed_lock_10 37965.20 0.01 80.00 0.00 68.00 0.00 S5 1453.80 0.59 506.80 0.27 281.20 0.25 S5 1819.80 0.82 447.40 0.26 238.60 0.29 S5

amba_decomposed_lock_12 - - - - - - - 597.40 0.10 611.00 0.26 293.60 0.29 S5 17548.00 1.16 618.80 0.16 337.80 0.16 S5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

amba_decomposed_lock_2 166.80 0.10 16.00 0.00 13.00 0.00 S5 66.20 0.08 96.20 0.14 44.80 0.12 S5 201.80 0.22 84.80 0.14 33.00 0.14 S5

amba_decomposed_lock_4 348.40 0.08 32.00 0.00 27.00 0.00 S5 111.40 0.14 174.60 0.15 107.00 0.11 S5 336.40 0.14 166.40 0.15 97.00 0.20 S5

amba_decomposed_lock_6 4157.80 0.13 48.00 0.00 40.00 0.00 S5 165.80 0.15 230.80 0.23 138.00 0.22 S5 390.60 0.13 228.00 0.16 140.40 0.24 S5

amba_decomposed_lock_8 2739.80 0.02 64.00 0.00 54.00 0.00 S5 319.40 0.40 421.80 0.24 251.20 0.25 S5 521.40 0.31 384.00 0.12 208.60 0.10 S5

amba_decomposed_shift 162.00 0.08 3.00 0.00 3.00 0.00 S5 41.60 0.08 21.60 0.16 12.00 0.17 S5 146.80 0.04 23.20 0.21 13.60 0.27 S5

amba_decomposed_tburst4 708.20 0.00 35.00 0.00 34.00 0.00 S5 214.40 0.16 191.80 0.10 72.00 0.07 S5 470.60 0.11 188.60 0.09 72.20 0.11 S5

amba_decomposed_tincr 468.80 0.02 17.00 0.00 13.00 0.00 S5 185.60 0.04 319.20 0.11 127.60 0.08 S5 332.20 0.03 304.00 0.10 110.20 0.05 S5

amba_decomposed_tsingle 551.80 0.04 16.00 0.00 14.00 0.00 S5 115.40 0.15 103.00 0.19 41.60 0.08 S5 306.00 0.08 120.20 0.21 43.40 0.16 S5

Automata16S 1655.00 0.03 94.00 0.00 59.00 0.00 S5 1155.00 0.07 295.80 0.03 139.80 0.09 S5 1784.80 0.06 275.80 0.03 130.60 0.05 S5

Automata32S 4195.20 0.02 142.00 0.00 95.00 0.00 S5 3728.40 0.03 493.80 0.05 248.80 0.06 S5 5006.00 0.03 468.20 0.05 237.00 0.05 S5

Automata 1033.60 0.12 62.00 0.00 44.00 0.00 S5 491.80 0.14 155.40 0.04 77.00 0.07 S5 615.60 0.07 161.80 0.11 78.00 0.07 S5

button 154.00 0.15 0.00 0.00 0.00 0.00 S5 48.80 0.04 11.80 0.03 4.80 0.08 S5 154.80 0.03 11.60 0.04 4.60 0.11 S5

Button 148.40 0.06 0.00 0.00 0.00 0.00 S5 66.60 0.01 11.60 0.04 4.60 0.11 S5 211.00 0.06 11.60 0.04 4.60 0.11 S5

Cockpitboard 620.40 0.02 13.00 0.00 7.00 0.00 S5 465.80 0.00 48.80 0.01 13.80 0.03 S5 613.00 0.02 48.80 0.01 13.80 0.03 S5

collector_v1_2 154.00 0.08 16.00 0.00 13.00 0.00 S5 73.40 0.01 81.20 0.06 47.60 0.07 S5 226.20 0.03 87.40 0.03 52.20 0.06 S5

collector_v1_3 197.80 0.02 45.00 0.00 31.00 0.00 S5 105.40 0.01 260.80 0.17 159.00 0.21 S5 280.00 0.03 290.40 0.14 180.20 0.19 S5

collector_v1_4 1451.40 0.09 136.40 0.39 92.00 0.35 S5 188.60 0.02 1200.00 0.06 746.80 0.06 S5 352.80 0.15 1168.20 0.11 728.20 0.10 S5

collector_v1_5 23327.20 0.02 296.00 0.00 168.00 0.00 S5 301.20 0.01 4292.00 0.17 2642.80 0.18 S5 566.00 0.04 4398.60 0.10 2702.20 0.11 S5

collector_v1_6 1838.80 0.06 438.00 0.00 236.00 0.00 S5 1192.00 0.05 18377.60 0.14 10721.20 0.14 T5 1413.40 0.11 19060.20 0.13 11077.60 0.13 T5

collector_v1_7 9880.20 0.01 523.00 0.00 349.00 0.00 S5 4247.00 0.02 78323.80 0.07 43243.00 0.06 T5 4307.40 0.02 82895.40 0.10 45170.00 0.08 T5

collector_v2_2 164.60 0.18 3.00 0.00 3.00 0.00 S5 191.60 0.03 670.20 0.03 304.20 0.05 S5 373.20 0.02 659.80 0.02 297.20 0.04 S5

collector_v2_3 181.20 0.09 9.00 0.00 8.00 0.00 S5 2291.40 0.05 6614.80 0.02 2292.40 0.02 S5 2754.40 0.04 6733.60 0.04 2365.20 0.05 S5

collector_v2_4 246.00 0.02 29.00 0.00 23.00 0.00 S5 38636.60 0.03 62889.20 0.05 18562.00 0.05 T5 30567.80 0.01 62099.00 0.03 18170.40 0.03 T5

collector_v2_5 1227.40 0.10 42.00 0.00 26.00 0.00 S5 - - - - - - - - - - - - - -

collector_v2_6 7233.40 0.02 82.00 0.00 53.00 0.00 S5 - - - - - - - - - - - - - -

collector_v2_7 23902.40 0.01 86.00 0.00 63.00 0.00 S5 - - - - - - - - - - - - - -

collector_v3_2 167.80 0.15 4.00 0.00 2.00 0.00 S5 65.40 0.02 131.40 0.18 70.80 0.23 S5 186.80 0.03 148.80 0.07 81.40 0.13 S5

collector_v3_3 204.80 0.08 3.00 0.00 3.00 0.00 S5 196.60 0.01 624.00 0.11 384.20 0.12 S5 452.80 0.02 662.60 0.10 402.40 0.10 S5

collector_v3_4 227.20 0.17 4.00 0.00 4.00 0.00 S5 587.20 0.13 2913.00 0.07 1755.40 0.06 S5 944.00 0.05 3207.60 0.06 1959.80 0.06 S5

collector_v3_5 233.80 0.04 5.00 0.00 5.00 0.00 S5 1952.40 0.05 16809.00 0.04 10080.00 0.05 S5 3085.00 0.12 16215.80 0.04 9734.80 0.04 S5

collector_v3_6 269.80 0.02 6.00 0.00 6.00 0.00 S5 9642.60 0.02 87798.60 0.06 50582.20 0.06 T5 14564.80 0.09 85370.80 0.04 49303.20 0.05 T5

collector_v3_7 350.80 0.05 7.00 0.00 7.00 0.00 S5 66712.40 0.01 467241.40 0.04 262383.20 0.04 T5 80419.40 0.01 459520.00 0.04 258004.20 0.04 T5

collector_v4_2 161.20 0.09 13.00 0.00 12.00 0.00 S5 223.80 0.17 897.60 0.04 389.20 0.06 S5 443.00 0.16 864.40 0.05 388.80 0.04 S5

collector_v4_3 273.20 0.03 57.00 0.00 42.00 0.00 S5 1334.80 0.04 5776.20 0.03 1870.40 0.04 S5 1541.40 0.03 5787.40 0.04 1896.60 0.07 S5

collector_v4_4 1200.80 0.02 195.00 0.00 146.00 0.00 S5 12116.80 0.04 36009.20 0.02 9535.40 0.02 S5 9641.80 0.02 35729.20 0.04 9327.80 0.03 S5

collector_v4_5 543.60 0.11 114.00 1.00 77.00 1.01 S5 116468.20 0.04 219502.00 0.02 48125.20 0.01 T5 66779.00 0.01 219776.40 0.05 48419.80 0.04 T5

collector_v4_6 2671.00 0.06 317.60 0.63 213.60 0.59 S5 - - - - - - - - - - - - - -

collector_v4_7 17168.80 0.01 89.00 0.00 59.00 0.00 S5 - - - - - - - - - - - - - -

detector_10 453.00 0.15 173.00 0.00 68.00 0.00 S5 - - - - - - - - - - - - - -

detector_12 1255.40 0.06 191.00 0.00 97.00 0.00 S5 - - - - - - - - - - - - - -
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

detector_1 124.00 0.16 0.00 0.00 0.00 0.00 S5 37.80 0.05 25.00 0.15 12.40 0.16 S5 147.00 0.04 25.40 0.14 12.40 0.16 S5

detector_2 132.80 0.13 3.00 0.00 3.00 0.00 S5 98.80 0.03 231.80 0.03 107.00 0.03 S5 287.80 0.18 223.00 0.08 107.00 0.05 S5

detector_3 131.80 0.04 9.00 0.00 8.00 0.00 S5 680.20 0.01 1381.20 0.06 657.80 0.07 S5 1104.20 0.05 1343.60 0.06 644.20 0.08 S5

detector_4 141.60 0.15 26.00 0.00 17.00 0.00 S5 4676.80 0.03 8283.60 0.02 3811.40 0.03 S5 4873.40 0.01 8414.20 0.03 3889.60 0.05 S5

detector_5 145.60 0.08 34.00 0.00 25.00 0.00 S5 46592.00 0.07 49901.20 0.05 22467.00 0.04 T5 30433.00 0.01 51785.80 0.02 23149.40 0.03 T5

detector_6 153.60 0.06 52.00 0.00 40.00 0.00 S5 - - - - - - - 200009.60 0.01 297880.00 0.03 129234.40 0.03 T5

detector_7 146.80 0.15 83.00 0.00 51.00 0.00 S5 - - - - - - - - - - - - - -

detector_8 155.20 0.09 93.00 0.00 54.00 0.00 S5 - - - - - - - - - - - - - -

EnemeyModule 166.40 0.11 2.00 0.00 2.00 0.00 S5 94.80 0.14 18.80 0.02 6.80 0.06 S5 196.00 0.06 18.40 0.03 6.40 0.08 S5

escalator_bidirectional_init 510.80 0.01 91.00 0.00 51.00 0.00 S5 331.60 0.02 267.60 0.05 110.00 0.08 S5 692.60 0.01 267.20 0.04 113.20 0.07 S5

EscalatorBidirectionalInit 505.60 0.02 102.00 0.00 56.00 0.00 S5 328.00 0.01 237.00 0.01 91.60 0.08 S5 675.60 0.02 234.40 0.02 91.40 0.08 S5

escalator_bidirectional 463.20 0.01 49.00 0.00 34.00 0.00 S5 294.20 0.01 220.00 0.03 108.00 0.06 S5 589.00 0.02 225.80 0.04 109.40 0.03 S5

EscalatorBidirectional 472.60 0.03 60.00 0.00 38.00 0.00 S5 293.60 0.01 226.80 0.04 106.80 0.05 S5 590.80 0.03 233.20 0.04 110.80 0.06 S5

escalator_counting_init 301.80 0.02 21.00 0.00 17.00 0.00 S5 202.60 0.01 64.40 0.05 34.80 0.07 S5 362.80 0.02 64.60 0.04 31.80 0.06 S5

EscalatorCountingInit 310.20 0.04 21.00 0.00 17.00 0.00 S5 203.20 0.01 55.40 0.03 32.20 0.04 S5 363.60 0.02 54.40 0.03 33.40 0.04 S5

escalator_counting 238.60 0.01 9.00 0.00 8.00 0.00 S5 143.40 0.01 49.00 0.03 25.80 0.07 S5 295.40 0.02 48.80 0.04 24.20 0.09 S5

EscalatorCounting 240.80 0.03 9.00 0.00 8.00 0.00 S5 144.40 0.02 39.00 0.04 20.80 0.10 S5 295.60 0.02 37.80 0.01 20.40 0.02 S5

escalator_non-counting 159.80 0.02 3.00 0.00 3.00 0.00 S5 83.20 0.03 15.60 0.03 9.60 0.05 S5 219.40 0.02 15.80 0.03 9.80 0.04 S5

EscalatorNonCounting 173.80 0.10 3.00 0.00 3.00 0.00 S5 83.60 0.03 15.40 0.03 9.40 0.05 S5 217.40 0.03 15.60 0.03 9.60 0.05 S5

escalator_non-reactive 152.40 0.13 0.00 0.00 0.00 0.00 S5 55.80 0.04 7.60 0.06 2.60 0.19 S5 191.40 0.03 7.60 0.06 2.60 0.19 S5

EscalatorNonReactive 148.40 0.05 0.00 0.00 0.00 0.00 S5 55.80 0.04 7.40 0.07 2.40 0.20 S5 193.20 0.07 7.60 0.06 2.60 0.19 S5

escalator_smart 932.60 0.01 197.00 0.00 165.00 0.00 S5 - - - - - - - 246853.40 0.01 67067.60 0.02 13422.00 0.02 S5

EscalatorSmart 810.40 0.18 174.00 0.01 144.80 0.01 S5 - - - - - - - 242234.40 0.01 67712.80 0.01 13485.80 0.02 S5

full_arbiter_10 - - - - - - - - - - - - - - - - - - - - -

full_arbiter_12 - - - - - - - - - - - - - - - - - - - - -

full_arbiter_2 251.60 0.10 41.00 0.00 34.00 0.00 S5 1533.40 0.05 4326.80 0.04 2033.40 0.03 S5 1763.20 0.06 4404.40 0.03 2040.00 0.02 S5

full_arbiter_3 1787.60 0.02 162.00 0.00 119.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_4 460.80 0.07 308.00 0.00 188.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_5 1970.60 0.08 599.00 0.00 352.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_6 11886.80 0.01 875.00 0.00 490.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_7 109454.40 0.00 1584.00 0.00 1040.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_8 90083.00 0.00 2132.00 0.00 1340.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_enc_10 222543.00 0.01 295596.00 0.00 259508.00 0.00 T5 - - - - - - - - - - - - - -

full_arbiter_enc_12 - - - - - - - - - - - - - - - - - - - - -

full_arbiter_enc_2 395.60 0.11 36.00 0.00 25.00 0.00 S5 - - - - - - - - - - - - - -

full_arbiter_enc_4 1107.20 0.02 475.60 0.03 401.80 0.05 S5 - - - - - - - - - - - - - -

full_arbiter_enc_6 4975.60 0.04 4333.00 0.00 3710.00 0.00 T5 - - - - - - - - - - - - - -

full_arbiter_enc_8 87307.40 0.03 8547.20 0.02 5128.20 0.02 T5 - - - - - - - - - - - - - -

Gamelogic 1796.80 0.03 51.00 0.00 34.00 0.00 S5 866.40 0.05 145.00 0.04 55.00 0.12 S5 1111.00 0.11 148.00 0.03 59.80 0.14 S5

GamemodeChooser 675.20 0.12 59.00 0.00 38.00 0.00 S5 191.80 0.10 217.40 0.02 112.80 0.03 S5 402.80 0.04 220.00 0.03 114.80 0.03 S5
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Gamemodule 425.40 0.14 6.00 0.00 6.00 0.00 S5 142.00 0.01 55.60 0.05 22.00 0.03 S5 291.60 0.03 55.60 0.10 21.40 0.04 S5

genbuf2 - - - - - - - - - - - - - - - - - - - - -

genbuf3 - - - - - - - - - - - - - - - - - - - - -

genbuf4 - - - - - - - - - - - - - - - - - - - - -

genbuf5 - - - - - - - - - - - - - - - - - - - - -

generalized_buffer_2 - - - - - - - - - - - - - - - - - - - - -

generalized_buffer_3 - - - - - - - - - - - - - - - - - - - - -

generalized_buffer_4 - - - - - - - - - - - - - - - - - - - - -

generalized_buffer_5 - - - - - - - - - - - - - - - - - - - - -

generalized_buffer_6 - - - - - - - - - - - - - - - - - - - - -

increment 218.40 0.22 0.00 0.00 0.00 0.00 S5 58.00 0.04 9.40 0.05 4.40 0.11 S5 199.80 0.10 9.80 0.04 4.80 0.08 S5

Increment 215.80 0.08 0.00 0.00 0.00 0.00 S5 57.80 0.03 9.60 0.05 4.60 0.11 S5 191.00 0.04 9.40 0.05 4.40 0.11 S5

KitchenTimerV0 203.20 0.13 1.00 0.00 1.00 0.00 S5 58.20 0.04 13.80 0.03 5.80 0.07 S5 194.20 0.01 13.80 0.03 5.80 0.07 S5

KitchenTimerV10 2078.60 0.02 1167.00 0.00 989.00 0.00 S5 1708.80 0.02 3993.00 0.02 2412.20 0.02 T5 2674.00 0.06 3886.80 0.03 2369.80 0.04 S2T3

KitchenTimerV1 293.20 0.04 41.00 0.00 25.00 0.00 S5 176.00 0.36 56.00 0.09 27.80 0.09 S5 245.60 0.03 58.40 0.07 29.00 0.11 S5

KitchenTimerV2 496.60 0.14 1.00 0.00 1.00 0.00 S5 379.60 0.02 505.60 0.17 311.80 0.14 S5 615.00 0.02 457.80 0.14 282.80 0.13 S5

KitchenTimerV3 516.20 0.02 1.00 0.00 1.00 0.00 S5 404.20 0.23 1568.00 0.04 940.80 0.04 S5 762.40 0.17 1479.00 0.10 892.00 0.09 S5

KitchenTimerV4 701.00 0.11 1.00 0.00 1.00 0.00 S5 446.40 0.02 1764.60 0.05 1063.60 0.05 S5 794.20 0.03 1822.00 0.04 1093.20 0.04 S5

KitchenTimerV5 1039.60 0.01 848.80 0.03 720.00 0.04 S5 734.80 0.18 3425.00 0.06 2041.80 0.05 S5 1352.80 0.05 3440.20 0.03 2074.00 0.03 S5

KitchenTimerV6 1564.40 0.14 1237.60 0.16 1062.60 0.18 S5 1131.00 0.07 4569.60 0.02 2750.40 0.02 S1T4 1849.80 0.04 4657.40 0.02 2791.00 0.02 S1T4

KitchenTimerV7 1780.60 0.04 1242.00 0.17 1071.60 0.18 S5 1235.20 0.04 4583.40 0.03 2759.40 0.03 T5 1930.20 0.05 4681.60 0.02 2832.40 0.02 T5

KitchenTimerV8 2051.40 0.13 815.00 0.03 680.00 0.02 S5 1300.60 0.05 4648.00 0.02 2819.80 0.02 S1T4 2544.80 0.04 4581.40 0.04 2743.00 0.04 S1T4

KitchenTimerV9 2183.80 0.09 1030.20 0.02 839.60 0.00 S5 1693.80 0.03 5615.40 0.03 3397.40 0.03 T5 3008.40 0.03 5411.20 0.02 3213.20 0.04 T5

LedMatrix 225084.60 0.00 134.00 0.00 99.00 0.00 S5 13563.80 0.03 12699.40 0.02 7325.60 0.02 T5 30131.80 0.01 12471.40 0.03 7170.20 0.03 T5

lilydemo03 179.00 0.05 13.00 0.00 10.00 0.00 S5 82.20 0.15 353.20 0.08 210.80 0.08 S5 200.60 0.04 343.40 0.11 206.20 0.13 S5

lilydemo04 181.00 0.05 29.00 0.00 26.00 0.00 S5 129.20 0.02 446.80 0.02 272.40 0.02 S5 319.60 0.04 470.40 0.07 287.20 0.08 S5

lilydemo05 200.60 0.07 5.00 0.00 5.00 0.00 S5 131.60 0.03 364.40 0.05 225.20 0.04 S5 264.60 0.08 345.20 0.10 218.80 0.10 S5

lilydemo06 217.00 0.03 7.00 0.00 5.00 0.00 S5 156.60 0.01 491.20 0.06 304.20 0.06 S5 372.60 0.01 530.60 0.07 323.20 0.06 S5

lilydemo07 195.00 0.04 5.00 0.00 5.00 0.00 S5 103.00 0.14 206.00 0.11 119.40 0.11 S5 233.20 0.06 209.60 0.07 115.20 0.08 S5

lilydemo08 167.00 0.07 0.00 0.00 0.00 0.00 S5 48.20 0.05 9.00 0.00 4.00 0.00 S5 192.60 0.02 9.00 0.00 4.00 0.00 S5

lilydemo09 164.20 0.05 5.00 0.00 5.00 0.00 S5 113.20 0.68 40.40 0.12 18.60 0.14 S5 235.60 0.03 38.40 0.21 19.00 0.21 S5

lilydemo10 150.60 0.12 0.00 0.00 0.00 0.00 S5 56.60 0.04 40.80 0.09 11.40 0.04 S5 205.40 0.03 42.00 0.10 11.60 0.04 S5

lilydemo12 147.40 0.07 0.00 0.00 0.00 0.00 S5 61.40 0.03 75.60 0.15 41.00 0.20 S5 213.60 0.02 80.80 0.15 39.80 0.18 S5

lilydemo13 151.00 0.07 0.00 0.00 0.00 0.00 S5 51.00 0.03 10.60 0.13 4.20 0.23 S5 193.40 0.03 11.80 0.16 4.80 0.38 S5

lilydemo14 136.60 0.07 0.00 0.00 0.00 0.00 S5 120.40 0.48 117.20 0.08 42.20 0.10 S5 267.40 0.04 119.80 0.03 41.00 0.12 S5

lilydemo17 150.40 0.06 3.00 0.00 3.00 0.00 S5 259.40 0.02 592.60 0.04 185.00 0.05 S5 446.60 0.02 613.20 0.08 195.80 0.11 S5

lilydemo18 188.20 0.09 5.00 0.00 5.00 0.00 S5 25824.20 0.03 17340.80 0.02 6041.60 0.03 S5 21679.40 0.01 16978.20 0.04 5818.80 0.03 S5

lilydemo19 176.00 0.12 1.00 0.00 1.00 0.00 S5 82.00 0.03 174.60 0.10 82.40 0.13 S5 220.80 0.03 184.00 0.11 92.80 0.10 S5

lilydemo20 220.40 0.01 8.00 0.00 6.00 0.00 S5 268.80 0.01 698.80 0.36 401.60 0.35 S5 607.40 0.33 789.60 0.21 465.00 0.22 S5

lilydemo21 358.20 0.02 21.00 0.00 20.00 0.00 S5 552.60 0.16 1921.60 0.01 1153.40 0.01 S5 1184.80 0.05 1900.60 0.02 1132.60 0.02 S5
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lilydemo22 1258.80 0.01 26.00 0.00 23.00 0.00 S5 123.60 0.02 561.80 0.06 292.40 0.08 S5 270.80 0.02 534.80 0.04 280.40 0.02 S5

lilydemo23 158.20 0.05 1.00 0.00 1.00 0.00 S5 69.20 0.04 51.60 0.15 24.80 0.17 S5 179.00 0.07 49.40 0.13 22.20 0.15 S5

lilydemo24 212.00 0.01 0.00 0.00 0.00 0.00 S5 176.60 0.12 407.60 0.22 220.80 0.21 E5 383.80 0.06 411.40 0.16 228.00 0.17 E5

load_balancer_10 - - - - - - - - - - - - - - - - - - - - -

load_balancer_12 - - - - - - - - - - - - - - - - - - - - -

load_balancer_2 288.80 0.03 30.00 0.00 19.00 0.00 S5 2139.80 0.03 5055.80 0.03 2462.60 0.02 S5 2893.20 0.02 4817.60 0.06 2388.00 0.07 S5

load_balancer_3 1283.80 0.10 78.40 0.02 47.80 0.03 S5 - - - - - - - - - - - - - -

load_balancer_4 6913.60 0.02 216.00 0.00 113.00 0.00 S5 - - - - - - - - - - - - - -

load_balancer_5 4195.20 0.02 293.00 0.00 174.00 0.00 S5 - - - - - - - - - - - - - -

load_balancer_6 36886.60 0.01 441.00 0.00 241.00 0.00 S5 - - - - - - - - - - - - - -

load_balancer_7 60324.00 0.01 597.00 0.00 369.00 0.00 S5 - - - - - - - - - - - - - -

load_balancer_8 - - - - - - - - - - - - - - - - - - - - -

load_balancer_unreal2_2 286.80 0.14 30.00 0.00 19.00 0.00 S5 7118.20 0.05 15387.00 0.07 7187.20 0.07 S5 8933.60 0.01 15573.60 0.12 7323.20 0.12 S5

loadcomp2 244.00 0.07 3.00 0.00 3.00 0.00 S5 1318.00 0.04 3100.20 0.16 1412.60 0.18 S5 2641.60 0.03 3148.40 0.16 1408.20 0.16 S5

loadcomp3 289.80 0.02 33.00 0.00 20.00 0.00 S5 - - - - - - - - - - - - - -

loadcomp4 365.00 0.13 64.00 0.00 50.00 0.00 S5 - - - - - - - - - - - - - -

loadcomp5 604.80 0.06 124.00 0.00 88.00 0.00 S5 - - - - - - - - - - - - - -

loadfull2 255.40 0.08 27.00 0.00 17.00 0.00 S5 6399.40 0.22 20315.60 0.22 9560.60 0.22 S5 8953.80 0.02 18221.40 0.16 8661.40 0.16 S5

loadfull3 368.60 0.03 88.00 0.09 61.20 0.04 S5 - - - - - - - - - - - - - -

loadfull4 639.00 0.09 203.00 0.00 125.00 0.00 S5 - - - - - - - - - - - - - -

loadfull5 3060.00 0.10 378.00 0.00 256.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba01 136.00 0.04 12.00 0.00 8.00 0.00 S5 44.20 0.03 44.80 0.02 25.00 0.07 S5 150.00 0.03 45.20 0.02 25.40 0.05 S5

ltl2dba02 192.80 0.05 136.00 0.00 111.00 0.00 S5 103.80 0.18 469.60 0.04 276.20 0.06 S5 280.00 0.14 498.20 0.03 298.80 0.03 S5

ltl2dba03 156.00 0.05 8.00 0.00 6.00 0.00 S5 59.80 0.12 107.00 0.10 50.00 0.19 S5 168.00 0.05 108.80 0.10 55.80 0.17 S5

ltl2dba04 140.60 0.06 9.00 0.00 8.00 0.00 S5 65.60 0.11 130.40 0.06 49.80 0.11 S5 214.20 0.09 146.80 0.09 56.00 0.16 S5

ltl2dba05 147.00 0.10 30.00 0.00 26.40 0.02 S5 74.20 0.04 162.40 0.16 66.60 0.17 S5 221.80 0.04 141.40 0.12 61.00 0.14 S5

ltl2dba06 147.80 0.06 23.00 0.00 17.00 0.00 S5 91.00 0.03 156.20 0.23 47.80 0.16 S5 232.40 0.02 152.20 0.10 52.20 0.13 S5

ltl2dba07 342.40 0.05 62.00 0.00 46.00 0.00 S5 572.80 0.01 2654.60 0.06 913.40 0.19 S5 421.40 0.01 2831.60 0.21 929.40 0.33 S5

ltl2dba08 197.60 0.50 34.00 0.00 25.00 0.00 S5 49301.80 0.05 51302.20 0.04 22966.80 0.04 T5 30308.20 0.01 50722.60 0.04 22916.40 0.04 T5

ltl2dba09 150.00 0.19 2.00 0.00 2.00 0.00 S5 109.60 0.08 218.20 0.24 108.60 0.15 S5 349.60 0.01 224.40 0.22 120.60 0.19 S5

ltl2dba10 157.60 0.33 2.00 0.00 2.00 0.00 S5 50.60 0.19 77.80 0.22 33.40 0.24 E5 210.20 0.04 84.40 0.13 34.60 0.14 E5

ltl2dba11 151.80 0.05 0.00 0.00 0.00 0.00 S5 80.80 0.04 150.00 0.09 64.20 0.11 S5 249.20 0.04 169.80 0.04 70.80 0.05 S5

ltl2dba12 149.60 0.11 5.00 0.00 5.00 0.00 S5 67.40 0.05 69.40 0.04 39.40 0.06 S5 214.00 0.03 64.40 0.06 33.60 0.18 S5

ltl2dba13 165.00 0.07 16.00 0.00 11.00 0.00 S5 121.20 0.02 355.40 0.02 159.80 0.02 S5 315.20 0.02 336.00 0.03 150.20 0.05 S5

ltl2dba14 135.00 0.05 9.00 0.00 7.00 0.00 S5 76.80 0.04 129.00 0.11 57.40 0.16 S5 243.00 0.04 145.80 0.06 59.60 0.07 S5

ltl2dba15 136.20 0.10 1.00 0.00 1.00 0.00 S5 79.00 0.04 77.20 0.04 42.00 0.03 S5 258.00 0.04 86.80 0.04 47.80 0.12 S5

ltl2dba16 138.80 0.06 13.00 0.00 11.00 0.00 S5 141.00 0.04 247.60 0.07 115.60 0.04 S5 298.60 0.02 253.60 0.03 118.40 0.04 S5

ltl2dba17 139.00 0.10 28.00 0.00 23.00 0.00 S5 292.00 0.01 1657.60 0.05 965.40 0.05 S5 572.80 0.02 1581.40 0.09 908.00 0.10 S5

ltl2dba18 140.20 0.04 10.00 0.00 8.00 0.00 S5 132.40 0.06 471.00 0.04 217.20 0.03 S5 260.80 0.02 475.80 0.07 214.20 0.08 S5

ltl2dba19 136.20 0.05 14.00 0.00 9.00 0.00 S5 101.00 0.04 278.20 0.05 148.60 0.05 S5 260.20 0.03 276.60 0.04 156.60 0.04 S5
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ltl2dba20 144.40 0.07 31.00 0.00 27.00 0.00 S5 268.00 0.01 865.80 0.05 388.40 0.03 S5 453.80 0.02 863.60 0.03 385.80 0.04 S5

ltl2dba21 146.60 0.05 124.00 0.03 106.80 0.02 S5 688.80 0.04 6067.60 0.05 3484.60 0.05 S5 1076.60 0.02 6106.00 0.04 3467.40 0.04 S5

ltl2dba22 146.00 0.17 1.00 0.00 1.00 0.00 S5 38.40 0.05 25.40 0.05 12.40 0.04 S5 157.00 0.06 23.00 0.15 11.40 0.09 S5

ltl2dba23 136.00 0.06 8.00 0.00 7.00 0.00 S5 48.20 0.14 57.80 0.17 28.80 0.20 S5 190.20 0.08 58.40 0.15 32.00 0.17 S5

ltl2dba24 138.00 0.09 1.00 0.00 1.00 0.00 S5 51.40 0.04 23.40 0.09 11.40 0.07 S5 190.60 0.03 22.40 0.10 11.00 0.08 S5

ltl2dba25 135.80 0.06 10.00 0.00 8.00 0.00 S5 89.60 0.03 145.20 0.05 76.80 0.08 S5 265.80 0.03 166.60 0.05 90.80 0.11 S5

ltl2dba26 145.60 0.10 17.80 0.02 14.60 0.05 S5 76.00 0.04 161.40 0.14 60.00 0.17 S5 236.80 0.10 168.60 0.12 64.00 0.05 S5

ltl2dba_alpha_10 205.60 0.06 33.00 0.00 26.00 0.00 S5 190.20 0.02 228.00 0.05 122.20 0.03 S5 354.60 0.04 231.00 0.05 124.40 0.04 S5

ltl2dba_alpha_12 207.60 0.05 33.00 0.00 26.00 0.00 S5 153.60 0.01 270.40 0.01 148.00 0.01 S5 290.80 0.05 272.80 0.02 148.80 0.01 S5

ltl2dba_alpha_1 135.60 0.14 6.00 0.00 6.00 0.00 S5 48.60 0.18 40.20 0.04 20.40 0.07 S5 150.60 0.04 37.40 0.12 18.40 0.12 S5

ltl2dba_alpha_2 136.40 0.06 10.00 0.00 7.00 0.00 S5 61.60 0.19 72.00 0.06 32.40 0.10 S5 184.60 0.07 70.80 0.05 32.60 0.07 S5

ltl2dba_alpha_3 157.40 0.08 11.00 0.00 11.00 0.00 S5 87.40 0.10 85.40 0.07 43.20 0.11 S5 233.00 0.02 87.00 0.04 42.20 0.07 S5

ltl2dba_alpha_4 156.00 0.06 15.00 0.00 15.00 0.00 S5 101.20 0.09 101.00 0.09 52.80 0.09 S5 260.40 0.13 110.00 0.05 56.80 0.04 S5

ltl2dba_alpha_5 161.80 0.04 21.00 0.00 17.00 0.00 S5 113.20 0.08 122.40 0.05 63.20 0.03 S5 243.00 0.09 124.40 0.06 66.00 0.06 S5

ltl2dba_alpha_6 161.40 0.06 20.00 0.00 17.00 0.00 S5 106.80 0.23 153.80 0.07 78.00 0.08 S5 244.40 0.10 157.00 0.01 77.20 0.05 S5

ltl2dba_alpha_7 166.20 0.09 18.00 0.00 17.00 0.00 S5 99.60 0.09 167.00 0.06 86.40 0.08 S5 216.80 0.04 172.40 0.04 93.20 0.04 S5

ltl2dba_alpha_8 161.40 0.21 23.00 0.00 22.00 0.00 S5 108.60 0.09 195.20 0.03 104.40 0.02 S5 224.60 0.03 196.00 0.04 102.00 0.04 S5

ltl2dba_beta_10 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_beta_12 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_beta_1 109.80 0.13 6.00 0.00 3.00 0.00 S5 47.20 0.19 69.60 0.07 40.60 0.10 S5 155.20 0.07 66.00 0.06 36.20 0.07 S5

ltl2dba_beta_2 141.60 0.03 34.00 0.00 18.00 0.00 S5 110.00 0.17 496.80 0.03 261.00 0.06 S5 249.00 0.23 506.20 0.07 263.80 0.09 S5

ltl2dba_beta_3 198.60 0.04 40.00 0.00 22.00 0.00 S5 326.80 0.11 2612.80 0.06 1411.60 0.09 S5 298.80 0.02 2639.20 0.03 1412.00 0.05 S5

ltl2dba_beta_4 2245.80 0.06 107.00 0.07 57.20 0.10 S5 1899.80 0.08 13691.40 0.05 7467.80 0.08 T5 674.40 0.01 13812.40 0.06 7515.00 0.05 T5

ltl2dba_beta_5 14821.00 0.05 137.80 0.16 85.40 0.23 S5 12490.40 0.02 63142.80 0.04 33264.20 0.04 T5 2640.40 0.02 65763.40 0.04 36576.80 0.03 T5

ltl2dba_beta_6 1046.80 0.12 219.80 0.14 133.60 0.27 S5 92195.40 0.03 300494.20 0.04 163594.60 0.07 T5 14003.20 0.03 320883.00 0.04 170840.60 0.05 T5

ltl2dba_beta_7 3933.80 0.04 157.00 0.00 102.00 0.00 S5 - - - - - - - 86880.00 0.02 1490836.60 0.02 837493.80 0.01 T5

ltl2dba_beta_8 17504.00 0.02 301.80 0.09 188.60 0.17 S5 - - - - - - - - - - - - - -

ltl2dba_C1_10 155.80 0.11 9.00 0.00 9.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C1_12 193.20 0.12 11.00 0.00 11.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C1_1 131.00 0.07 0.00 0.00 0.00 0.00 S5 40.80 0.09 24.20 0.16 11.60 0.20 S5 154.00 0.04 23.00 0.05 11.20 0.09 S5

ltl2dba_C1_2 131.40 0.06 1.00 0.00 1.00 0.00 S5 74.20 0.04 78.60 0.10 43.80 0.08 S5 197.60 0.13 83.80 0.09 47.40 0.08 S5

ltl2dba_C1_3 145.20 0.10 2.00 0.00 2.00 0.00 S5 162.20 0.05 223.40 0.26 112.60 0.24 S5 494.20 0.02 272.20 0.19 137.20 0.17 S5

ltl2dba_C1_4 128.80 0.01 3.00 0.00 3.00 0.00 S5 637.80 0.06 500.00 0.33 248.20 0.30 S5 1451.20 0.04 580.20 0.31 268.00 0.29 S5

ltl2dba_C1_5 142.00 0.03 4.00 0.00 4.00 0.00 S5 2589.80 0.10 1431.60 0.31 655.20 0.31 S5 6616.00 0.01 736.20 0.32 337.40 0.16 S5

ltl2dba_C1_6 155.00 0.12 5.00 0.00 5.00 0.00 S5 24000.40 0.19 2210.60 0.21 863.80 0.20 S5 35729.20 0.01 3106.00 0.28 1261.20 0.32 S5

ltl2dba_C1_7 146.00 0.06 6.00 0.00 6.00 0.00 S5 167987.00 0.04 5165.60 0.52 1873.80 0.55 S5 212842.40 0.01 6397.40 0.36 2465.20 0.36 S5

ltl2dba_C1_8 139.80 0.02 7.00 0.00 7.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C2_10 534.60 0.01 173.00 0.00 68.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C2_12 1203.80 0.02 191.00 0.00 97.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C2_1 113.20 0.15 0.00 0.00 0.00 0.00 S5 38.60 0.03 25.00 0.15 12.40 0.16 S5 144.80 0.02 25.40 0.14 12.40 0.16 S5
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ltl2dba_C2_2 122.60 0.13 3.00 0.00 3.00 0.00 S5 109.20 0.15 233.60 0.04 109.00 0.03 S5 330.80 0.06 228.60 0.02 107.60 0.05 S5

ltl2dba_C2_3 136.20 0.08 9.00 0.00 8.00 0.00 S5 685.80 0.01 1409.00 0.07 652.20 0.10 S5 1127.60 0.04 1446.60 0.03 685.80 0.02 S5

ltl2dba_C2_4 143.20 0.07 26.00 0.00 17.00 0.00 S5 4676.00 0.04 8429.80 0.05 3914.00 0.04 S5 4803.20 0.01 8323.00 0.04 3844.60 0.03 S5

ltl2dba_C2_5 151.20 0.09 34.00 0.00 25.00 0.00 S5 47926.20 0.08 50727.40 0.04 22868.80 0.04 T5 30481.00 0.01 52179.00 0.03 23291.00 0.04 T5

ltl2dba_C2_6 158.60 0.05 52.00 0.00 40.00 0.00 S5 - - - - - - - 200471.00 0.00 300539.60 0.02 130495.40 0.02 T5

ltl2dba_C2_7 138.80 0.22 83.00 0.00 51.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_C2_8 159.40 0.19 93.00 0.00 54.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_E_10 25918.20 0.01 46.00 0.00 19.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_E_12 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_E_1 125.80 0.18 1.00 0.00 1.00 0.00 S5 40.80 0.08 25.00 0.00 12.00 0.00 S5 143.00 0.03 22.80 0.09 11.20 0.07 S5

ltl2dba_E_2 124.80 0.07 6.00 0.00 3.00 0.00 S5 51.40 0.14 62.20 0.03 35.20 0.04 S5 199.40 0.07 70.00 0.07 41.80 0.10 S5

ltl2dba_E_3 142.40 0.10 11.00 0.00 5.00 0.00 S5 98.00 0.03 234.80 0.04 127.20 0.06 S5 240.60 0.03 253.40 0.11 132.00 0.12 S5

ltl2dba_E_4 142.00 0.08 16.00 0.00 7.00 0.00 S5 206.60 0.01 989.40 0.06 563.20 0.06 S5 336.80 0.03 1014.40 0.06 594.20 0.05 S5

ltl2dba_E_5 162.00 0.11 21.00 0.00 9.00 0.00 S5 474.80 0.03 4223.60 0.04 2392.80 0.04 S5 465.80 0.01 4076.40 0.03 2320.00 0.04 S5

ltl2dba_E_6 221.60 0.06 26.00 0.00 11.00 0.00 S5 2324.80 0.00 17427.80 0.03 10066.60 0.04 T5 1308.60 0.04 17811.40 0.01 10366.60 0.02 T5

ltl2dba_E_7 503.40 0.01 31.00 0.00 13.00 0.00 S5 13546.40 0.02 75989.80 0.02 42429.60 0.02 T5 4696.20 0.01 74395.40 0.02 41471.00 0.03 T5

ltl2dba_E_8 1800.40 0.06 36.00 0.00 15.00 0.00 S5 94209.80 0.04 330236.20 0.02 178622.00 0.03 T5 21471.80 0.01 331651.80 0.01 177679.40 0.01 T5

ltl2dba_Q_10 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_Q_12 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_Q_1 143.80 0.24 1.00 0.00 1.00 0.00 S5 39.40 0.03 24.00 0.08 11.60 0.07 S5 152.60 0.09 23.40 0.09 11.40 0.07 S5

ltl2dba_Q_2 133.20 0.13 9.00 0.00 5.00 0.00 S5 78.00 0.02 142.80 0.04 80.00 0.08 S5 220.60 0.07 135.00 0.07 74.20 0.07 S5

ltl2dba_Q_3 147.40 0.06 72.00 0.00 34.00 0.00 S5 164.80 0.02 737.20 0.05 430.80 0.06 S5 340.60 0.01 678.80 0.03 402.80 0.02 S5

ltl2dba_Q_4 348.60 0.02 151.00 0.00 101.00 0.00 S5 438.00 0.01 4198.40 0.04 2447.20 0.04 S5 543.40 0.02 4085.60 0.03 2440.80 0.04 S5

ltl2dba_Q_5 2880.00 0.03 251.00 0.00 151.00 0.00 S5 3834.80 0.03 25852.60 0.03 14979.40 0.03 T5 2078.40 0.06 26026.80 0.02 15285.60 0.03 T5

ltl2dba_Q_6 9852.60 0.00 370.00 0.00 207.00 0.00 S5 31749.80 0.01 161833.60 0.02 89108.40 0.03 T5 10875.80 0.01 163684.60 0.01 91219.60 0.02 T5

ltl2dba_Q_7 114020.20 0.01 496.00 0.00 260.00 0.00 S5 - - - - - - - 83681.00 0.00 969029.60 0.01 544049.00 0.01 T5

ltl2dba_Q_8 6766.40 0.04 639.00 0.00 326.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_R_1 126.00 0.10 0.00 0.00 0.00 0.00 S5 40.20 0.03 25.40 0.14 12.40 0.16 S5 153.20 0.03 25.00 0.15 12.40 0.16 S5

ltl2dba_S_10 21261.40 0.00 46.00 0.00 19.00 0.00 S5 - - - - - - - - - - - - - -

ltl2dba_S_12 - - - - - - - - - - - - - - - - - - - - -

ltl2dba_S_1 134.40 0.12 1.00 0.00 1.00 0.00 S5 47.40 0.12 24.40 0.16 12.20 0.10 S5 166.00 0.12 22.20 0.12 11.00 0.06 S5

ltl2dba_S_2 132.20 0.13 6.00 0.00 3.00 0.00 S5 67.80 0.02 81.20 0.14 43.60 0.14 S5 203.60 0.02 84.80 0.08 47.80 0.07 S5

ltl2dba_S_3 132.80 0.10 11.00 0.00 5.00 0.00 S5 104.00 0.01 327.20 0.06 198.20 0.07 S5 253.20 0.02 325.20 0.04 189.80 0.03 S5

ltl2dba_S_4 143.60 0.03 16.00 0.00 7.00 0.00 S5 248.00 0.02 1190.60 0.04 698.00 0.05 S5 388.60 0.02 1176.40 0.06 682.60 0.06 S5

ltl2dba_S_5 212.00 0.04 21.00 0.00 9.00 0.00 S5 615.80 0.01 4882.40 0.03 2746.80 0.03 S5 626.60 0.02 4907.80 0.03 2808.80 0.03 S5

ltl2dba_S_6 568.60 0.01 26.00 0.00 11.00 0.00 S5 3144.80 0.04 19288.00 0.02 10910.20 0.03 T5 1854.80 0.02 19512.00 0.02 11370.20 0.03 T5

ltl2dba_S_7 2141.80 0.05 31.00 0.00 13.00 0.00 S5 20275.60 0.03 82348.40 0.02 45789.20 0.03 T5 6820.80 0.01 82541.40 0.02 47331.60 0.02 T5

ltl2dba_S_8 10624.20 0.01 36.00 0.00 15.00 0.00 S5 118172.00 0.01 355863.60 0.01 192042.20 0.02 T5 29788.60 0.01 354804.00 0.00 191667.20 0.02 T5

ltl2dba_U1_10 5778.60 0.03 12041.20 0.02 9738.80 0.02 T5 - - - - - - - - - - - - - -

ltl2dba_U1_12 97992.00 0.02 27601.00 0.00 23201.00 0.00 T5 - - - - - - - - - - - - - -
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ltl2dba_U1_1 125.00 0.13 5.00 0.00 4.00 0.00 S5 39.20 0.19 32.80 0.14 16.60 0.11 S5 153.20 0.13 32.80 0.14 16.40 0.11 S5

ltl2dba_U1_2 131.60 0.09 6.00 0.00 5.00 0.00 S5 52.40 0.05 39.80 0.06 19.80 0.08 S5 187.20 0.07 40.00 0.04 19.60 0.05 S5

ltl2dba_U1_3 133.20 0.08 26.00 0.00 24.00 0.00 S5 68.40 0.01 132.20 0.16 67.40 0.12 S5 211.60 0.01 120.60 0.19 57.80 0.22 S5

ltl2dba_U1_4 151.20 0.05 80.80 0.03 64.20 0.01 S5 121.20 0.02 486.80 0.03 255.00 0.07 S5 290.20 0.01 474.80 0.03 242.80 0.02 S5

ltl2dba_U1_5 240.60 0.02 227.60 0.01 196.00 0.02 S5 247.40 0.19 1744.40 0.05 962.40 0.07 S5 408.00 0.02 1654.60 0.04 934.80 0.03 S5

ltl2dba_U1_6 821.80 0.08 647.40 0.01 542.40 0.01 S5 786.40 0.07 6730.80 0.05 3847.20 0.05 T5 1148.80 0.02 6852.40 0.04 3932.40 0.06 T5

ltl2dba_U1_7 5335.20 0.01 1803.20 0.03 1530.00 0.03 T5 3666.80 0.06 27871.00 0.03 15729.20 0.02 T5 4492.20 0.02 26500.40 0.03 15194.80 0.05 T5

ltl2dba_U1_8 43236.40 0.02 3950.00 0.00 3241.00 0.00 T5 15366.20 0.02 114879.00 0.02 66162.60 0.03 T5 18144.60 0.01 113663.40 0.03 64983.20 0.02 T5

ltl2dba_U2_10 1626.80 0.22 164.00 0.01 95.00 0.25 S5 1660.20 0.04 4187.00 0.15 1690.40 0.20 S5 1313.20 0.11 4510.40 0.05 1881.60 0.08 S5

ltl2dba_U2_12 1511.00 0.36 198.60 0.00 149.80 0.12 S5 7004.20 0.02 9558.60 0.05 3744.20 0.02 T5 5908.40 0.00 9533.60 0.10 3844.80 0.10 T5

ltl2dba_U2_1 103.20 0.08 5.00 0.00 4.00 0.00 S5 36.40 0.02 30.80 0.18 15.80 0.15 S5 136.60 0.02 35.00 0.00 17.80 0.07 S5

ltl2dba_U2_2 125.80 0.14 6.00 0.00 5.00 0.00 S5 42.40 0.09 37.40 0.15 20.60 0.13 S5 162.80 0.10 37.20 0.15 19.40 0.13 S5

ltl2dba_U2_3 131.80 0.06 14.00 0.00 9.00 0.00 S5 58.60 0.08 92.00 0.11 39.40 0.09 S5 205.40 0.03 92.00 0.16 42.60 0.20 S5

ltl2dba_U2_4 148.20 0.18 25.00 0.00 19.00 0.00 S5 74.60 0.02 174.20 0.07 70.00 0.11 S5 216.80 0.01 178.20 0.15 65.80 0.15 S5

ltl2dba_U2_5 148.40 0.07 40.60 0.12 33.00 0.12 S5 97.40 0.01 343.40 0.05 138.20 0.15 S5 242.20 0.01 308.80 0.10 107.20 0.14 S5

ltl2dba_U2_6 160.20 0.06 61.00 0.00 47.00 0.00 S5 136.20 0.03 556.80 0.19 245.80 0.16 S5 277.20 0.02 541.20 0.10 225.80 0.15 S5

ltl2dba_U2_7 203.00 0.02 75.60 0.09 48.60 0.22 S5 176.60 0.09 960.40 0.06 408.20 0.06 S5 263.40 0.03 836.80 0.10 344.80 0.15 S5

ltl2dba_U2_8 467.20 0.09 93.00 0.00 68.00 0.00 S5 353.20 0.15 1793.00 0.04 770.60 0.08 S5 386.60 0.01 1595.00 0.07 685.00 0.06 S5

ltl2dpa01 158.80 0.09 0.00 0.00 0.00 0.00 S5 341.00 0.27 317.20 0.05 106.40 0.08 S5 489.00 0.01 299.00 0.05 104.40 0.09 S5

ltl2dpa02 139.00 0.08 4.00 0.00 2.00 0.00 S5 70.60 0.01 83.60 0.12 34.80 0.14 S5 215.60 0.02 89.80 0.28 36.60 0.29 S5

ltl2dpa03 174.80 0.02 11.00 0.00 6.00 0.00 S5 157763.20 0.03 28897.00 0.03 8542.20 0.04 S5 89869.00 0.01 29652.20 0.06 8794.40 0.07 S5

ltl2dpa04 136.40 0.09 4.00 0.00 2.00 0.00 S5 46.00 0.02 33.60 0.08 15.40 0.05 S5 147.80 0.01 36.60 0.06 15.20 0.06 S5

ltl2dpa05 143.80 0.06 1.00 0.00 1.00 0.00 S5 89.60 0.16 140.40 0.10 76.00 0.08 S5 278.40 0.02 148.20 0.09 84.20 0.11 S5

ltl2dpa06 151.40 0.15 3.00 0.00 3.00 0.00 S5 64.60 0.02 37.40 0.04 13.80 0.05 S5 209.20 0.02 37.80 0.05 14.00 0.08 S5

ltl2dpa07 139.80 0.03 5.00 0.00 3.00 0.00 S5 74.40 0.02 119.20 0.19 48.00 0.24 S5 230.40 0.04 116.00 0.22 41.40 0.30 S5

ltl2dpa08 143.60 0.11 8.00 0.00 8.00 0.00 S5 72.00 0.03 64.20 0.08 35.00 0.14 S5 220.60 0.01 57.60 0.06 34.00 0.08 S5

ltl2dpa09 147.20 0.10 5.00 0.00 3.00 0.00 S5 74.00 0.01 121.80 0.18 38.00 0.22 S5 226.60 0.01 117.80 0.13 35.80 0.17 S5

ltl2dpa10 177.60 0.08 2.00 0.00 2.00 0.00 S5 6980.60 0.01 3877.80 0.02 1133.20 0.02 S5 6436.20 0.00 3929.00 0.02 1146.00 0.01 S5

ltl2dpa11 139.60 0.08 9.00 0.00 5.00 0.00 S5 447.80 0.13 739.00 0.05 395.40 0.07 S5 742.00 0.03 724.60 0.02 382.20 0.04 S5

ltl2dpa12 184.20 0.02 2.00 0.00 2.00 0.00 S5 13648.00 0.02 3412.00 0.03 1354.60 0.03 S5 10988.60 0.01 3416.20 0.02 1351.20 0.02 S5

ltl2dpa13 200.40 0.07 6.00 0.00 6.00 0.00 S5 9231.80 0.01 3711.40 0.06 1164.40 0.06 S5 7687.20 0.01 3823.20 0.04 1182.40 0.03 S5

ltl2dpa14 167.60 0.03 0.00 0.00 0.00 0.00 S5 903.40 0.07 865.80 0.03 322.80 0.03 S5 1035.40 0.01 855.40 0.05 310.60 0.06 S5

ltl2dpa15 133.00 0.11 3.00 0.00 3.00 0.00 S5 223.00 0.02 359.80 0.06 154.20 0.07 S5 397.80 0.00 344.40 0.02 145.80 0.03 S5

ltl2dpa16 144.00 0.06 6.00 0.00 3.00 0.00 S5 77.00 0.02 81.80 0.08 44.20 0.07 E5 217.20 0.01 80.80 0.21 41.00 0.23 E5

ltl2dpa17 172.20 0.04 12.00 0.00 12.00 0.00 S5 97.80 0.02 99.40 0.05 55.80 0.06 S5 242.60 0.01 98.40 0.09 51.60 0.09 S5

ltl2dpa18 173.80 0.07 12.00 0.00 12.00 0.00 S5 127.20 0.02 133.00 0.07 64.80 0.12 S5 279.20 0.01 131.40 0.05 64.20 0.05 S5

ltl2dpa19 200.60 0.05 40.00 0.00 22.00 0.00 S5 7368.20 0.02 7039.80 0.06 1767.80 0.05 S5 5272.00 0.01 6762.60 0.06 1665.80 0.06 S5

ltl2dpa20 156.00 0.04 6.00 0.00 3.00 0.00 S5 109.60 0.03 253.80 0.10 118.60 0.06 S5 232.00 0.01 256.00 0.08 115.60 0.08 S5

ltl2dpa21 178.40 0.09 2.00 0.00 2.00 0.00 S5 6932.00 0.02 3892.60 0.02 1157.60 0.02 S5 6449.00 0.02 3876.80 0.03 1153.60 0.03 S5

ltl2dpa22 1075.60 0.39 56.80 0.26 34.20 0.19 S5 - - - - - - - - - - - - - -
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ltl2dpa23 150.20 0.10 1.00 0.00 1.00 0.00 S5 87.80 0.02 150.40 0.09 83.00 0.10 S5 231.40 0.03 153.60 0.14 85.40 0.10 S5

ltl2dpa24 158.20 0.09 1.00 0.00 1.00 0.00 S5 193.00 0.01 254.40 0.03 121.40 0.06 S5 400.40 0.01 261.20 0.09 122.00 0.09 S5

ModdifiedLedMatrix5X 2688.20 0.05 101.00 0.00 70.00 0.00 S5 5522.60 0.04 2771.40 0.04 1501.40 0.04 S5 9491.00 0.01 2663.00 0.04 1435.40 0.07 S5

music_app_feedback 276.00 0.04 41.00 0.00 32.00 0.00 S5 156.40 0.16 183.40 0.14 102.80 0.11 S5 274.60 0.02 193.40 0.09 107.80 0.10 S5

MusicAppFeedback 309.20 0.00 41.00 0.00 32.00 0.00 S5 259.80 0.01 229.60 0.02 130.20 0.04 S5 459.80 0.03 219.00 0.14 123.20 0.14 S5

music_app_motivating_2 1065.60 0.01 67.00 0.00 53.00 0.00 S5 250.20 0.04 460.60 0.08 269.80 0.08 S5 520.00 0.01 438.20 0.03 256.40 0.04 S5

music_app_motivating 1044.80 0.04 67.00 0.00 53.00 0.00 S5 201.00 0.15 449.60 0.09 262.60 0.07 S5 420.40 0.17 410.00 0.09 247.20 0.11 S5

MusicAppMotivating 1055.40 0.01 67.00 0.00 53.00 0.00 S5 201.40 0.14 468.00 0.09 268.20 0.11 S5 442.00 0.12 501.40 0.05 293.00 0.05 S5

music_app_simple 278.40 0.07 4.00 0.00 4.00 0.00 S5 148.80 0.13 64.60 0.09 30.00 0.11 S5 246.80 0.15 59.60 0.07 27.00 0.26 S5

MusicAppSimple 295.20 0.02 15.00 0.00 12.00 0.00 S5 213.40 0.01 121.40 0.07 67.60 0.10 S5 380.80 0.00 111.80 0.11 61.60 0.13 S5

mux_10 405.80 0.04 0.00 0.00 0.00 0.00 S5 305.80 0.01 5.20 0.28 1.20 1.22 E5 433.20 0.00 4.60 0.26 0.60 2.00 E5

mux_12 501.40 0.00 0.00 0.00 0.00 0.00 S5 410.80 0.01 6.40 0.19 2.40 0.50 E5 537.60 0.01 5.20 0.28 1.20 1.22 E5

mux_2 186.80 0.04 0.00 0.00 0.00 0.00 S5 60.80 0.01 5.20 0.28 1.20 1.22 E5 192.20 0.03 5.80 0.25 1.80 0.82 E5

mux_4 192.60 0.11 0.00 0.00 0.00 0.00 S5 95.40 0.01 5.20 0.28 1.20 1.22 E5 221.80 0.01 5.80 0.25 1.80 0.82 E5

mux_6 259.20 0.08 0.00 0.00 0.00 0.00 S5 146.60 0.01 6.40 0.19 2.40 0.50 E5 275.00 0.00 7.00 0.00 3.00 0.00 E5

mux_8 306.80 0.01 0.00 0.00 0.00 0.00 S5 215.20 0.00 5.80 0.25 1.80 0.82 E5 344.60 0.01 5.80 0.25 1.80 0.82 E5

narylatch_10 - - - - - - - 149217.00 0.89 9233.80 0.00 6029.40 0.00 T5 - - - - - - -

narylatch_12 - - - - - - - - - - - - - - - - - - - - -

narylatch_2 188.40 0.08 15.00 0.00 15.00 0.00 S5 62.00 0.01 50.20 0.04 31.80 0.11 S5 227.80 0.01 49.60 0.06 32.40 0.05 S5

narylatch_4 311.20 0.01 81.00 0.00 59.00 0.00 S5 140.60 0.17 189.00 0.01 123.20 0.03 S5 475.00 0.03 187.20 0.06 122.00 0.06 S5

narylatch_6 3219.20 0.02 153.00 0.00 115.00 0.00 S5 401.20 0.19 659.00 0.02 447.60 0.02 S5 2816.20 0.02 687.60 0.03 461.60 0.03 S5

narylatch_8 14342.00 0.02 230.00 0.00 151.00 0.00 S5 3995.40 0.02 2586.20 0.02 1694.20 0.01 T5 45789.60 0.02 2603.20 0.01 1696.80 0.01 S3T2

OneCounterGuiA9 6501.80 0.03 43.00 0.00 28.00 0.00 S5 4501.60 0.04 2297.00 0.04 1372.00 0.03 S5 8953.00 0.02 2399.20 0.02 1424.80 0.04 S5

OneCounterInRangeA3 226.00 0.04 12.00 0.00 9.00 0.00 S5 87.00 0.03 70.60 0.08 34.80 0.19 S5 195.00 0.04 69.00 0.08 31.00 0.12 S5

OneCounter 6655.00 0.01 43.00 0.00 28.00 0.00 S5 4541.00 0.02 2343.00 0.04 1412.80 0.04 S5 8798.40 0.10 2374.00 0.04 1441.60 0.03 S5

prioritized_arbiter_10 1248.20 0.04 52.00 0.00 38.00 0.00 S5 - - - - - - - - - - - - - -

prioritized_arbiter_12 2641.60 0.08 55.00 0.00 38.00 0.00 S5 - - - - - - - - - - - - - -

prioritized_arbiter_1 132.60 0.13 1.00 0.00 1.00 0.00 S5 64.40 0.03 86.60 0.15 37.20 0.16 S5 190.00 0.02 82.60 0.14 35.20 0.12 S5

prioritized_arbiter_2 170.40 0.04 5.00 0.00 5.00 0.00 S5 184.20 0.01 620.60 0.07 310.80 0.08 S5 410.40 0.01 632.60 0.05 299.20 0.08 S5

prioritized_arbiter_3 219.40 0.09 14.00 0.00 14.00 0.00 S5 400.40 0.16 3785.60 0.03 2064.20 0.04 S5 732.00 0.11 3669.80 0.02 2030.00 0.02 S5

prioritized_arbiter_4 272.00 0.04 11.00 0.00 11.00 0.00 S5 2647.40 0.03 23060.20 0.01 12708.00 0.02 T5 2392.40 0.01 23006.20 0.01 12587.20 0.01 T5

prioritized_arbiter_5 247.20 0.07 29.00 0.00 24.00 0.00 S5 37158.40 0.00 134847.60 0.00 75585.80 0.01 T5 22837.80 0.02 134453.20 0.00 75300.00 0.01 T5

prioritized_arbiter_6 315.00 0.11 30.00 0.00 22.00 0.00 S5 - - - - - - - 117532.00 0.01 796797.00 0.00 476244.00 0.00 T5

prioritized_arbiter_7 469.40 0.15 38.00 0.00 29.00 0.00 S5 - - - - - - - - - - - - - -

prioritized_arbiter_8 600.60 0.17 21.00 0.00 21.00 0.00 S5 - - - - - - - - - - - - - -

prioritized_arbiter_enc_10 183735.80 0.01 37775.20 0.01 27757.60 0.01 T5 - - - - - - - - - - - - - -

prioritized_arbiter_enc_12 - - - - - - - - - - - - - - - - - - - - -

prioritized_arbiter_enc_2 200.00 0.04 93.00 0.00 74.00 0.00 S5 1455.80 0.04 7329.60 0.04 4320.00 0.05 S5 1724.80 0.02 7233.00 0.03 4217.40 0.01 S5

prioritized_arbiter_enc_4 3608.60 0.04 1003.00 0.08 731.80 0.07 S5 10401.00 0.01 30685.60 0.00 17883.80 0.01 T5 12073.40 0.01 30709.20 0.01 17918.20 0.01 T5

prioritized_arbiter_enc_6 66159.60 0.07 2825.40 0.04 1945.00 0.03 S5 - - - - - - - 149823.40 0.00 316177.60 0.00 175765.80 0.00 T5
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prioritized_arbiter_enc_8 - - - - - - - - - - - - - - - - - - - - -

Radarboard 585.60 0.17 9.00 0.00 6.00 0.00 S5 394.20 0.05 50.00 0.00 13.00 0.00 S5 550.00 0.07 49.80 0.01 12.80 0.03 S5

RegManager 243.60 0.06 0.00 0.00 0.00 0.00 S5 158.60 0.01 18.00 0.00 7.00 0.00 S5 296.60 0.01 17.60 0.03 6.60 0.07 S5

RotationCalculator 273.20 0.01 19.00 0.00 18.00 0.00 S5 174.00 0.01 89.60 0.03 43.40 0.13 S5 347.80 0.02 93.60 0.06 50.00 0.12 S5

round_robin_arbiter_10 - - - - - - - - - - - - - - - - - - - - -

round_robin_arbiter_12 - - - - - - - - - - - - - - - - - - - - -

round_robin_arbiter_2 222.20 0.14 1.00 0.00 1.00 0.00 S5 5987.60 0.01 7118.40 0.03 2402.40 0.02 S5 5889.80 0.01 7110.20 0.03 2393.20 0.02 S5

round_robin_arbiter_3 439.00 0.35 25.40 0.33 18.80 0.38 S5 - - - - - - - - - - - - - -

round_robin_arbiter_4 1974.00 1.49 126.60 0.08 103.00 0.05 S5 - - - - - - - - - - - - - -

round_robin_arbiter_5 4084.60 0.14 596.20 0.02 509.00 0.02 S5 - - - - - - - - - - - - - -

round_robin_arbiter_6 38887.40 0.01 1419.60 0.01 1121.80 0.05 S5 - - - - - - - - - - - - - -

round_robin_arbiter_7 227274.00 0.02 4415.80 0.04 3591.40 0.04 T5 - - - - - - - - - - - - - -

round_robin_arbiter_8 - - - - - - - - - - - - - - - - - - - - -

Scoreboard 245.80 0.07 4.00 0.00 4.00 0.00 S5 186.20 0.16 32.80 0.01 10.80 0.04 S5 277.60 0.01 32.40 0.02 10.40 0.05 S5

SensorInit 1770.20 0.02 49.00 0.00 36.00 0.00 S5 896.00 0.06 164.40 0.09 87.00 0.05 S5 1002.60 0.01 151.20 0.05 77.80 0.09 S5

SensorPart 1273.80 0.06 44.00 0.00 34.00 0.00 S5 896.20 0.03 154.60 0.09 73.00 0.13 S5 1184.00 0.07 148.20 0.06 71.00 0.10 S5

SensorRegister 135.80 0.08 0.00 0.00 0.00 0.00 S5 47.80 0.15 9.40 0.05 4.40 0.11 S5 151.80 0.02 9.60 0.05 4.60 0.11 S5

SensorSelector 4051.00 0.01 16.00 0.00 16.00 0.00 S5 1144.60 0.02 139.20 0.03 78.00 0.03 S5 11786.60 0.01 127.80 0.02 72.00 0.02 S5

SensorSubmodulChooser 540.40 0.05 37.00 0.00 29.00 0.00 S5 813.40 0.02 136.20 0.05 81.60 0.10 S5 1755.60 0.01 144.20 0.07 89.80 0.08 S5

Sensor 2452.20 0.27 155.60 0.76 110.20 0.67 S5 70706.00 0.07 11976.40 0.06 5388.80 0.06 S5 26915.00 0.03 12548.20 0.04 5457.00 0.07 S5

shift_10 760.20 0.12 0.00 0.00 0.00 0.00 S5 111.20 0.01 25.60 0.02 12.60 0.04 S5 574.20 0.06 25.60 0.02 12.60 0.04 S5

shift_12 7452.20 0.04 0.00 0.00 0.00 0.00 S5 441.00 0.00 29.20 0.01 14.20 0.03 S5 2150.00 0.03 29.40 0.02 14.40 0.03 S5

shift_2 146.60 0.07 0.00 0.00 0.00 0.00 S5 49.80 0.03 9.80 0.04 4.80 0.08 S5 188.20 0.02 9.40 0.05 4.40 0.11 S5

shift_4 136.00 0.04 0.00 0.00 0.00 0.00 S5 57.80 0.02 13.40 0.04 6.40 0.08 S5 203.00 0.05 13.80 0.03 6.80 0.06 S5

shift_6 155.00 0.10 0.00 0.00 0.00 0.00 S5 68.80 0.02 18.00 0.00 9.00 0.00 S5 238.60 0.04 17.60 0.03 8.60 0.06 S5

shift_8 216.20 0.04 0.00 0.00 0.00 0.00 S5 90.00 0.03 22.00 0.00 11.00 0.00 S5 351.40 0.02 21.60 0.02 10.60 0.05 S5

simple_arbiter_10 502.20 0.03 31.00 0.00 26.00 0.00 S5 - - - - - - - - - - - - - -

simple_arbiter_12 487.80 0.14 35.00 0.00 29.00 0.00 S5 - - - - - - - - - - - - - -

simple_arbiter_2 115.80 0.14 0.00 0.00 0.00 0.00 S5 66.40 0.02 69.60 0.16 32.20 0.15 S5 213.00 0.04 66.40 0.24 31.00 0.38 S5

simple_arbiter_3 164.40 0.20 3.00 0.00 3.00 0.00 S5 106.00 0.02 580.40 0.05 305.20 0.09 S5 290.00 0.03 606.20 0.09 331.00 0.06 S5

simple_arbiter_4 188.60 0.06 5.00 0.00 5.00 0.00 S5 270.20 0.01 3642.80 0.03 2169.20 0.04 S5 573.00 0.11 3571.40 0.04 2137.80 0.05 S5

simple_arbiter_5 219.80 0.06 9.00 0.00 9.00 0.00 S5 892.60 0.07 22842.00 0.01 13085.40 0.02 T5 1684.00 0.04 23079.40 0.02 13332.20 0.01 T5

simple_arbiter_6 261.00 0.07 13.00 0.00 13.00 0.00 S5 7544.60 0.03 139255.40 0.00 79049.40 0.01 T5 8592.20 0.01 139299.60 0.01 79138.00 0.01 T5

simple_arbiter_7 292.40 0.02 17.00 0.00 16.00 0.00 S5 61461.20 0.09 834849.20 0.00 497305.40 0.00 T5 48937.00 0.01 836509.40 0.00 501740.20 0.00 T5

simple_arbiter_8 344.20 0.04 15.00 0.00 15.00 0.00 S5 - - - - - - - - - - - - - -

simple_arbiter_enc_10 - - - - - - - - - - - - - - - - - - - - -

simple_arbiter_enc_12 - - - - - - - - - - - - - - - - - - - - -

simple_arbiter_enc_2 127.00 0.09 11.00 0.00 10.00 0.00 S5 289.60 0.81 1228.40 0.05 753.40 0.05 S5 422.40 0.48 1252.40 0.06 784.20 0.05 S5

simple_arbiter_enc_4 643.60 0.03 298.00 0.00 244.00 0.00 S5 1042.20 0.08 7980.60 0.01 4693.80 0.01 T5 2194.40 0.02 7874.60 0.01 4570.60 0.02 T5

simple_arbiter_enc_6 25382.20 0.04 1734.60 0.02 1225.20 0.03 S5 17358.20 0.01 114991.20 0.00 68118.60 0.01 T5 35978.60 0.01 115035.60 0.00 68255.20 0.01 T5
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simple_arbiter_enc_8 34933.60 0.00 4946.20 0.02 3362.00 0.05 S5 - - - - - - - - - - - - - -

slider_default 215.60 0.12 7.00 0.00 6.00 0.00 S5 161.00 0.01 943.40 0.07 583.60 0.05 S5 382.60 0.16 1077.20 0.09 661.20 0.08 S5

SliderDefault 230.80 0.01 7.00 0.00 6.00 0.00 S5 207.00 0.17 1091.40 0.06 657.20 0.07 S5 385.80 0.16 976.80 0.11 596.40 0.12 S5

slider_delayed 396.00 0.01 76.00 0.00 66.00 0.00 S5 703.00 0.05 5562.20 0.04 3358.60 0.04 S5 1844.00 0.08 5375.20 0.09 3247.00 0.09 S5

SliderDelayed 394.80 0.01 91.00 0.00 76.00 0.00 S5 663.40 0.05 4406.40 0.09 2687.20 0.09 S5 1890.00 0.07 4464.40 0.23 2736.20 0.21 S5

slider_scored 442.80 0.01 37.00 0.00 30.00 0.00 S5 327.00 0.18 1285.20 0.12 795.40 0.13 S5 1136.60 0.05 1371.80 0.02 829.80 0.02 S5

SliderScored 444.80 0.01 40.00 0.00 32.00 0.00 S5 308.40 0.06 1217.40 0.20 732.60 0.18 S5 1162.60 0.03 1323.40 0.05 803.20 0.05 S5

SPIPureNext 2924.20 0.02 181.00 0.00 131.00 0.00 T5 3654.80 0.02 1755.20 0.01 1105.20 0.01 T5 6778.00 0.07 1760.20 0.02 1104.40 0.02 T5

SPIReadClk 407.60 0.02 2.00 0.00 2.00 0.00 S5 112.40 0.07 19.00 0.00 7.00 0.00 S5 484.80 0.09 18.40 0.03 6.40 0.08 S5

SPIReadManag 3228.40 0.07 37.00 0.00 26.00 0.00 S5 513.60 0.02 590.60 0.22 266.80 0.17 S5 2055.60 0.03 551.00 0.19 251.20 0.17 S5

SPIReadSdi 429.60 0.07 7.00 0.00 3.00 0.00 S5 118.00 0.08 62.80 0.01 23.20 0.06 S5 453.40 0.15 62.60 0.03 22.80 0.12 S5

SPI 1051.20 0.18 95.00 0.00 53.00 0.00 S5 539.80 0.03 285.80 0.06 118.80 0.12 S5 3759.40 0.05 289.80 0.05 126.80 0.08 S5

SPIWriteClk 402.80 0.08 6.00 0.00 4.00 0.00 S5 114.80 0.04 30.80 0.01 8.80 0.05 S5 420.60 0.20 30.80 0.01 8.80 0.05 S5

SPIWriteManag 893.40 0.08 8.00 0.00 6.00 0.00 S5 292.60 0.13 108.40 0.11 42.60 0.21 S5 1101.00 0.08 96.40 0.09 35.80 0.08 S5

SPIWriteSdi 516.20 0.08 13.00 0.00 13.00 0.00 S5 160.00 0.05 78.60 0.03 33.80 0.08 S5 570.00 0.13 80.40 0.05 36.60 0.18 S5

tictactoe 19764.40 0.02 0.00 0.00 0.00 0.00 S5 2634.40 0.01 49.60 0.30 21.20 0.13 S5 3905.60 0.03 57.20 0.40 23.40 0.04 S5

torcs_accelerating 348.60 0.10 0.00 0.00 0.00 0.00 S5 114.60 0.09 15.60 0.03 6.60 0.07 S5 487.40 0.09 15.80 0.03 6.80 0.06 S5

TorcsAccelerating 343.40 0.06 0.00 0.00 0.00 0.00 S5 101.60 0.16 15.80 0.03 6.80 0.06 S5 515.60 0.12 15.60 0.03 6.60 0.07 S5

torcs_gearing 402.00 0.19 2.00 0.00 2.00 0.00 S5 93.80 0.12 26.40 0.04 14.20 0.08 S5 440.00 0.17 26.00 0.02 14.00 0.06 S5

TorcsGearing 377.40 0.15 2.00 0.00 2.00 0.00 S5 95.00 0.11 25.80 0.02 13.80 0.03 S5 443.40 0.13 26.40 0.03 14.40 0.06 S5

torcs_simple 523.20 0.18 4.00 0.00 4.00 0.00 S5 150.40 0.12 56.80 0.05 29.20 0.09 S5 556.00 0.18 61.20 0.03 30.80 0.10 S5

TorcsSimple 614.60 0.02 4.00 0.00 4.00 0.00 S5 154.00 0.28 59.60 0.04 28.80 0.09 S5 537.80 0.19 60.40 0.05 30.80 0.10 S5

torcs_steering_improved 695.20 0.06 17.00 0.00 13.00 0.00 S5 300.20 0.12 196.00 0.07 101.60 0.13 S5 872.20 0.12 219.40 0.08 116.40 0.19 S5

TorcsSteeringImproved 663.60 0.10 20.00 0.00 17.00 0.00 S5 319.20 0.03 283.20 0.11 131.40 0.25 S5 845.20 0.06 310.80 0.09 169.00 0.10 S5

torcs_steering_simple 577.40 0.01 10.00 0.00 7.00 0.00 S5 128.80 0.08 66.20 0.05 32.60 0.24 S5 500.80 0.15 63.80 0.08 26.80 0.28 S5

TorcsSteeringSimple 575.60 0.01 10.00 0.00 7.00 0.00 S5 122.20 0.05 67.80 0.07 27.00 0.16 S5 408.40 0.15 67.60 0.08 32.00 0.23 S5

torcs_steering_smart 614.40 0.01 72.00 0.00 57.00 0.00 S5 266.00 0.01 357.60 0.06 176.80 0.15 S5 715.40 0.12 325.00 0.07 150.00 0.06 S5

TorcsSteeringSmart 601.60 0.06 72.00 0.00 57.00 0.00 S5 269.40 0.02 340.00 0.09 154.80 0.10 S5 712.80 0.10 322.60 0.06 153.60 0.06 S5

TwoCounters3 4333.00 0.23 115.20 0.05 88.60 0.06 S5 403.40 0.03 324.20 0.01 91.60 0.10 S5 1147.40 0.03 318.60 0.01 83.80 0.19 S5

TwoCounters4 2442.80 0.13 45.00 0.00 37.00 0.00 S5 422.60 0.00 252.80 0.03 128.00 0.01 S5 2278.80 0.07 261.60 0.02 133.00 0.05 S5

TwoCountersInRangeA6 2411.00 0.10 45.00 0.00 37.00 0.00 S5 395.80 0.14 252.40 0.04 129.40 0.05 S5 2229.20 0.05 251.60 0.03 128.80 0.04 S5

TwoCountersRefinedRefined 827.40 0.11 31.00 0.00 22.00 0.00 S5 272.00 0.01 310.40 0.03 169.20 0.05 S5 894.40 0.08 308.40 0.02 169.60 0.06 S5

UnderapproxStrengthenedDemo 211.80 0.13 0.00 0.00 0.00 0.00 S5 52.20 0.01 2.00 0.00 0.00 0.00 E5 329.00 0.26 2.00 0.00 0.00 0.00 E5

zoo0 402.60 0.11 11.00 0.00 10.00 0.00 S5 247.00 0.02 168.60 0.04 99.60 0.08 S5 788.00 0.11 176.40 0.08 104.80 0.08 S5

Zoo0 385.60 0.07 9.00 0.00 7.00 0.00 S5 235.80 0.15 160.80 0.11 97.60 0.10 S5 776.60 0.14 137.80 0.07 81.60 0.09 S5

zoo10 391.40 0.10 6.00 0.00 6.00 0.00 S5 215.80 0.02 163.00 0.07 91.80 0.18 S5 663.20 0.06 170.00 0.06 96.00 0.10 S5

Zoo10 395.80 0.15 7.00 0.00 6.00 0.00 S5 201.60 0.12 161.60 0.14 97.00 0.15 S5 713.00 0.16 149.00 0.21 89.00 0.19 S5

zoo5 383.60 0.13 7.00 0.00 7.00 0.00 S5 215.20 0.02 154.20 0.04 84.00 0.13 S5 720.20 0.12 153.60 0.08 84.20 0.14 S5

Zoo5 393.00 0.09 9.00 0.00 8.00 0.00 S5 215.60 0.02 140.00 0.15 84.40 0.14 S5 741.40 0.14 146.00 0.13 85.60 0.11 S5
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C.2 Unrealizable Specifications

Specification Avg. time Strix
(ms)

Rel. std. dev. time
Strix

Avg. time Otus-
JBDD (ms)

Rel. std. dev. time
Otus-JBDD

Avg. time Otus-
Sylvan (ms)

Rel. std. dev. time
Otus-Sylvan

amba_case_study_unreal1_2_2 161190.20 0.00 - - - -

amba_case_study_unreal2_2 - - - - - -

detector_unreal_10 417.80 0.03 - - - -

detector_unreal_12 727.40 0.09 - - - -

detector_unreal_2 161.60 0.13 168.60 0.04 439.80 0.37

detector_unreal_4 206.40 0.14 8529.00 0.01 10004.60 0.42

detector_unreal_6 263.60 0.24 - - - -

detector_unreal_8 399.60 0.09 - - - -

full_arbiter_unreal1_2_12 8342.20 0.06 - - - -

full_arbiter_unreal1_2_15 7313.20 0.05 - - - -

full_arbiter_unreal1_2_18 21791.00 0.47 - - - -

full_arbiter_unreal1_2_3 219.40 0.01 2173.00 0.02 3427.00 0.46

full_arbiter_unreal1_2_6 2774.60 0.09 48001.00 0.01 34646.80 0.45

full_arbiter_unreal1_2_9 7380.60 0.05 - - - -

full_arbiter_unreal1_3_10 12480.00 0.06 - - - -

full_arbiter_unreal1_3_12 11507.40 0.04 - - - -

full_arbiter_unreal1_3_1 338.40 0.14 - - - -

full_arbiter_unreal1_3_2 383.60 0.15 - - - -

full_arbiter_unreal1_3_3 519.40 0.13 - - - -

full_arbiter_unreal1_3_4 885.40 0.30 - - - -

full_arbiter_unreal1_3_5 1658.80 0.11 - - - -

full_arbiter_unreal1_3_6 3130.00 0.21 - - - -

full_arbiter_unreal1_3_8 11687.00 0.11 - - - -

full_arbiter_unreal2_2 426.40 0.12 10235.00 0.02 11239.40 0.41

full_arbiter_unreal2_3 2415.60 0.39 - - - -

full_arbiter_unreal2_4 897.60 0.19 - - - -

full_arbiter_unreal2_5 49065.20 0.25 - - - -

genbuf6 - - - - - -

generalized_buffer_unreal1_2_2 209129.20 0.06 - - - -

generalized_buffer_unreal2_2 - - - - - -

lilydemo01 141.00 0.11 45.20 0.02 204.00 0.51

lilydemo02 163.60 0.21 63.00 0.14 273.60 0.60

lilydemo11 142.00 0.08 41.20 0.01 232.60 0.38

lilydemo15 146.40 0.13 45.60 0.14 228.60 0.24

lilydemo16 172.00 0.16 90.60 0.16 360.80 0.34

load_balancer_unreal1_2_10 4318.20 0.72 - - - -

load_balancer_unreal1_2_12 5556.80 0.71 - - - -

load_balancer_unreal1_2_2 238.80 0.12 1556.60 0.05 2732.20 0.38

load_balancer_unreal1_2_4 799.00 0.16 2509.40 0.02 4092.00 0.46

load_balancer_unreal1_2_6 2050.60 0.61 10935.60 0.10 14411.40 0.43

load_balancer_unreal1_2_8 5234.00 0.66 107402.40 0.01 72398.00 0.43

load_balancer_unreal1_4_1 396.00 0.00 - - - -

load_balancer_unreal1_4_2 537.80 0.07 - - - -

load_balancer_unreal1_4_3 854.00 0.09 - - - -

load_balancer_unreal1_4_4 987.40 0.11 - - - -

load_balancer_unreal1_4_5 1027.60 0.07 - - - -

load_balancer_unreal1_4_6 1329.60 0.07 - - - -

load_balancer_unreal2_3 2428.60 0.73 - - - -

load_balancer_unreal2_4 470.60 0.01 - - - -

load_balancer_unreal2_5 2618.40 0.01 - - - -

ltl2dba27 107.40 0.11 35.60 0.01 201.60 0.61

ltl2dba_psi_10 151.40 0.15 - - - -

ltl2dba_psi_12 225.20 0.16 - - - -

ltl2dba_psi_1 115.60 0.13 34.80 0.02 208.20 0.61

ltl2dba_psi_2 136.00 0.11 72.00 0.01 306.40 0.51

ltl2dba_psi_3 135.20 0.06 525.20 0.14 1096.20 0.23

ltl2dba_psi_4 149.00 0.18 4535.00 0.06 4400.20 0.32

ltl2dba_psi_5 140.20 0.16 41961.20 0.03 19639.60 0.01

ltl2dba_psi_6 151.80 0.15 - - 113032.20 0.01

ltl2dba_psi_7 147.20 0.02 - - - -

ltl2dba_psi_8 161.80 0.03 - - - -

ltl2dba_R_10 47060.40 0.00 - - - -
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Specification Avg. time Strix
(ms)

Rel. std. dev. time
Strix

Avg. time Otus-
JBDD (ms)

Rel. std. dev. time
Otus-JBDD

Avg. time Otus-
Sylvan (ms)

Rel. std. dev. time
Otus-Sylvan

ltl2dba_R_12 - - - - - -

ltl2dba_R_2 116.80 0.11 219.00 0.09 413.40 0.04

ltl2dba_R_3 107.80 0.05 24205.80 0.02 25253.00 0.01

ltl2dba_R_4 126.20 0.09 - - - -

ltl2dba_R_5 128.00 0.05 - - - -

ltl2dba_R_6 165.60 0.12 - - - -

ltl2dba_R_7 388.00 0.09 - - - -

ltl2dba_R_8 1718.80 0.03 - - - -

ltl2dba_theta_10 248.60 0.01 - - - -

ltl2dba_theta_12 699.80 0.10 - - - -

ltl2dba_theta_1 155.80 0.07 88.20 0.01 221.80 0.02

ltl2dba_theta_2 173.00 0.15 409.40 0.10 617.20 0.05

ltl2dba_theta_3 135.80 0.12 4897.20 0.05 4076.60 0.02

ltl2dba_theta_4 157.60 0.19 58124.60 0.03 27400.00 0.02

ltl2dba_theta_5 165.20 0.17 - - 190931.60 0.01

ltl2dba_theta_6 182.80 0.04 - - - -

ltl2dba_theta_7 192.00 0.01 - - - -

ltl2dba_theta_8 216.80 0.01 - - - -

ltl2dpa25 206.40 0.10 - - - -

ModdifiedLedMatrix4X 2819.00 0.03 2224.60 0.07 4694.60 0.02

OneCounterGuiA0 1688.60 0.07 183.80 0.01 454.00 0.07

OneCounterGuiA1 6027.00 0.01 320.00 0.09 967.60 0.06

OneCounterGuiA2 2526.00 0.49 780.80 0.04 1307.80 0.08

OneCounterGuiA3 3391.20 0.02 1391.60 0.08 2892.60 0.09

OneCounterGuiA4 3858.60 0.04 1457.40 0.04 2925.60 0.12

OneCounterGuiA5 9381.80 0.01 1610.40 0.01 3433.80 0.09

OneCounterGuiA6 12694.80 0.01 2627.80 0.05 4687.60 0.13

OneCounterGuiA7 13092.40 0.01 4169.60 0.01 6394.40 0.15

OneCounterGuiA8 12067.20 0.01 3688.40 0.06 6561.00 0.12

OneCounterGui 1581.20 0.07 183.00 0.01 453.60 0.07

OneCounterInRangeA0 141.20 0.06 60.60 0.01 197.80 0.11

OneCounterInRangeA1 150.00 0.08 84.60 0.17 238.00 0.08

OneCounterInRangeA2 160.20 0.11 108.60 0.01 256.40 0.04

OneCounterInRange 171.20 0.12 86.60 0.01 226.80 0.01

prioritized_arbiter_unreal1_3_10 607.80 0.04 - - - -

prioritized_arbiter_unreal1_3_2 301.60 0.01 1599.00 0.06 2471.60 0.04

prioritized_arbiter_unreal1_3_4 401.80 0.01 284548.60 0.01 68099.00 0.01

prioritized_arbiter_unreal1_3_6 444.20 0.07 - - - -

prioritized_arbiter_unreal1_3_8 611.20 0.09 - - - -

prioritized_arbiter_unreal2_2 204.80 0.10 280.60 0.03 551.20 0.04

prioritized_arbiter_unreal2_3 294.40 0.02 251630.00 0.00 71412.20 0.01

prioritized_arbiter_unreal2_4 435.40 0.00 - - - -

prioritized_arbiter_unreal2_5 700.60 0.05 - - - -

round_robin_arbiter_unreal1_2_12 7896.40 0.22 - - - -

round_robin_arbiter_unreal1_2_15 29448.40 0.26 - - - -

round_robin_arbiter_unreal1_2_18 69873.80 0.43 - - - -

round_robin_arbiter_unreal1_2_3 4333.40 0.02 5762.80 0.10 6266.40 0.02

round_robin_arbiter_unreal1_2_6 9807.00 0.01 27966.20 0.01 21302.60 0.02

round_robin_arbiter_unreal1_2_9 6976.20 1.67 - - 242152.60 0.00

round_robin_arbiter_unreal2_2 1286.80 0.10 7893.00 0.01 8063.00 0.01

round_robin_arbiter_unreal2_3 326.20 0.05 - - - -

round_robin_arbiter_unreal2_4 2899.60 0.03 - - - -

round_robin_arbiter_unreal2_5 50725.60 0.05 - - - -

simple_arbiter_unreal1_4_1 257.20 0.15 1002.40 0.05 3118.80 0.04

simple_arbiter_unreal1_4_2 273.00 0.14 1822.40 0.03 4833.80 0.08

simple_arbiter_unreal1_4_3 312.60 0.15 193184.40 0.01 46734.80 0.03

simple_arbiter_unreal1_4_4 366.20 0.00 - - - -

simple_arbiter_unreal1_4_5 379.80 0.01 - - - -

simple_arbiter_unreal1_4_6 389.00 0.01 - - - -

simple_arbiter_unreal2_2 166.80 0.06 61.80 0.01 193.20 0.03

simple_arbiter_unreal2_3 227.40 0.09 12484.60 0.02 8897.20 0.02

simple_arbiter_unreal2_4 307.20 0.01 - - - -

simple_arbiter_unreal2_5 467.20 0.03 - - - -

simple_arbiter_unreal2_6 733.80 0.05 - - - -

TwoCounters2 1146.60 0.01 182.80 0.02 426.40 0.02

TwoCounters5 6269.40 0.02 - - - -
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Specification Avg. time Strix
(ms)

Rel. std. dev. time
Strix

Avg. time Otus-
JBDD (ms)

Rel. std. dev. time
Otus-JBDD

Avg. time Otus-
Sylvan (ms)

Rel. std. dev. time
Otus-Sylvan

TwoCountersDisButA0 1838.60 0.07 508.20 0.14 1765.00 0.04

TwoCountersDisButA1 1116.40 0.09 1133.60 0.05 2978.20 0.04

TwoCountersDisButA2 1985.80 0.06 3451.00 0.01 8759.00 0.07

TwoCountersDisButA3 3536.60 0.03 2591.60 0.08 8389.80 0.02

TwoCountersDisButA4 3607.20 0.06 7240.60 0.04 21053.80 0.09

TwoCountersDisButA5 11755.60 0.02 7831.40 0.02 25292.00 0.05

TwoCountersDisButA6 11522.20 0.02 22280.40 0.00 57060.60 0.10

TwoCountersDisButA7 15423.80 0.01 22313.00 0.02 60727.80 0.11

TwoCountersDisButA8 15784.60 0.02 165876.40 0.01 310493.40 0.09

TwoCountersDisButA9 39786.80 0.01 86277.20 0.01 219662.80 0.01

TwoCountersDisButAC 40027.00 0.01 - - - -

TwoCountersGui 1082.40 0.06 585.80 0.15 2922.00 0.06

TwoCountersInRangeA0 486.20 0.15 182.80 0.02 325.60 0.03

TwoCountersInRangeA1 804.20 0.05 212.00 0.13 454.00 0.12

TwoCountersInRangeA2 1322.60 0.10 254.00 0.14 754.40 0.06

TwoCountersInRangeA3 1478.80 0.08 304.20 0.01 737.40 0.13

TwoCountersInRangeA4 1611.20 0.08 338.00 0.01 832.00 0.17

TwoCountersInRangeA5 2075.20 0.07 351.60 0.00 818.60 0.03

TwoCountersInRangeM0 1658.40 0.03 357.60 0.00 884.20 0.06

TwoCountersInRangeM1 1785.40 0.09 357.60 0.00 854.40 0.02

TwoCountersInRangeM2 2090.00 0.07 352.40 0.00 812.60 0.06

TwoCountersInRangeM3 2073.40 0.07 366.60 0.06 822.80 0.06

TwoCountersInRangeM4 2166.20 0.04 353.40 0.01 846.20 0.04

TwoCountersInRangeM5 2199.60 0.04 352.80 0.01 820.40 0.05

TwoCountersInRange 426.40 0.05 185.20 0.01 358.00 0.02

TwoCountersRefined 347.40 0.11 262.00 0.01 536.80 0.04

TwoCounters 287.80 0.03 211.40 0.01 507.20 0.03

UnderapproxDemo2 169.80 0.09 54.40 0.01 184.00 0.02

UnderapproxDemo 152.40 0.10 38.60 0.10 165.80 0.03
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APPENDIX D

Parameterized Specification
Benchmark Results

This appendix contains the results of the parameterized specification benchmark. For
each parameterized specification, we provide a bar chart that displays the execution time
against the parameter of the specification for both Otus­Sylvan and Strix. Each bar is
annotated with its execution time. We indicate timeouts and errors by T and E respectively.
Errors that appear are always related to resource exhaustion, such as a full bdd node table.
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