
UNIVERSITY OF TWENTE

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS &

COMPUTER SCIENCE

Semantic Description of Explainable

Machine Learning Workflows

Master Thesis

Patricia Inoue Nakagawa

Graduation Committee:

dr. L. Ferreira Pires

dr. F. A. Bukhsh

dr. J. L. Rebelo Moreira

dr. L. O. Bonino da Silva Santos

July 2021

1

Acknowledgments

First, I would like to express my sincere gratitude to my supervisors, dr. Luís Ferreira Pires, dr.

João Moreira, and dr. Luiz Bonino, for their support, patience, constant feedback, and guidance

during my project. Before starting my thesis, they discussed with me many possibilities and helped

me choose the topic, and since the beginning of this project, they inspired me and contributed

with extremely valuable ideas during our weekly meetings, introducing to me the world of

ontologies and semantics, which I found very interesting and powerful, and motivated me to

research this fascinating field that is explainable AI. I am also grateful for the support of dr. Faiza

Bukhsh, who contributed with great feedbacks and guidance with her experience in Machine

Learning experiments.

I would also like to thank dr. Núria Queralt for the great conversations about explainability, and

her feedback and insights.

I would like to acknowledge my colleagues from the graduation support group, who every day

supported each other in accomplishing tasks, sharing experiences, and motivating in this time of

the pandemic.

I am grateful to my family for all their effort in providing me the best education, and for their love

and support.

I would like to express my deepest gratitude to my husband, Carlos. Thank you for encouraging

me years before starting my master’s degree and for your continuous support during this process.

Lastly, I would like to thank the Orange Tulip Scholarship Program for supporting my studies.

2

Abstract

Machine learning algorithms have been extensively explored in many domains due to their

success in learning and performing autonomous tasks. However, the best performing algorithms

usually have high complexity, which makes it is difficult for users to understand how and why they

achieved their results. Because of this, they are often considered black-boxes. Understanding the

machine learning models is important not only to identify problems and make changes but also to

increase trust in them, which can only be achieved by ensuring that the algorithms act as

expected, not relying on bias or erroneous values in the data; and avoid ethical issues, not

producing stereotypes, prejudiced or wrong conclusions. In this scenario, Explainable Machine

Learning comprises methods and techniques that have a fundamental role in enabling users to

better understand the machine learning functioning and results.

Semantic Web Technologies provide semantically interpretable tools that allow reasoning on

knowledge resources, for this reason, they have been applied to make machine learning

explainable. In this context, the contribution of this work is the development of an ontology that

represents explainable machine learning experiments, allowing data scientists and developers to

have a holistic view and better understanding of the machine learning process and the explanation

process. We developed the ontology reusing already existing domain-specific ontology (ML-

SCHEMA) and grounding it in the Unified Foundational Ontology (UFO), aiming at interoperability.

The proposed ontology is structured in three modules: (1) the general module, which represents

the general machine learning process; (2) the specific module, which specifies the machine

learning process for supervised classification; (3) the explanation module, which represents the

explanation process. The ontology was evaluated using a case study in the scenario of the

COVID-19 disease, where we trained a Support Vector Machine to predict mortality of patients

infected with COVID-19 and applied existing explanation methods to generate explanations from

the trained model. The case study was used to populate the ontology with instances, thereafter,

we queried the populated ontology to ensure that the retrieved information corresponds to the

expected outputs and that the ontology fulfills its intended purpose.

Keywords: XAI, Machine Learning, Semantic Web Technologies, Ontology.

3

Contents

Acknowledgments .. 1

Abstract.. 2

Contents .. 3

List of Acronyms .. 5

List of Figures .. 6

List of Tables ... 8

1. Introduction ... 9

1.1. Semantic Web Technologies and XAI ...10

1.2. Problem Definition...10

1.3. Research Questions ...11

1.4. Research Goals ..12

1.5. Methodology ...12

1.6. Structure ...13

2. Background ..14

2.1. Semantic Web Technologies ..14

2.1.1. Ontologies ...16

2.1.2. Semantic Data Sources ...16

2.2. Machine Learning ...17

2.3. Explainable Machine Learning ..18

2.4. Explainable ML and Semantic Web Technologies...20

2.5. Explainable ML Tools ..23

3. Ontology Specification ...26

3.1. Overview of the Ontology Development Process ..26

3.2. Ontology Purpose and Requirements ...28

3.3. Knowledge Acquisition and Reuse ..29

3.3.1. ML Process and Explanation Process ..29

3.3.2. Domain-Specific Ontology..32

3.3.3. The Unified Foundational Ontology (UFO) ...33

4. Ontology Development...36

4.1. Grounding Domain-Specific Ontology in a Foundational Ontology36

4.2. General ML Module ..42

4

4.3. Specific ML Module ...45

4.4. Explanation Module ..47

4.5. Metadata ...50

4.5.1. Metadata for the ML Process ...50

4.5.2. Metadata for the Explanation Process..53

4.6. Ontology Design and Implementation ...54

5. Case Study ..56

5.1. Data Description ...56

5.2. Experiments ..57

5.3. ML Workflow ...58

5.3.1. Data Preprocessing ...58

5.3.2. Data Description ..58

5.3.3. ML Model Training ...59

5.3.4. ML Model Evaluation ...60

5.4. Explanation Workflow ...60

5.4.1. Rule Extraction with RIPPER ...61

5.4.2. LIME Explanations ...62

5.4.3. Explanation Evaluation ..63

6. Evaluation ..65

6.1. Data Input ...65

6.2. ML Algorithm and ML Model ...69

6.3. Output ...71

6.4. ML Model Evaluation ..72

6.5. Explanation ...73

7. Final Remarks ..76

7.1. General Conclusions ...76

7.2. Contributions ...79

7.3. Limitations ..80

7.4. Future Work ..81

Appendix A. Dictionary of Terms ...82

Appendix B. Axioms ..86

References ...92

5

List of Acronyms

AI Artificial Intelligence

COPD Chronic Obstructive Pulmonary Disease

COVID-19 Coronavirus Disease

CQ Competency Questions

DARPA Defense Advanced Research Projects Agency

DL Description Logics

DMOP Data Mining OPtimization Ontology

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

GFO General Formal Ontology

GOL General Ontological Language

ICU Intensive Care Unit

ILP Inductive Logical Programming

KB Knowledge Base

KG Knowledge Graph

LIME Local Interpretable Model-agnostic Explanations

MDP Markov Decision Process

ML Machine Learning

MLONTO Machine Learning Ontology

MLS ML-Schema

NN Artificial Neural Network

ONTODM Ontology of Data Mining

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

RIF Rule Interchange Format

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RQ Research Questions

RT-PCR Reverse Transcription Polymerase Chain Reaction

SABiO Systematic Approach for Building Ontologies

SP-LIME Submodular Pick Module for Local Interpretable Model-agnostic Explanations

SVM Support Vector Machine

SWRL Semantic Web Rule Language

SWT Semantic Web Technologies

Turtle Terse RDF Triple Language

UFO Unified Foundational Ontology

UML Unified Modeling Language

URI Universal Resource Identifiers

W3C World Wide Web Consortium

WHO World Health Organization

XAI Explainable Artificial Intelligence

https://www.darpa.mil/

6

List of Figures

Figure 1. SABiO’s steps to generate and validate the proposed ontology13

Figure 2. The Semantic Web Layer Cake [14] ...14

Figure 3. DARPA XAI concepts [28] ..19

Figure 4. ML explanation approaches ...21

Figure 5. Illustration of how a sequential covering algorithm works to extract rules [21]24

Figure 6. (a) Representation of the intuition for LIME (b) SP-LIME matrix explanation [3]25

Figure 7. SABiO’s Processes [10] ...26

Figure 8. Competency questions related to components of ML process and explanation process

to be addressed by the ontology ...28

Figure 9. ML process and post-hoc explanation process ...30

Figure 10. ML-Schema core configuration [9] ..33

Figure 11. Process to develop the conceptual model of the proposed ontology36

Figure 12. Conceptual Model of MLS in OntoUML using Visual Paradigm41

Figure 13. (a) ML-Schema in Protégé 5 (b) ML-Schema grounded in gUFO in Protégé 542

Figure 14. Conceptual model of the general ML module using OntoUML45

Figure 15. Conceptual model of the general ML module (grey area) and specific ML module

(yellow area) using OntoUML ..47

Figure 16. Conceptual Model of the ML Explanation Ontology that is composed of the general

ML module (grey region), the specific classification module (yellow region), and the explanation

module that represents the post-hoc explanation process (green region)..................................50

Figure 17. Fragment of the COVID-19 dataset [57] ...57

Figure 18. (a) Imbalances for the field gender in the dataset, where 1 defines female and 2 male

(b) Highest correlations found in the training dataset ..59

Figure 19. Metrics for the SVM in the test set. Class 0 represents the negative class with

recovered patients and class 1 represents the positive class with deceased patients.60

Figure 20. The rule set extracted using RIPPER to classify mortality in COVID-19 cases61

Figure 21. Explanations generated by SP-LIME that show the impact of input variables on the

classification problem ..62

Figure 22. Explanation generated by LIME for one instance, indicating a higher probability of

recovery and the weights of the most impacting features for each class63

Figure 23. Features of each rule of the rule set generated by RIPPER and the corresponding

number of instances of the train set they cover ...64

Figure 24. SPARQL query for CQ1 for Experiment1 ...66

Figure 25. Output of the query for CQ1 related to Experiment1 ...66

Figure 26. Output of the query for CQ1 related to Experiment2 ...66

Figure 27. SPARQL query for CQ2 for Experiment1 ...67

Figure 28. Output sample of the query for CQ2 ...67

Figure 29. SPARQL query for CQ3 for Experiment1 ...68

Figure 30. Output of the query for CQ3 ...68

Figure 31. SPARQL query for CQ4 for Experiment1 ...69

Figure 32. Output of the query for CQ4 ...69

Figure 33. SPARQL query for CQ5 for Experiment1 ...70

7

Figure 34. Output of the query for CQ5 ...70

Figure 35. SPARQL query for CQ6 for Experiment1 ...71

Figure 36. Output of the query for CQ6 related to Experiment1 ...71

Figure 37. Output of the query for CQ6 related to Experiment2 ...71

Figure 38. SPARQL query for CQ7 for Experiment1 ...72

Figure 39. Output of the query for CQ7 concerning Experiment1 ..72

Figure 40. Output of the query for CQ7 concerning Experiment2 ..72

Figure 41. SPARQL query for CQ8 for Experiment1 ...73

Figure 42. Output of the query for CQ8 ...73

Figure 43. SPARQL query for CQ9 for Experiment1 ...73

Figure 44. Output of the query for CQ9 concerning Experiment1 ..74

Figure 45. Output of the query for CQ9 concerning Experiment2 ..74

Figure 46. SPARQL query for CQ10 for Experiment 1 ..74

Figure 47. Output of the query for CQ10 related to Experiment1 ...75

Figure 48. Output of the query for CQ10 related to Experiment2 ...75

8

List of Tables

Table 1. Summary of pros and cons related to post-hoc and ante-hoc types22

Table 2. Correspondence of ML-SCHEMA components to gUFO and OntoUML37

Table 3. Metadata of the ontology related to the ML process ..51

Table 4. Metadata added to the ontology related to the Explanation Process53

Table 5. Dictionary of Terms ...82

Table 6. Axioms of the ontology ..86

9

1. Introduction

Artificial intelligence (AI) and particularly Machine Learning (ML) have been extensively explored

due to their success in learning and performing autonomous tasks, with the potential to achieve

better results than humans [1] [2]. However, the algorithms usually are not transparent, generating

predictions or classifications without a clear explanation of how they achieved these results. For

this reason, they are often considered black-boxes [3].

To cope with this, Explainable Artificial Intelligence (XAI) is a term that refers to methods and

techniques used to make the results of AI systems explainable, intelligible, transparent,

interpretable, or comprehensible to humans [1]. The ML explainability is relevant because it allows

the identification of necessary changes and optimization of the ML model used to generate the

results, since being able to understand the model allows us to identify problems and make

changes, ensuring that the system is acting adequately, improving trust and avoiding unethical

issues [3].

Usually, ML models are evaluated by the accuracy of their results, but sometimes only the

accuracy is not enough to choose the most suitable model. This can happen, for example, when

the ML model predicts the risk of a patient having a disease by identifying the patient number as

one of the characteristics that influence the result, creating spurious correlations. One model can

produce lower accuracy than others but still be considered most suitable if it shows that the

algorithm is not acting in an unreasonable way [3]. Thus, understanding the logic that led to such

results is crucial to enable the user to select the most suitable model according to its goals and

requirements.

In order to evaluate the ML model and verify if it is suitable for the task, it is important not only to

understand its logic but also to have an overview of the whole ML process, since it consists of

many components that influence the behavior and results of ML models. For example, the data

used to train ML algorithms together with the preprocessing steps adopted to enhance the quality

of the data have a significant impact on the model’s performance, since ML algorithms rely on

identifying patterns or regularities in data, leading these algorithms to follow bias existing in the

data [4]. Also, the learning is always based on available data, and there may be differences

between training data and real data [2]. Small changes in the input can make big differences in

the output, which can lead to serious errors when the system is used in the real world. In addition,

the input datasets are often noisy, biased, and sometimes contain incorrectly labeled samples,

and without knowing that data have these kinds of problems, training the model is a tricky and

challenging task [5].

Bias in data is any trend of deviation from the truth that can lead to false conclusions (Simundic,

2013 as cited by [5]). It can cause misinterpretation in ML models and for human experts, and is

impossible, in practice, to gather all possible biased cases in the whole population. Usually in ML

models, the population is sampled and sometimes the population cannot represent the whole

scenario. For example, if a population of asthma patients that were hospitalized having

pneumonia and never got any complications, the model can conclude that asthma prevents

complications (Ambrosino et al., 1995 as cited by [5]). Hence, the input data need to be analyzed

10

to verify imbalances in data, that is, when the instances or features of one class outnumbers the

other [6], and to identify unwanted correlations among features in the input dataset, such as

unethical relationships or spurious correlations, which occurs when two variables are associated,

but not causally related [7]. Therefore, the explainability has to be addressed from the input data

step [8].

Furthermore, the evaluation of the ML implementation needs to use adequate measurements

according to the task and the application, so the user can comprehend the evaluation method to

correctly select the most suitable model. For example, diagnosis detection models should have

high sensitivity, identifying most patients that truly have a condition, and high specificity, avoiding

detecting a condition in patients that do not have it. Hence, an overview of the entire ML process,

from the data input to the evaluation, would allow the user to verify if the ML model is adequate

by having a better and complete understanding of the decision process and the reason why the

ML model arrived at specific decisions, and identify where to make corrections and adjustments.

1.1. Semantic Web Technologies and XAI

Semantic Web Technologies (SWT) were initially introduced to make the Internet data machine-

readable by encoding semantics with the data. In the scope of XAI, these techniques potentially

can be applied to ML models and might enable the development of truly explainable AI-systems

(Doran et al., 2017, Holzinger et al., 2017 and Holzinger et al., 2018 as cited by [1]), since they

provide semantically interpretable tools and allow reasoning on knowledge resources that can

help explain ML systems.

Existing solutions that aim to explain ML algorithms with SWT usually adopt these technologies

as complementary sources of information in the form of ontologies, knowledge bases, and

knowledge graphs, enriching the datasets with semantic knowledge and enabling the exploitation

of the relationships between concepts and inference of new knowledge.

There are two main categories regarding how explanations are generated considering the part of

the machine learning process the semantic resource is being used, namely (1) ante-hoc, which

builds an intrinsic explainable model, using semantic resources during the machine learning

training process, or (2) post-hoc, which builds a tool that applies a semantic resource after the

prediction is generated from a black-box. These approaches present their explanations in diverse

ways without standardized formats or information, having their advantages and disadvantages,

which can be assessed in terms of effectiveness to the user’s experience, coverage level

regarding the instances of the dataset, and trustworthiness and fidelity to the underlying ML

model.

1.2. Problem Definition

Even though there are XAI solutions that adopt SWT to make ML models explainable, current

solutions usually limit their explanations to the logic of the results, especially post-hoc solutions,

which try to explain black-boxes by considering only the output of the ML models or creating a

11

correspondence between input and output, but none of them describes or generates explanations

of the other steps of the ML and explanation process.

The focus on the explanations generated by the XAI methods and the lack of information on the

whole ML and explanation processes can restrict the understanding experience of the user,

making it difficult to identify in which step of the ML process corrections and adjustments should

take place. The overview of the ML process is important because many components influence

the behavior and the results of ML models, such as the data quality, preprocessing steps, or

parameter configurations of the ML model. Additionally, information from the explanation process

is relevant so the user can be aware of how the explanations were obtained, if they cover only

part of the instances or the whole dataset, or if they are faithful to the ML model, reflecting the

real reasoning behind the model and enabling the user to truly trust in it.

A possible way to describe the main components of ML and explanation processes is to use an

ontology, providing means that enable the user to have a holistic understanding of why the ML

model arrived at such specific decisions. To our best knowledge, currently, there is no ontology

to represent ML and explanation processes that can also provide ways to generate explanations,

since existing semantic models for ML such as ML-Schema [9] have limited scope, but can be

extended and specialized.

1.3. Research Questions

The main question of this study is: “Can we leverage ML post-hoc explainability to classification

tasks by enabling the user to have a holistic view of ML and explanation processes using

ontologies?”

The main question can be complemented with the following sub-questions for the ML and

explanation process components:

 Data Input:

RQ1. Which data were used to train the model?

RQ2. How balanced are the data?

RQ3. How were the data preprocessed?

RQ4. What are the correlations of the input datasets?

 ML Algorithm and ML Model:

RQ5. What are the characteristics of the ML algorithm?

RQ6. What is the logic behind the ML model?

 Output:

RQ7. Why did the model generate this output?

 ML Model Evaluation:

RQ8. How was the ML model evaluated? What is the meaning of those metrics?

 Explanations:

RQ9. How were the explanations generated? How are the explanations presented to

the user? How faithful are the explanations?

12

RQ10. How general are the explanations (do they apply to all instances)?

1.4. Research Goals

The goal of this research is to leverage ML post-hoc explainability for supervised learning,

specifically classification tasks, by proposing an ontology that represents and provides a holistic

overview of the entire ML and post-hoc explanation processes, which enables the user to have a

better and complete understanding of those processes and complements post-hoc explanations

that justify the reason why the ML model arrived at specific decisions.

The proposed ontology describes the metadata from the components of the ML process and the

post-hoc explanation process that can affect the ML results, guaranteeing interoperability and

common understanding by grounding the explanation process in foundational ontologies.

1.5. Methodology

This work was developed by first analyzing works related to SWT applied to Explainable ML and

conducting a problem investigation to identify limitations and unexplored paths among the

solutions. Then, in order to tackle the defined problem, we propose and design a solution that

consists of an ontology to represent the main components of the ML process and explanation

process. Our solution is then evaluated by applying it in a specific application scenario and

verifying if it fulfills its intended purpose.

The construction of the ontology follows the guidelines of SABiO (Systematic Approach for

Building Ontologies) [10], which is a systematic approach for ontology development that consists

of five steps, which we identified as adequate to our project due to the alignment of the proposed

steps with the main tasks we expected to perform. In the first step, we identify the purpose and

requirements of the ontology by defining competency questions and modularization. Secondly,

we perform ontology capture and formalization. In ontology capture, we select a foundational

ontology and carry out knowledge acquisition, which in this project comprises identifying the

components from the ML and explanation processes that need descriptions or explanations and

then selecting an existing ontology of the ML domain to be reused and extended. In formalization,

we develop a conceptual model by identifying and organizing relevant concepts and relations with

a graphical model. In this step, we also ground the domain ontology in the foundational one, by

defining the conceptual model using components of the foundational ontology. In the third and

fourth steps, design and implementation, we generate an operational version of the ontology by

transforming the conceptual model.

The last step consists of testing. In order to validate the proposed ontology through

experimentation and examples, we develop a case study by generating an ML classification

model to predict mortality using COVID-19 patients’ data. We apply existing explanation methods

in the ML components such as post-hoc methods. This scenario is then used as an example to

create instances in the ontology. Based on this case study, necessary refinements are identified

and the ontology is adjusted accordingly. Finally, we develop and run queries in the ontology to

13

answer competency questions, which in this project are also defined as the research questions.

Figure 1 represents SABiO’s proposed steps to generate and test the ontology.

Figure 1. SABiO’s steps to generate and validate the proposed ontology

1.6. Structure

This report is organized as follows: Chapter 2 provides the background and definitions of useful

concepts and terms concerning Machine Learning, ML Explainability, and Semantic Web

Technologies. Chapter 3 presents the specification of the ontology regarding the methodology

adopted for the ontology’s development, the ontology purpose and requirements, and the

knowledge acquisition process, where we define the explanation and description for each

component of ML process and explanation process, and select the ontologies to be reused.

Chapter 4 describes the ontology development, where the domain ontology is grounded in the

foundational ontology and the conceptual models are generated. Chapter 5 specifies the

application scenario and the application of explanation methods, populating the ontology with

instances. Chapter 6 evaluates the proposed solution with queries to answer the research

questions. Finally, Chapter 7 presents the final remarks of this work.

14

2. Background

This section presents the background and definitions of useful concepts and terms concerning

Semantic Web Technologies, Machine Learning, and ML explainability.

2.1. Semantic Web Technologies

Semantic Web is defined by the World Wide Web Consortium (W3C’s) as the Web of data [11],

and was introduced to solve issues faced by the traditional Web that requires big effort for finding,

retrieving, and exploiting information. Semantic Web solves these issues by facilitating machine

interpretation of semantic information that is embedded in the Web content as metadata.

Semantic Web Technologies (SWT) can help develop diverse other applications. Specifically in

AI and ML systems, SWT are used to improve chatbots and intelligent assistants, to add

background knowledge in areas where data are scarce, to improve accuracy and control, and to

develop explainability on ML models [12].

The Semantic Web Architecture contains the concepts, technologies, and standards defined to

support the development of the Semantic Web [13], and is structured in the Semantic Web Layer

Cake depicted in Figure 2. In the sequel, we introduce its components, which are mentioned

throughout this report.

Figure 2. The Semantic Web Layer Cake [14]

15

We start from the bottom layer. Unicode is used to encode text, and Universal Resource

Identifiers (URIs) are unique identifiers used to denote and identify concepts and the

relationships between them. XML namespace and schema mechanisms provide syntactic

descriptions of structured objects [14].

Resource Description Framework (RDF) is a data model that structures the semantic data

embedded as metadata in the web content for semantically describing resources on the Web.

This common structure to express knowledge allows data exchange. However, RDF has a much

broader use as a generic data model for data management and reasoning [14]. It specifies a

syntax with a linking structure to represent the relationships in the data model. This linking

structure is defined by three components, namely subject, predicate, and object, and they can be

represented as a directed labeled graph with nodes being the resources and the edges a named

link between them.

The ontology languages are built on top of RDF. RDF Schema (RDFS) defines a simple ontology

language with basic RDF statements, enabling the modeling of classes, properties, range

restrictions, and hierarchies, representing a taxonomy. Web Ontology Language (OWL) is a

family of languages to define ontologies, namely OWL Lite, OWL DL, and OWL Full. OWL

extends, but it is not fully compatible with RDFS. For example, some valid RDF statements are

not valid in OWL Lite or OWL DL, because DL does not support meta-statements, that is,

statements over statements. In addition, RDFS is based on Logic Programming while OWL is

based on Description Logics (DL), which have different semantics and data interpretation

capabilities. Given this big gap, OWL2 was defined with three new languages, namely OWL2EL,

OWL2QL, and OWL2RL, extending OWL with some new functionalities and relaxing some

restrictions [15].

Rules are an alternative way of stating knowledge about concepts and data and specifying logical

inferences, transforming or enriching data with additional specifications. Rule Interchange

Format (RIF) is a general format to encode and exchange different kinds of rules, while Semantic

Web Rule Language (SWRL) combines rule-based reasoning and OWL reasoning, as the union

of rules and description logic, which could be seen as an attempt to approach the unifying logic

[13].

Aside from these languages, SPARQL consists of a query language similar to SQL but applicable

to RDF data models.

The upper layers have not been realized yet. The Unifying Logic represents the wish to bring

together ontologies, rules, and queries, making them interoperable, with the logic supporting the

inference of these concepts and formats. Once this logic is available, it should be possible to

prove logical statements following semantic links and validate them, which is represented by the

Proof component. The digital signatures (cryptography) together with the proof layer lead to

Trust. On the top of the layer, we find user interfaces and applications, which make resources

available to end-users [13].

16

2.1.1. Ontologies

Knowledge representation artifacts such as ontologies play a key role in the Semantic Web,

providing the semantic vocabulary used to annotate websites in a way meaningful for machine

interpretation. In the context of Artificial Intelligence, knowledge representation focuses on the

formalization of knowledge in machine-interpretable forms allowing automated reasoning

techniques to derive conclusions from it [16].

An ontology consists of a collection of related concepts that describes a particular domain, with

definitions for objects and types of objects that provide a semantic vocabulary to define the

meaning of things and can be used by applications to reason about the domain knowledge [14].

Domingue et al. [14] define an ontology as a formal, explicit specification of a shared

conceptualization of a domain of interest, which is made machine-interpretable through

knowledge representation techniques and can therefore be used by applications to base

decisions on reasoning about domain knowledge. In other words, an ontology is a conceptual yet

computable model of an application domain that is made machine-interpretable by knowledge

representation techniques.

2.1.2. Semantic Data Sources

The Semantic Web generates rich sources of structured data regarding not only concepts but

also facts of a domain that have well-defined meaning and are stored in systems. These concepts

and facts are available as datasets that can be accessed and used by many applications [14].

Different Semantic Web concepts can be perceived as referring to data sources that are used by

the solutions that apply SWT to XAI, especially Knowledge Bases and Knowledge Graphs.

A Knowledge Base (KB) can be seen as an ontology populated with instances or as an extension

of ontologies, since ontologies consist not only of classes and properties but also instances

(Daves et al., 2006, as cited by [17]). Therefore, a knowledge base differentiates ABox and TBox

and contains the knowledge and an inference engine [18]. There are some possible distinctions

between KB and ontologies. A KB captures information about a particular state of the domain,

such as plain facts about the concrete instances, while ontologies capture the schema knowledge

and interrelations, which is more general information about any possible situation. A KB can be

also seen as a technical means for working with knowledge. A KB system loads specifications

and instances of the ontology, which allows access and reasoning about the domain knowledge.

A Knowledge Graph (KG) represents knowledge about a certain domain by integrating various

and heterogeneous information sources as (very large) semantic nets [19]. Sarker et al. [20]

differentiate KG and ontologies, considering that the former is usually expressed using the RDF

standard of triples that can be represented by graphs, while the latter attach type logic to these

graphs and are usually expressed using OWL. Furthermore, a KG can also be distinguished from

a KB because it has different architecture and structure [19]. A KG is less strict, without logical

formulas nor separation between ABox and Tbox, sometimes with few or without assertions.

Although the rigidly defined KB schema ensures data quality, maintenance, and storage

17

optimization, a KG allows effective and scalable data integration from various and heterogeneous

sources.

2.2. Machine Learning

Machine learning consists of methods used in computers to make and improve outcomes or

behaviors based on data [21]. ML is part of Artificial Intelligence, in which an intelligent system

has the ability to learn and adapt to changes without being explicitly programmed, in a way that

the system designer does not need to foresee all possible situations [22].

An ML algorithm uses statistics to build mathematical models, performing the core task that

consists of making inferences on a sample. The model can be predictive, by making predictions

in the future, descriptive, by gaining knowledge from data, or both. The model is built during the

training phase that takes place so that the algorithm can learn, solving an optimization problem.

The model is defined with some parameters, and the optimization of its performance criterion

improves automatically through training data or past experience, which occurs by looking for data

patterns and trying to make better decisions. Then, the learned model is used to carry out the

inference [22].

Machine learning has outperformed humans in many areas [2], and that is why it has been

adopted by a large variety of applications, such as computer vision, speech recognition, and

robotics. Within these applications, ML can perform different tasks, like classification and

predictions. Depending on whether or not there is feedback available to support the learning, the

ML approaches are categorized as supervised, unsupervised, and reinforcement learning [22].

Supervised ML algorithms are those that learn with labeled examples, so it analyses the training

data and infers a function that is used to determine the correct labels of unseen cases. The labels

allow the model to compare its generated outcome with the correct one, and make changes

accordingly. Classification and regression are commonly supervised ML tasks, performed by

supervised ML algorithms, whose desired output is already known [22] [23].

In contrast, unsupervised ML algorithms are used when there are no labeled examples, where

the aim is to find regularities in the input, performing what is called density estimation [22]. The

tasks involved in unsupervised models are clustering, dimensionality reduction, and anomaly

detection, among others. Examples of unsupervised algorithms are hierarchical clustering and

some types of neural networks such as autoencoders [24].

Finally, reinforcement ML consists of a learning method suitable to applications that have actions

as outputs and bases its behavior on a policy to maximize an expected reward, in which the policy

is the sequence of correct or best actions to reach the goal. In this case, the rewards need to be

defined for the agent to learn which actions are best. A basic reinforcement algorithm can be

modeled as a Markov Decision Process (MDP), which defines a set of states, actions, rewards,

and transition probabilities that consider specific time, action, and states. Games are common

applications of reinforcement learning, which can use different algorithms such as SARSA or Q-

learning [22].

https://en.wikipedia.org/wiki/Markov_decision_process

18

2.3. Explainable Machine Learning

Explainable Artificial Intelligence (XAI) aims to make AI systems results more understandable to

humans [25]. Although this term was conceived in 2004 by Van Lent et al. as cited by [25] to

describe the ability of a system to explain the behavior of AI in simulation games application, the

explainability problem has existed since researchers studied explanations for expert systems, in

the mid-1970s (Swartout and Moore, 1988 as cited by [25]). The need for explanations occurs for

many reasons. According to Keil et al. [26], explanations may highlight incompleteness, thus

opaqueness can hinder optimization and evaluation, since being able to understand the model

allows us to identify problems and make changes. Explanations can also improve trust in the ML

model, increasing the acceptance of the results by convincing users and encouraging their use.

In addition, explanations are important because the available data can contain bias and erroneous

values, producing stereotypes, prejudiced or wrong conclusions. The algorithm also cannot

ensure that the data were obtained in ways that ensure privacy and were based on consent [4].

For instance, an algorithm can make use of unethical correlations for insurance companies or in

the process of hiring candidates, which can cause unethical issues and misconceptions of

realities. Within these circumstances, the European Union General Data Protection Regulation

has decreed the citizens’ right to explanation [27]. They encourage the combination of different

disciplines such as machine learning and deep learning with symbolic approaches to improve the

explainability of AI outcomes.

The United States Department of Defense also has XAI as one of the DARPA (Defense Advanced

Research Projects Agency) programs expected to enable the “third-wave AI systems”, where the

context and environment are understood by machines, and they are able to explain their rationale,

convey how they behave in the future, and characterize their strengths and weaknesses. The

DARPA XAI program aims to pursue, during the years from 2017 to 2021, a portfolio of methods

with a variety of techniques that produce explainable models that maintain the learning

performance (prediction accuracy), enabling humans to understand and appropriately trust the

models and their decisions, and providing future developers a range of XAI design options [28].

Figure 3 illustrates the XAI concept used in the DARPA XAI program. Today, with current ML

models, users have difficulties in understanding the model and their decisions. XAI provides

explanations to users that enable them to understand the decisions of the system, their overall

strengths and weaknesses, convey how they will behave in future or different situations, and

possibly permit users to correct the system’s mistakes.

https://www.darpa.mil/
https://www.darpa.mil/

19

Figure 3. DARPA XAI concepts [28]

Among ML models, there are inherently intelligible algorithms, as opposed to inscrutable ones.

Weld and Bansal [2] identify the first by the use of counterfactuals, which means the model is

inherently intelligible to the degree that a human can predict how a change to a feature in the

input can affect the output, which usually occurs in linear regression and Naive Bayes algorithms.

For these algorithms, XAI and its benefits are more easily achieved. Inscrutable models can

produce better results, but they are more complex and hard to explain, therefore it is more

challenging to understand the reason for their results, such as complex neural networks or deep

learning. In the literature, a trade-off between accuracy and interpretability of intrinsic explainable

models is often mentioned [25]. This happens usually because the most accurate models are

inscrutable and not very explainable, while the inherently intelligible are more interpretable but

less accurate. However, this is not a static trade-off, but a dynamic target that researchers try to

reach.

There are many terms in the literature related to explainable ML, such as intelligible, transparent,

interpretable, or comprehensible to humans, but there is not a consensus in the literature when it

comes to the definition of these terms. According to Adadi and Berrada [25], the terms explainable

and interpretable are often used synonymously, while some authors also adopt understandability,

comprehensibility of intelligible AI to refer to the same issue. Even though “explainable” is the

keyword in the XAI, the term “interpretable” is more used in the ML community, so they

differentiate both terms, defining interpretable systems as the ones that allow users to study the

mathematical mapping from inputs to outputs while explainable ones provide an understanding

of the logic. Explainability is closely related to interpretability, where interpretable systems are

explainable if their operations can be understood by humans. The explanation for decisions, in

turn, is the need for reasons or justifications for outcomes, rather than describing the inner

workings and logic of reasoning behind the decision-making process. In this report, we follow the

definition of Adadi and Berrada [25] in the sense that explanations focus on making the reason

for the results understandable by humans.

According to Hoffman et al.[29], explanations are interactions that should enable users to quickly

develop a suitable mental model that would permit the audience to develop appropriate trust and

20

perform well when using the system, considering the context of the ML system and their audience.

Mental models, in cognitive psychology, are representations or expressions of how a person

understands some sort of event, process, or system (Klein and Hoffman, 2008, as cited in [29]).

In XAI, it is the user’s understanding of the AI system [29]. The researcher that develops the XAI

should learn what is useful about a user's mental model, and what limits the user's understanding.

Many techniques can assess the effectiveness of the explanations. For example, users can be

questioned about the steps or major components to check their understanding of the systems’

functioning, probe questions can be used so they imagine circumstances or situations that could

lead to errors, predictions tasks, and counterfactual reasoning to verify what they think that could

happen next, diagramming to convey the understanding to the researcher, or self-explanation

questions in which the users express their understanding or reasoning, allowing the researcher

to directly access their mental model.

Arrieta et al. [30] emphasize the importance of the audience to explanations, encompassing the

challenge of how to better present the explanation about how the result was obtained and for

whom, in order to pass the message clearly and effectively. This comprises different manners to

present the information and different purposes of explainability, considering the target audience

as a key aspect when explaining ML models, taking into account the user needs, which prior

knowledge they already have, their goals, and why they need explanations. In this context, [30]

defines five types of audiences and identifies different goals for each of them. The first consists

of domain experts such as medical doctors and insurance agents, who aim at explainability to

trust the model and gain scientific knowledge, while the second, namely users affected by model

decisions, want to understand their situation and verify fair decisions. For regulatory entities and

agencies, it enables them to certify model compliance with the legislation and audits. For data

scientists, developers, and product owners, it helps ensure or improve product efficiency,

research, and new functionalities. Finally, for managers and executive board members, it allows

assessing regulatory compliance and understanding corporate AI applications.

2.4. Explainable ML and Semantic Web Technologies

Many solutions that combine ML with SWT to generate explanations of results or to obtain

explainable ML models can be found in the literature, where SWT are used as complementary

sources of information that enriches the datasets with semantic knowledge, enabling the

exploitation of the relationships between concepts and inference of new knowledge [1].

Ante-hoc and Post-hoc Methods

We can categorize the solutions taking into account which part of the ML process the semantic

resource is being used, namely (1) ante-hoc and (2) post-hoc methods. Figure 4 depicts

schematically both solutions, and Table 1 summarizes their advantages and disadvantages. Both

methods aim to explain the outcomes of the learning models by answering questions such as

“why does the model generate this outcome?” and “which are the features that are considered to

make this decision?”, but they answer them in different ways, in that explanations are based on

results or generated considering the internal functioning of the learning model.

21

Figure 4. ML explanation approaches

Ante-hoc builds an intrinsic explainable model, using semantic resources during the ML training

process to build explainable learning models that generate predictions together with explanations

of its reasoning. In this case, the semantic source is integrated intrinsically to the ML algorithm to

obtain explanations considering the internal functioning of the model, by mirroring the structure of

knowledge graphs, using knowledge resources as embeddings, or exploring the ontology

taxonomy, among others. This solution aims not only to express the reasons why certain

outcomes were generated but also to develop interpretable models that are able to explain the

internal mechanism and mathematical logic of the solution.

Ante-hoc solutions can generate intrinsic explainable models that facilitate the understanding of

how the outcomes were obtained and enable the exploration of the internal functioning of the

learning model. Although these solutions do not explain in detail all the steps taken to generate

the outcome, the transparency of the models facilitates the understanding and enables adequate

changes in the ML when necessary.

However, in ante-hoc solutions, each type of ML algorithm needs different adaptations to make it

explainable. This happens usually due to changes in the algorithm necessary to incorporate the

background knowledge or forced design choices, resulting in a bias towards explainability.

Consequently, the solutions are often model-specific and sometimes also domain-specific. These

changes can affect the performance of existing models regarding accuracy and efficiency,

resulting in less appropriate and versatile outcomes. Moreover, these specific solutions are not

always easily scalable and the efficiency and the performance can possibly be affected when

compared to non-explainable models.

Post-hoc explainability consists of wrapping fully black-box trained models and adding an

explainability layer [31]. SWT can be applied in the explainability layer to help explain the outputs

after they are generated by the ML model. Here, the ML algorithm is normally run without any

changes and the results go to another tool that maps them onto entities of a knowledge graph

and generates explanations for those results, based on Inductive Logical Programming (ILP),

local approximations, or on the KG relations between mapped items.

The biggest advantage in post-hoc solutions is that they are model-agnostic, that is, the

explanations are separated from the ML model, thus no change is needed to the ML models so

22

that the solutions can be used across different models, as in the work of Ribeiro et al. [3] and

Musto et al. [32]. In this case, the ML algorithms run without any interference, and the explanation

tool can be reused to explain the results of different models. Post-hoc solutions explain the logic

of the output by trying to justify the reason why the ML model generates the results. The use of

SWT empowers the tools by expanding their knowledge without requiring prior experience,

creating explanations for patterns or questions that go beyond the data analyzed.

Nonetheless, the major problem with these explanations is that they are not truthful to the

underlying ML algorithm, raising concerns related to trust, reliability, and fidelity. This occurs

because the explanations result from artifacts that mimic the behavior of the black-box, based on

hypotheses that do not take into account the internal functioning of the ML such as node

activations, nor the actual knowledge that the ML model gets from the data. Consequently, the

explanations focus on how an output relates to some representations of interest (for example,

which relation does the result have with the class it was classified), but do not present the behavior

of the algorithm or how the ML model has been obtained in the learning phase. Furthermore, most

post-hoc solutions focus on local explanations, that is, generate explanations for a single output.

Few solutions focus on global explanations, which clarify the whole performance of the model.

Table 1. Summary of pros and cons related to post-hoc and ante-hoc types

Model type Pros Cons

Ante-hoc ● Develop intrinsic interpretable models
● Facilitate the understanding of how

the outcomes have been obtained
● Enable the exploration of the internal

functioning of the learning model

● Require changes and adaptations
in the model

● Force design choices and bias
towards explainability

● Changes can make algorithms less
efficient

● Changes may affect the
performance of existing models,
possibly resulting in less capable
and versatile outcomes

● Model-specific
● Might not be easily scalable

Post-hoc ● Explain the logic of the output
● Do not require changes in the learning

model
● Can possibly achieve state-of-the-art

results of inscrutable models
● Model-agnostic
● Can be reused to explain the results of

different models

● Unfaithful and untrustworthy to
the black-box model

● Generate unrealistic explanations,
possibly leading to wrong
conclusions and incorrect
adaptations in the learning model

● Rely on hypotheses that consider
outputs

● Usually focus on local explanation,
not global

23

2.5. Explainable ML Tools

In this section, we present some tools that generate explanations from ML models. We focus

especially on post-hoc solutions because they have the advantage of not requiring any change in

the ML model to generate explanations. This enables the identification of a pattern in post-hoc

explanation workflows and the design of a solution that can represent processes involving

different methods. These solutions do not necessarily adopt SWT but are well-known among the

scientific community.

2.5.1. RIPPER

Models based on decision rules in the format of IF-THEN statements are considered one of the

most interpretable since this structure semantically resembles natural language [21]. Therefore,

the opaqueness of inscrutable ML models can be remedied by extracting rules that mimic the

black-box as closely as possible, since some insight is gained into the logical workings of the ML

model by obtaining a set of rules that mimic the model’s predictions [33].

The usefulness of a decision rule is defined by its coverage, that is, the percentage of instances

to which the condition of a rule applies, and accuracy or confidence of a rule, which measures

how accurate the rule is in predicting the correct class for the instances to which the condition of

the rule applies, for example, one rule can predict the correct class for 80% of the instances

covered by the rule [21].

One algorithm that can be used to obtain rules is RIPPER (Repeated Incremental Pruning to

Produce Error Reduction) [34], which is a rule induction technique that learns rules directly from

a set of training examples. According to Martens et al. [33], RIPPER can be used to extract

human-comprehensible descriptions from opaque models. RIPPER learns rules by sequential

covering, which is illustrated in Figure 5. In step 1, it learns one rule from the data. In step 2, it

removes the data points that are covered by the rule. Then, as shown in step 3, the algorithm

reiterates the remainder of the data. The learned rule needs to be highly accurate for predicting

one class. If the accuracy of the rule is above a threshold, the rule is added to the rule set,

otherwise, the algorithm terminates. The algorithm sorts the rules by accuracy to avoid

overlapping rules.

24

Figure 5. Illustration of how a sequential covering algorithm works to extract rules [21]

2.5.2. LIME

LIME (Local Interpretable Model-agnostic Explanations) [3] is one of the most popular solutions

in the academic community to ML explainability. It consists of a post-hoc model-agnostic tool that

identifies an interpretable model that is locally faithful to the black-box classifier.

For an original instance that is being explained, LIME samples uniformly at random instances

around it and approximates a function to interpretable models, such as sparse linear models. This

function represents the probability that the instances belong to a certain class. The approximation

is done by minimizing a distance function, called locality-aware loss, which measures how

unfaithful the interpretable model is in approximating the probability function in the locality. In this

function, the samples are weighted by locality, such that samples in the vicinity of the original

instance are assigned with higher weight and samples far from the original instance, with lower

weights [3]. The intuition about how this solution works is presented in Figure 6(a), where the

black-box function is represented with a blue and pink background. The instance to be explained

is the bold red cross and the other crosses and circles are the sampled instances in the vicinity

of the original instance, weighted by the proximity to it. The dotted line is the local learned

explanation.

To determine the trustworthiness of the ML model, and not only of the instance, LIME introduces

the Submodular Pick module (SP-LIME), which selects a set of representative instances and their

explanations. These instances have to be non-redundant and globally representative.

25

For this, SP-LIME first creates an explanation matrix that represents the local importance of

interpretable components for each instance. Features that explain many different instances have

higher importance scores. For text applications, words that cover the maximum number of

documents have the highest importance. This way, a global understanding of the model is

achieved by explaining a set of individual instances, enabling a better selection between models,

not depending only on accuracy. Figure 6(b) provides a visual representation of the SP-LIME

matrix explanation for texts. Rows are the instances, in this case, the documents, while the

columns correspond to the features (words). The column that represents feature 2 (f2) has the

highest importance since it covers most of the documents and rows 2 and 5 would be selected

by SP-LIME because they together cover all the features, except for f1.

Figure 6. (a) Representation of the intuition for LIME (b) SP-LIME matrix explanation [3]

The experiments in [3] show that LIME generates faithful explanations to the model because it

provides more than 90% recall, which is the fraction of retrieved relevant instances from the total

relevant amount. LIME individual predictions are trustworthy since most of the predictions do not

change when untrustworthy features are removed from the instance. In addition, the authors

indicate that users could select with the help of LIME explanations the best model between two

that have the same accuracy, but one presents spurious correlations, indicating that SP-LIME

explanations are good indicators of generalization.

26

3. Ontology Specification

The first phase to build the ontology consists of the ontology specification, where we specify which

methodology will be adopted as a guideline, as well as the goal, scope, and requirements for the

ontology. This is a preparation stage before ontology development. During the specification, we

also perform knowledge acquisition to find knowledge sources such as other ontologies aiming at

the reuse of already established conceptualizations.

3.1. Overview of the Ontology Development Process

The ontology development of this project follows the guidelines of SABiO [10], which proposes a

process for the development of domain ontologies based on foundational ontologies.

The SABiO development process consists of five main steps and supporting processes that are

performed in parallel to the main development process, as depicted in Figure 7. The five steps

are (1) purpose identification and requirements elicitation; (2) ontology capture and formalization;

(3) design; (4) implementation; and (5) test. SABiO also distinguishes reference and operational

ontologies, where reference ontologies are developed in the two first steps and the operational

ontologies should follow the design and implementation steps of the process.

Figure 7. SABiO’s Processes [10]

SABiO also proposes roles, which are considered in each step of the process. The main roles are

the domain expert, who is the specialist in the domain; the ontology user; the ontology engineer,

who is responsible for the reference ontology; the ontology designer, the ontology programmer,

and the ontology testers, who are responsible for each of the last steps.

27

SABiO’s first step, purpose identification and requirements elicitation, consists of defining the

purpose and intended uses of the ontology. The requirements can be divided into functional and

non-functional. The functional requirements are related to the content of the ontology and can be

stated as questions that the ontology should be able to answer, known as competency questions

(CQ). Non-functional requirements are aspects not related to the content of the ontology, such as

usability and interoperability. In this step, modularization can be analyzed by identifying sub-

ontologies if the domain is complex. The purpose and requirements of our ontology are defined

in Section 3.2.

Knowledge acquisition is a supporting process that helps especially the first stages of ontology

development by gathering knowledge from different sources, for example, from domain experts

and other sources such as books and reference models. A foundational ontology needs to be

selected, since SABiO suggests that the concepts and relations of the domain ontology should

be analyzed considering a foundational ontology. Details of the knowledge acquisition process

carried out by this project are presented in Section 3.3.

After the ontology specification, where we defined the methodology, goal, scope, requirements,

and knowledge sources of the ontology, we moved to the second phase, ontology development.

This phase comprises the ontology capture and formalization that generates the reference

ontology and the design and implementation of the operational version of the ontology. Ontology

capture and formalization, which is the second step of SABiO, consists of capturing the domain

conceptualization based on the competency questions, which is strongly supported by the

knowledge acquisition process, to generate the reference ontology. The concepts and relations

can be identified and organized by adopting a graphical model, which supports communications

and consensus among domain experts. The authors suggest the use of OntoUML, which is an

ontology representation language suitable for reference ontologies and incorporates into the UML

class diagram foundational distinctions of the Unified Foundational Ontology (UFO). In this step,

axioms should be specified and later formalized. The ontology capture and formalization for this

project are described in Sections 4.1 to 4.5.

Steps 3 and 4 aim to generate an operational version of the ontology. The objective of the design

step is to bridge the gap between the conceptual modeling and code the operational ontology,

thus it is necessary to complement the non-functional requirements with technological aspects

and make definitions of the implementation environment, architectural and detailed design. The

implementation step comprises implementing the ontology in the operational language. These

steps for this project are detailed in Section 4.6.

Finally, testing consists of verifying and validating the ontology by instantiating data to the

ontology and implementing competency questions as queries to the operational ontology. The

instantiation of the ontology defined in this project is detailed in the case study of Chapter 5 and

the evaluation with the queries is presented in Chapter 6.

28

3.2. Ontology Purpose and Requirements

The purpose of developing the domain-specific ontology in this project is to represent the entire

ML process and post-hoc explanation process, enabling data scientists to have a holistic view

and better understanding of those processes, aiming to complement and leverage the post-hoc

explanations. The ontology captures the concepts of the domain and makes them machine-

interpretable, making it possible to keep track of the steps from the processes and retrieve

information from them.

The ontology must comply with functional and non-functional requirements. The functional

requirements are related to the knowledge or content of the ontology, therefore can be stated as

competency questions. We adopt the research questions of this project defined in Section 1.3 as

the competency questions that the ontology should be able to answer. The definitions of the

competency questions followed a top-down approach, stating first the main research question of

this project and decomposing it into simpler ones that are applied to components of the ML and

explanation process, which are represented in Figure 8.

Figure 8. Competency questions related to components of ML process and explanation process to be addressed by
the ontology

The non-functional requirements are related to characteristics, qualities, and general aspects not

related to the content [10]. They can be divided into (i) ontology quality attributes, which refer to

characteristics that an ontology should have as a software artifact, such as usability; (ii) project

requirements derived from the ontology project, e.g., implementation requirements; (iii)

requirements related to the intended uses of the ontology, such as interoperability. Considering

these categories, we define the non-functional requirements of our ontology as follows:

(i) Ontology quality attributes:

REQ1. Guarantee usability to data scientists and developers, who want to understand the

adequacy of the ML model and improve product efficiency, research, and new functionalities,

Data Input

•Which data were
used to train the
model?
•How balanced are

the data?
•How were the data

preprocessed?
•What are the

correlations of the
input datasets?

ML Algorithm
and

ML Model

•What are the
characteristics of
the ML algorithm?
•What is the logic

behind the ML
model?

Output

•Why did the model
generate this
output?

ML Model
Evaluation

•How was the ML
model evaluated?
What is the
meaning of those
metrics?

Explanations

•How were the
explanations
generated? How
are the
explanations
presented to the
user? How faithful
are the
explanations?
•How general are

the explanations
(do they apply to
all instances)?

29

helping understanding the whole ML process and explanation process, possibly identifying where

to make adaptations in the process;

REQ2. Guarantee extensibility by defining a more generic ML Ontology that represents ML

processes that tackle different problems besides classification and can be further adapted or

specialized.

(ii) Project requirements:

REQ3. Implementation in Protégé represented in OWL.

(iii) Intended uses-related requirements:

REQ4. Guarantee interoperability with already existing ontologies by grounding them into a

foundational ontology.

In order to comply with non-function requirement REQ2 and considering the complexity of the

ontology, we identify that the ontology can be structured into three modules: (1) a general module

that represents general ML process independently of the task or the learning type performed; (2)

a specific module for supervised classification; (3) an explanation module, which represents the

post-hoc explanation process. Splitting the ontology into smaller parts allows the problems to be

tackled one at a time [10].

3.3. Knowledge Acquisition and Reuse

Knowledge Acquisition and Reuse are auxiliary processes proposed by SABiO that assist

ontology development. Usually, Knowledge Acquisition occurs in the initial stages of ontology

development to gather knowledge from different sources, while Reuse can be adopted in many

opportunities during the ontology development to reuse already established conceptualizations.

This project applies Reuse in the Knowledge Acquisition process by selecting already existing

domain and foundational ontologies. We first define in Section 3.3.1 the ML and explanation

processes with their components and what should be described. By identifying the main

vocabulary necessary to represent the ML process, we select in Section 3.3.2 an existing domain

ontology as the main reference to be reused and extended. Since SABiO proposes that the

domain ontology should be analyzed in the light of a foundational ontology, the foundational

ontology we have used is defined in Section 3.3.3.

3.3.1. ML Process and Explanation Process

In order to identify all components from the ML process and explanation process that can or

should be described in an unambiguous way to complement the explanations generated by the

post-hoc method, we define the vocabulary and represent the main components of both

processes in Figure 9, and afterwards, we determine the objective of each description.

30

Figure 9. ML process and post-hoc explanation process

The ML process can be split into training and testing phases, represented in Figure 9 by black

and orange arrows, respectively. The post-hoc explanation process is represented by blue

arrows. The post-hoc method usually receives the output data from the ML model and some of

the methods also use the input training data to generate the explanation (represented by a blue

dashed arrow).

3.3.1.1. The ML Process

The ML process consists of preprocessing data, training phase, and testing phase.

The preprocessed data indicate the preprocessing steps, such as the cleaning process, the

feature extraction or dimensionality reduction methods applied with respective parameters, and

the split criteria between training and testing data. This information is important for the user to

keep track of all process steps and methods applied that transform the raw initial data, which can

affect the results. Given the different natures and particularities of the available datasets, which

need diverse preprocessing steps to make it adequate for ML, we assume that the data are

already preprocessed and only the preprocessing steps taken are modeled in the ontology without

more details.

The training phase contains the training data, the ML implementation, the ML model, and the

output. The train data represent the input data used to train the ML model and they can be

described by identifying the input variables, or features, the mathematical correlations observed

between the variables, and imbalances present in the data, which can introduce bias to the ML

results.

The ML Implementation indicates the type and characteristics of the implemented algorithm, for

example, if the model is a Support Vector Machine (SVM) or a Neural Network (NN), and the

parameters used to train the model. The description of this step is related to the algorithm

transparency, i.e., the understanding of how the algorithm works, but not for the specific model

that is learned in the end, nor for how individual predictions are made, requiring only knowledge

of the algorithm and not of the data or the learned model. For example, in the case of convolutional

31

neural networks used to image classification, we can describe that the algorithm learns edge

detectors and filters on the lowest layers [21].

The ML model (learned model) has two types of desired descriptions. The first is the description

of the inner workings, related to the “interpretable” concept, which is determined by the type of

ML algorithm and enables the user to study and understand how inputs are mathematically

mapped to outputs (Doran et. al., 2017 as cited by [25]). The second is the description of the

explanation about the logic of reasoning behind the decision-making process in general [25],

which enables the user to understand the work logic in ML algorithms and the patterns observed

by the ML model in the data, being related to the “explainable” concept. For example, in the

explanation method that extracts rules, the logic of reasoning is represented by the set of rules.

Although many researchers often use both terms synonymously [25], in this project we distinguish

them and focus on the second type of explanation desired from ML models, that is, “explainability”.

However, the opacity of black-boxes hinders the direct generation of these explanations, making

necessary the application of an XAI method that is able to generate explanations from them.

The description of the outputs obtained from the ML model is related to the explanation of a

decision, which refers to the need for reasons that justify why a particular outcome was generated

by the ML model. This explanation is particularly needed when unexpected decisions occur,

ensuring also that there is an auditable and provable way to defend algorithmic decisions as being

fair and ethical, leading to trust. Since the explanations of the results are also negatively affected

by the opacity of the black-box, they also rely on XAI methods. Depending on the post-hoc

method, the output explanation might depend on the logic of reasoning behind the ML model, that

is, the ML model explanation. For example, in case the explanation of the ML model is

represented by a set of rules, the output explanation should indicate which rule applies to this

instance in order to explain the obtained result. In contrast, in the case of ILP (Inductive Logical

Programming) post-hoc method, it explains by presenting semantic similarity (considering only “is

a” relations between two terms) or relatedness (considering any relation between two terms) [35]

with other resulting instances, creating a hypothesis that covers maximum positive and minimum

negative examples based on a background knowledge source, not necessarily having an

explanation for the whole ML model, since the explanations rely on instances. Another example

of a post-hoc method that generates only explanations of the output without the ML model

explanation is the DL-Learner tool [36], which generates explanations for image recognition of

only one result by presenting semantic relatedness of the recognized components of the image

with the assigned class.

The test phase comprises the descriptions of the testing data and the ML model evaluation. The

ML model evaluation description is necessary because many metrics can be used to evaluate

the ML models, such as accuracy, AUC, precision, recall. Choosing the best metrics to assess

the ML model depends on the task that the ML model is performing and its application.

Descriptions of the ML model evaluation could provide information about the metric and how the

ML model performs in this metric.

32

3.3.1.2. The Explanation Process

The explanation process comprises the explanation method, the explanation generated by the

method, and the explainability evaluation. This project focuses only on explanation processes that

adopt post-hoc explanation methods, which do not require any change in the ML process.

The description of the post-hoc method indicates the post-hoc method adopted and its

characteristics, for instance, the scope of the method (local or global explanations), the format of

the explanation it generates (tree, rules, decision table, images, text highlight, natural language,

etc.), if the explanation is iterative or static.

The post-hoc explanation is generated by the post-hoc method and explains the logic of

reasoning behind the decision-making process, the patterns observed in the data, or provides

means to justify the ML output. Depending on the method chosen, it is presented to the user in

different formats and contains different information. For example, the method LIME [3] for image

classification, highlights the most decisive pixels for the classification. The same method for

tabular data indicates the weight of the impact that the input variable has on the classification. For

rule extraction methods, it generates rules that explain the logic behind the decision of the ML

model.

The explainability evaluation contains information about the assessment of the explanations,

which can be evaluated in terms of effectiveness and user experience, for example, as subjective

assessments such as A/B testing and surveys; quantitative metrics, for instance, the number of

instances that the rules cover; and how faithful are the explanations to the underlying black-box.

3.3.2. Domain-Specific Ontology

One good practice to create an ontology is to take existing ontologies as starting points, assess

their suitability for the proposed domain, and consider reusing them [10] [37]. This helps the

knowledge acquisition process, speeds up the ontology development and guarantees

interoperability to already existing applications that use the ontology [38]. Different domain-

specific ontologies in the domain of ML are available. For example, MLOnto (Machine Learning

Ontology) [39] defines an ontology to represent the knowledge around the ML discipline and

DMOP (Data Mining OPtimization Ontology) [40] was developed to support decision-making in

the data mining process, which is similar to an ML experiment.

Another well-known ontology for the ML domain is ML-Schema (MLS) [9], which provides a set of

classes, properties, and restrictions to represent ML algorithms, with inputs, outputs, main steps,

dependencies, their implementations, and executions. It aims to stimulate the development of

standards, achieving interoperability and reproducible research, in order to cope and align with

already existing ontologies that did not fully cover and support the needs of the ML area, such as

Exposè [41], DMOP [40], and OntoDM [42]. It also reflects the data model of OpenML [43], which

is an ML platform, being used to export all ML datasets, tasks, workflows, and runs as linked open

data in RDF, allowing reuse and sharing of ML experiments by scientists.

33

MLS preserves the provenance of data and model, that is, metadata about their origin, derivation,

or history. In ML workflows, it is useful to represent which data were used to train the ML model,

where the data came from, and how they were preprocessed. Therefore, MLS allows us to track

the creation, editing, publication, and future reuse of data. Since this ontology already is based

on other well-known ontologies and is composed of many of the terms necessary to represent the

ML process defined in Section 3.3.1.1, it is selected as the main reference to be reused and

extended.

Figure 10 depicts the ML Schema core. Boxes represent classes of the schema, and the colors

represent a taxonomy with three main classes: blue classes are processes, green are information

entities, and yellow are qualities. Arrows without filled heads represent properties, arrows with

empty heads represent subclass relations, and arrows with diamonds represent part-of relations

[9].

Figure 10. ML-Schema core configuration [9]

3.3.3. The Unified Foundational Ontology (UFO)

ML-Schema provides a standard to represent ML experiments and was conceived aiming to

increase interoperability by preventing the proliferation of incompatible ML ontologies. However,

it is not based on a foundational ontology, which usually improves the overall quality of the

ontology by using principled design decisions and should facilitate interoperability with ontologies

aligned to the same foundational ontology [44].

34

Foundational ontologies define the basic concepts upon which any domain-specific ontology is

built [45]. They provide reusable information of high-level categorization about what will be

represented in the ontology, modeling primitives for building ontologies in specific domains, such

as processes and physical objects, relations, and attributes [44] [46]. By explicitly modeling the

‘upper-level ontology’, the top-level domain-independent ontological categories can be reused in

domain-specific ontologies, guaranteeing semantic interoperability between them [45].

The Unified Foundational Ontology (UFO) [45] is based on two foundational ontologies, the

GFO/GOL and OntoClean/DOLCE, with the goal to offer a general foundational ontology to

applications in conceptual modeling. The General Formal Ontology (GFO) is based on the

General Ontological Language (GOL) developed by the OntoMed research group, while

OntoClean is based on the Descriptive Ontology for Linguistic and Cognitive Engineering

(DOLCE) developed by the ISTC-CNR-LOA research group [45].

UFO makes a fundamental distinction between enduring and perduring individuals. Endurants,

also known as continuants, are observed as concepts that endure in time and may change

qualitatively while keeping their identity, for example, a person, a house, a car. Perdurants, or

events, are individuals that happen in time, for instance, a business meeting, a soccer match, or

an earthquake. Considering this distinction, UFO is divided into three sets: UFO-A, which is the

UFO core, defines the things, sets, entities, individuals, and types. UFO-B defines the terms

related to perdurants, such as events and states. UFO-C defines terms related to beliefs, desires,

intentions, social roles, and linguistic things, extending UFO-B with concepts such as action,

activity, and communication [45] [47].

UFO also defines a taxonomy of types to provide additional information about classes, and

reflects the taxonomy of individuals, with abstract, relationship, endurant, event, and situation

types. The taxonomy of endurant types is more detailed, qualifying how an endurant type applies

to their instances. It considers if they apply necessarily to all its instances (rigid), or only part of

the instances (anti-rigid), and if they carry a uniform principle of identity for their instances (sortal),

or to individuals of different kinds (non-sortal). Based on this classification, type assumes the form

of a category (non-sortal and rigid), kind (sortal and rigid), subkind (sortal, rigid, specializing the

kind), phase, role (sortal and anti-rigid), among others [48].

OntoUML is a language for ontology-driven conceptual modeling based on UFO [49]. It is built as

an extension of UML (Unified Modeling Language), which enables building conceptual models as

fragments of UML class diagrams that are well-founded in UFO. In this work, we adopt OntoUML

to develop conceptual models following SABiO’s methodology suggestion, benefiting from the

advantage of developing conceptual models and reference ontology already well-founded in UFO.

OntoUML offers tools, for example, the OntoUML plugin, which enables the development of

conceptual models in a well-known platform for UML (Visual Studio), and facilitates the process

of obtaining a well-founded operational ontology coded in OWL from the conceptual model by

performing transformations. The plugin offers an automated transformation that maps OntoUML

classes, associations, and attributes to OWL classes, object properties, and data properties,

respectively. It also considers in the transformation the generalization sets, disjoint properties,

and the model cardinalities [50]. The resulting operational ontology is well-founded in gUFO,

35

which is a lightweight implementation of UFO that contains a subset of UFO-A and minimal

support for UFO-B, designed with the focus on guaranteeing computational properties [48].

36

4. Ontology Development

After the ontology specification, we perform ontology development. This phase consists of

capturing and formalizing the ontology with its modules and metadata, as shown in Sections 4.1

to 4.5. Then, designing and implementing the ontology is carried out by a transformation of the

conceptual model to the operational ontology, described in Section 4.6.

The ontology capture and formalization step starts with defining the conceptual model of the

ontology, whose process in this project is represented in Figure 11. In this process, we reuse and

extend an existing domain-specific ontology (MLS), which is grounded in the foundational

ontology (UFO), using the OntoUML language. Then, we define the generic ML module that can

represent ML processes that tackle different problems besides classification and can be further

adapted or specialized. This module aligns the grounded ontology with the ML process defined

in Section 3.3.1.1. Subsequently, we propose a specific ML module to represent the ML

classification process with detailed operations, inputs, and outputs. Thereafter, the specific ML

module is extended with an explanation module. Finally, the ontology is complemented with

metadata to describe its components. After developing the conceptual model, SABiO

recommends the generation of a dictionary of terms, which can be found in detail in Appendix A.

Each step taken to develop the conceptual model is described below.

Figure 11. Process to develop the conceptual model of the proposed ontology

4.1. Grounding Domain-Specific Ontology in a Foundational

Ontology

In this project, we ground the ML-Schema in gUFO [48], which is a lightweight implementation of

UFO. The use of gUFO instead of UFO occurs for a technological reason because the tool that

makes the transformation from the conceptual model to the operational ontology (OntoUML

plugin) supports only gUFO, with the benefit of being simpler and retaining computational

properties for the resulting OWL ontology [48]. However, gUFO imposed some limitations

especially because of the lack of support to UFO-C, which could better represent Actions, Goals,

and Intentions.

Grounding a domain ontology into a foundational requires them to be aligned, which leads to

concerns such as how to overcome differences in expressiveness that can exist between the

ontologies and how to accommodate for the different philosophies behind them [40].

37

In order to ground the MLS to gUFO, we first develop a conceptual model of MLS using OntoUML

[49]. The conceptual model is developed by creating a class diagram using Visual Paradigm 16.3

and OntoUML plugin [51], which enable the use of OntoUML stereotypes in class diagrams to

perform verification and transformation. By creating the class diagram and assigning OntoUML’s

class and relationship stereotypes to it, the OntoUML plugin allows a model transformation of the

conceptual model into OWL with the support of gUFO.

Since OntoUML is a UML profile to represent ontologies grounded in UFO, there is a matching

between the class and relationship stereotypes of OntoUML to UFO’s structure. They both

distinguish types from individuals, however, OntoUML supports only modeling types [49]. Thus, if

we create a class in a class diagram and assign an OntoUML class stereotype to it, when the

model transformation of the conceptual model to OWL occurs, it generates a gUFO ontology with

corresponding classes in the taxonomy of types and the taxonomy of individuals. The

transformation also converts the OntoUML relations to gUFO object properties in the ontology.

Therefore, to create the conceptual model in OntoUML, we selected concepts from MLS that are

related to the ML process defined in Section 3.3.1.1, and by studying and analyzing the OntoUML

stereotypes together with its matching in gUFO structure, we defined a mapping between them.

The MLS qualities, processes, and information entities are grounded by creating classes in the

class diagram and assigning the OntoUML class stereotypes to them according to the chosen

components of the gUFO taxonomy of types. The MLS relations are analyzed and considering

the types they connect, adequate relationships in OntoUML are selected, which are then

transformed into adequate object properties in gUFO. Table 2 presents the correspondence of

MLS components to gUFO and OntoUML, and Figure 12 shows the conceptual model of MLS

using OntoUML.

Table 2. Correspondence of ML-SCHEMA components to gUFO and OntoUML

ML-SCHEMA Element OntoUML
stereotype

gUFO
Type

gUFO Individual Reason

Processes:

 Study

 Experiment

 Run

Event Event Type Class Event Run is a concrete
individual that happens in
time, Experiments are
composed of runs, and
Study is a collection of
experiments. These
components are
represented as Events in
gUFO but could be better
represented by UFO-C.

Qualities:

 DataCharacteristic

 ImplementationCharacteristic

 ModelCharacteristic

Quality Kind Class Quality Intrinsic aspects that are
measurable by some value
spaces and may be used
to compare individuals,
e.g., number of features.
For the taxonomy of types,
they are kinds of
existentially dependent
aspects of objects.

Information Entities: Collective Kind Class A variable collection is a

38

 Algorithm

 EvaluationProcedure

VariableCollection complex object whose
parts have a uniform
structure and whose
membership can vary.
Algorithms and
EvaluationProcedures are
sets of instructions.

Information Entities:

 EvaluationSpecification

 Implementation

 Software

 HyperParameterSetting

 HyperParameter

 EvaluationMeasure

 Data

 Model

 ModelEvaluation

Kind Kind Class
FunctionalComplex

Rigid and sortal classes.

Properties:

 hasInputs (domain: Run,
range: Data)

 executes (domain: Run,
range: Implementation)

 achieves (domain: Run,
range: Task)

 realizes (domain: Run,
range: Algorithm)

Relation
participation

Formal
relation

Object property
participatedIn
(domain:Object,
range:Event)

Identifies the event in
which the object
participated.

Property:

 hasOutput (domain:Run,
range: Model or
ModelEvaluation)

Relation
Creation

Formal
relation

Object property
wasCreatedIn
(domain:Endurant,
range:Event)

Identifies the event that
brought the endurant into
existence.

Properties:

 hasHyperParameter
(domain: Implementation,
range: HyperParameter)

 specifiedBy (domain:
HyperParameterSetting,
range: HyperParameter)

 specifiedBy (domain:
ModelEvaluation, range:
EvaluationMeasure)

 defines (domain:
EvaluationSpecification,
range: Task)

 definedOn (domain:Task,
range: Data)

 implements (domain:
Implementation, range:
Algorithm)

Relator and
relations
mediation

Kind Class Relator and
sub-properties from
mediates (domain:
Relator, range:
Endurant)

Extrinsic aspects that
connect two or more
concrete individuals.

Properties:

 hasPart (domain:Study,
range:Experiment)

 hasPart (domain:Experiment,
range:Run)

relation
Participational

Formal
relation

Object Property
isEventProperPartOf
(domain:Event,
range:Event)

One event is part of
another event.

Properties:

 hasPart (domain:Software,
range:Implementation)

 hasPart(domain:EvaluationS
pecification,
range:EvaluationMeasure)

 hasPart

Relation
ComponentOf

Formal
relation

Object property
isComponentOf
(domain:Object,
range:FunctionalCom
plex)

Objects are components of
Functional Complex
classes.

39

(domain:EvaluationSpecificati
on,
range:EvaluationProcedure)

Property:

 hasQuality (domain:Model,
range:ModelCharateristic)

Relation
Characterizatio
n

Formal
relation

Object property
inheredIn
(domain:Aspect,
range:
ConcreteIndividual)

Object property that
represents the relation of
inherence between Object
and Quality.

The process Run of MLS is defined as an Event in OntoUML and gUFO because it consists of a

process that happens in time. An Experiment is a collection of runs with no change in membership,

since specific runs are part of an experiment, therefore, an Experiment is grounded also as an

Event, with the relationship between run and experiment defined as isEventProperPartOf in gUFO

and as Participational stereotype in OntoUML. A Study is a collection of Experiments, defined

also as an Event. These Events could be better represented by components of UFO-C, such as

Actions and Intentions, however, UFO-C is not supported by gUFO.

MLS qualities such as DataCharacteristic, ImplementationCharacteristic, and

ModelCharacteristic are intrinsic aspects that are measurable by some value spaces and may be

used to compare individuals, for example, the number of features a dataset has, or a characteristic

of an Implementation that differentiates it from the others, such as the library that provides it,

being defined as Kind in gUFO’s taxonomy of types and Qualities in gUFO’s taxonomy of

individuals and OntoUML.

MLS information entities Algorithm and EvaluationProcedure are defined as collective in

OntoUML, kind in gUFO taxonomy of types and variable collection in gUFO taxonomy of

individuals. Collectives are complex objects whose parts have a uniform structure, in this case,

Algorithms and EvaluationProcedures are sets of instructions. They are defined as variable

collections in the taxonomy of individuals because the change in memberships is possible without

creating a different collection, differently from fixed collections whose membership cannot vary.

Although Implementations are composed of a set of implemented instructions, they also have

parameters and other components, being defined as FunctionalComplex.

The remaining information entities are defined as kind in OntoUML and taxonomy of types

because they are rigid and sortal and existentially-dependent aspects of objects. The kind

stereotype is automatically transformed to FunctionalComplex in the taxonomy of individuals.

MLS properties are grounded as follows: hasInputs (domain: Run, range: Data), executes

(domain: Run, range: Implementation), achieves (domain: Run, range: Task), and realizes

(domain: Run, range: Algorithm) are defined as OntoUML relationship participation and as gUFO

object property participatedIn (domain: Object, range: Event) because they identify the event in

which the object participated. When creating these properties in OntoUML we also define the

cardinalities of these relationships, which can be seen in Figure 12, for example, the participation

of one or more Data in one Run. These cardinalities are reflected later in the operational ontology

in gUFO.

40

The property hasOutput (domain: Run, range: Model or ModelEvaluation) is grounded in the

object property wasCreatedIn (domain: Endurant, range: Event) in gUFO and creation relationship

in OntoUML because it identifies the event that brought the endurant into existence.

Properties hasHyperParameter (domain: Implementation, range: HyperParameter), specifiedBy

(domain: HyperParameterSetting, range: HyperParameter), specifiedBy (domain:

ModelEvaluation, range: EvaluationMeasure), defines (domain: EvaluationSpecification, range:

Task), definedOn (domain: Task, range: Data), and implements (domain: Implementation, range:

Algorithm) are extrinsic aspects that connect two or more concrete individuals, hence we define

them as Relators in OntoUML and gUFO, and use the gUFO object property mediates (domain:

Relator, range: Endurant) and OntoUML relationship mediation to relate the individuals.

Properties hasPart with domain Study and range Experiment, and with domain Experiment and

range Run are properties between Events, hence they are defined as participational in OntoUML,

formal relation in the gUFO taxonomy of types and object property isEventProperPartOf (domain:

Event, range: Event) in the gUFO taxonomy of individuals. The other hasPart properties (with

domain Software, range Implementation; domain EvaluationSpecification, range

EvaluationMeasure; domain EvaluationSpecification, range EvaluationProcedure) are

components of functional complex classes, therefore they are defined as the relation

ComponentOf in OntoUML, as a formal relation in the gUFO taxonomy of types, and as object

property isComponentOf (domain: Object, range: FunctionalComplex) in the gUFO taxonomy of

individuals.

Finally, hasQuality (domain: Model, range: ModelCharateristic) is defined as the gUFO object

property inheredIn (domain: Aspect, range: ConcreteIndividual) and as the OntoUML relationship

characterization, because it represents the relation of inherence between Object and Quality.

MLS components feature, dataset, featureCharacteristic and datasetCharacteristic were not

considered in the grounding process since they are components of Data and DataCharacteristic,

respectively, and represent the different granularity levels of Data. In MLS, the dataset is disjoint

with the feature. However, a feature is an independent variable of a dataset, hence features

should be components of the dataset.

41

Figure 12. Conceptual Model of MLS in OntoUML using Visual Paradigm

After obtaining the conceptual model of Figure 12, we use the OntoUML plugin to transform the

conceptual model to OWL, which can be manipulated in Protégé. Figure 13 depicts the MLS and

the resulting MLS grounded in gUFO in Protégé.

42

Figure 13. (a) ML-Schema in Protégé 5 (b) ML-Schema grounded in gUFO in Protégé 5

4.2. General ML Module

The general ML module of our ontology is developed by aligning the MLS grounded in gUFO with

the ML process defined in Section 3.3.1.1. Then, we define the axioms and constraints of the

module, followed by developing the conceptual model.

First, we verify how the MLS grounded in gUFO is aligned with the ML process. On the one hand,

we can verify that some elements are aligned, such as Implementation, ML model, ML Evaluation.

On the other hand, MLS focuses on the data generated in ML workflows, reflecting the OpenML

structure, but does not represent the nature of ML processes, resulting in semantic gaps. In the

43

sequel, we discuss how to overcome these limitations and obtain an appropriate alignment of

MLS with the ML process.

The first characteristic that can be identified in MLS is that a Study should have its Purpose.

Similarly, an Experiment should define its main Goal, for example, classification. The Goal is

addressed by the MLAlgorithm, e.g., Support Vector Machine (SVM) and Artificial Neural Network

(NN) address classification tasks.

In MLS, the property defines between EvaluationSpecification and Task gives the notion that the

EvaluationSpecification, containing the EvaluationMeasures and EvaluationProcedure, defines

the Task when, in reality, we pose that the Goal of the Experiment defines the

EvaluationMeasures with the adequate measurements to assess the MLModel, but it does not

necessarily define the procedure to perform the evaluation. For example, for diagnosing a

disease, sensitivity must be high, but there is no specification of which procedure we should use,

if cross-validation or simple split training and testing data. We pose that the EvaluationProcedure

can be considered as one type of Algorithm that is implemented and then executed by an

Operation.

In MLS, we missed some concepts to organize the Runs into Experiments, arranging these Runs

in a sequence to be executed. For this reason, our ontology incorporates some concepts of the

Data Mining OPtimization Ontology (DMOP) [40], for example, experiment, workflow, operation,

and their relations, but with some adaptations. In DMOP, a data mining experiment is a complex

event composed of a series of operations and it executes a workflow that organizes the

implementations sequentially. However, in Section 3.3.1 we stated that our experiments are

composed of at least two different workflows, one related to the ML process and the other to the

explanation process. Thus, to distinguish the run of different workflows, we introduce the event

Workflow Execution (WFExecution). The WFExecutions are processes that belong to an

Experiment, are composed of a series of Operations and execute Workflows, which organize

sequentially the implementations that are executed by these Operations.

Each Operation executes an Implementation and can be seen in MLS as Run. A Task in MLS is

a piece of work that needs to be addressed in the ML process, which is already incorporated into

each Operation in our ontology. Depending on the operation being performed, for example

preprocessing, training, testing, and evaluating, different Implementations are executed.

Implementations can have different parameters, which is the reason why we generalize the MLS

HyperParameter to Parameter, the MLS HyperParameterSetting to ParameterSetting, and the

relation hasHyperParameter to the relator hasParameter. Each ParameterSetting has only one

ParameterSettingCharacteristic, which receives the value to set the parameter.

The lack of cardinality in MLS can generate misconceptions, for instance, indicating that the Run

generates both the evaluation and the model. However, a dedicated Run usually outputs an ML

model, and another Run dedicated to evaluating the model outputs the evaluation of the ML model

in terms of the metrics. Other types of Runs generate other outcomes, such as preprocessed data

or predictions. Hence, we included the component Output to generalize the output generated by

the Operations, which can then be specialized into ML model, evaluation, etc.

44

Moreover, by considering Feature and Dataset as disjoint types of Data in MLS, the features

cannot be considered as components of the dataset. However, a feature is an independent

variable of a dataset, so we can model Data and consider the Features as components of Data.

The object property mediates and participatedIn are specified to determine exactly the domain

and range for the relators. Mediates is specialized for each relator, for example, the relator

implements uses the sub-property implementsInvolvesAlgorithm that mediates the relator to an

Algorithm, and the sub-property implementsInvolvesImplementation mediates the relator to the

Implementation. The object property participatedIn is also specialized into executedBy that

connects the Operation to the Implementation.

These adaptations impact the taxonomy of types in UFO, where the relators are defined as kinds,

and the Output is a category because it applies to more than one kind, considering the different

kinds represented by the subclasses of Output, such as MLModel, Result, ModelEvaluation.

After properly aligning the MLS with the ML process and defining the concepts and relations of

the generic ML module, we define the axioms and constraints necessary for this ontology module.

We define restrictions concerning the cardinality of the properties between the concepts, disjoint

classes, and the sequence that each operation needs to be executed. For example, we define

that one WFExecution has at least one Operation, which defines the cardinality of the property

executedBy between WFExecution and Operation. Each Output, such as ModelEvaluation and

MLModel, is disjoint with each other, meaning that a ModelEvaluation cannot be at the same time

an MLModel. To restrain the order that the operations can be executed, we specify that the

Preprocess operation needs to occur before the Train operation. After specifying the axioms, we

formalize them by writing in ontology language OWL2, which is a new version of OWL allowing

new expressivity. The detailed axioms and their formalizations can be found in Appendix B.

The conceptual model of the general ML module is depicted in Figure 14. It extends and adapts

the MLS grounded in UFO of Section 4.1, and it is also developed using OntoUML. The OntoUML

diagrams express typed relations between components, cardinality constraints for the relations,

and constraints related to which element can be connected to others, formalizing the above

described specifications and axioms. In this diagram, we represent within the grey UML package

the general ML module that could be reused to represent other ML processes and further adapted

or specialized.

45

Figure 14. Conceptual model of the general ML module using OntoUML

4.3. Specific ML Module

The MLS adapted to UFO can be further specialized considering the different operations that are

performed in the ML classification process, taking into account their different participants. This

more detailed ontology is useful to model the characteristics of each operation and component,

specifying the inputs, outputs, implementations, and algorithms. The conceptual model of the

specific ML module is represented by the components within the yellow UML package of Figure

15.

The tasks involved in the classification process usually consist of preprocessing the data, training

the ML model, testing the ML model, and finally evaluating the ML model. Each task is

represented as a subclass of the Operation class in the specific ML module, with the participants

and the artifacts that are involved in the operation.

First, the Preprocess operation takes place to make the input data suitable to train and test the

ML model. This operation includes steps such as cleaning, transformation, feature extraction,

dimensionality reduction, normalization, splitting the data into train and test sets. Given different

natures and particularities of inputs that require diverse preprocessing steps to make them

46

adequate for ML, we model the preprocessing steps in the ontology, allowing the user to keep

track of steps and methods applied that changed the initial data, but without further details such

as changes in characteristics of the data that impact the results and the learned ML model.

Preprocess receives as input the InputData, and executes the PreprocessImplementation, which

in turn implements the PreprocessingAlgorithm. The output of this operation is the

PreprocessedData, which can be specialized into the subclasses TrainData and TestData.

The distinction between TrainData and TestData is not represented in MLS nor the general ML

ontology, however, they usually represent different parts of the data and can be used by different

operations. TrainData participates in the Train operation, which fits the ML model, generating the

fitted MLModel. For this, the Train operation executes the MLImplementation that implements the

MLAlgorithm. The MLAlgorithm can be, for example, an SVM or a NN, and they can be

implemented in the scikit-learn library in Python [52].

The Test (Predict) receives the TestData and executes the PredictImplementation. This

implementation calls the fitted MLModel to predict the output Results. The prediction for each

instance is represented by ResultInstance.

The EvaluationModel operation for labeled data receives as input the Results and compares them

with the TestData. It executes EvaluateModelImplementation that implements the

EvaluationProcedure, such as cross-validation or leave-one-out, taking into account the

EvaluationMeasures that need to be evaluated. This operation generates the ModelEvaluation

that contains the values for the measurements specified by EvaluationMeasure.

Besides specifying the operations and their participants, in order to align the ontology to the

components of the ML process defined in Section 3.3.1.1, we add the Correlates relator that

indicates the correlations between Features. Each Correlates relator has exactly one

CorrelationCharacteristic, which receives the correlation value that defines how correlated the

features are.

The new classes are instantiated in the UFO taxonomy of types by considering Data as a kind,

and its subclasses inputData and preprocessedData as phases, since they represent different

phases of the data, being sortal and anti-rigid. The preprocessedData is further divided into

TrainData and TestData, which can be seen as roles, being also sortal and anti-rigid and

assuming roles for different operations.

The above specifications are formalized as axioms applicable to this module, which can be found

in detail in Appendix B.

47

Figure 15. Conceptual model of the general ML module (grey area) and specific ML module (yellow area) using
OntoUML

4.4. Explanation Module

We extend the ontology containing the generic and specific module by adding the explanation

module, which models the explanation process defined in Section 3.3.1.2. The explanation

module represents the post-hoc explanation process by adding the Explain and

EvaluateExplanation operations with their corresponding participants, as represented by the

green region in Figure 16.

The Explain operation aims to generate explanations by using the Results generated by the Test

(Predict) operation. In some cases, it also uses the PreprocessedData to create a hypothesis that

48

maps the input to the output in order to explain the behavior of the ML model. It executes the

ExplainImplementation, that is, the implementation of the ExplainableAlgorithm in a specific

programming language. The ExplainableAlgorithm can be, for instance, the LIME explanation

method or the rule set generator RIPPER. The output of this operation is the Explanation, which

can be classified as MLExplanation if it aims to explain the ML model, or as ResultExplanation, if

it explains only a resulting instance. The relator ExplainsModel between the MLModel and the

Explanation allows the logic behind an ML model to be obtained after the post-hoc method is

applied.

The Explanation has ExplanationComponents, as the Explanation rule set generated by RIPPER

has rules and LIME has explanations for each instance. Independently of the type of the

Explanation, that is, if it explains the MLModel or the Result, ExplanationComponents can explain

ResultInstances. Since the explanation for the result is obtained after the post-hoc explanation

method is applied, we relate the resulting instance and the explanation component using the

relator ExplainsResultInstance.

The EvaluateExplanation operation contains information about the assessment of the

explanations. It receives the Explanation generated by the Explain operation and executes the

EvaluateExplanationImplementation. As a result, it generates the ExplanationEvaluation. The

ExplanationEvaluation can evaluate the whole explanation, such as faithfulness, but can also

evaluate specific ExplanationComponents. This happens in the case of coverage, which

measures the number of instances covered by an ExplanationComponent. For example, one rule

from the rule set generated by RIPPER covers many instances, while one explanation generated

by LIME covers only one instance. In order to identify the correspondence between the coverage

value generated by the EvaluateExplanation operation and the specific ExplanationComponent,

we introduce the relator EvaluatesExplanationComponent.

The explanation module introduces the differentiation of Explanation into ModelExplanation and

ResultExplanation, which characterize roles in the gUFO taxonomy of types. Following the SABiO

guidance, we formalize these specifications and restrictions as axioms in OWL2, which can be

found in detail in Appendix B.

49

50

Figure 16. Conceptual Model of the ML Explanation Ontology that is composed of the general ML module (grey
region), the specific classification module (yellow region), and the explanation module that represents the post-hoc

explanation process (green region).

4.5. Metadata

The metadata used to describe the ML process and explanation process are represented as

qualities (blue boxes) in the diagram of Figure 16, being the semantic information that comprises

qualities, reified quality values, and annotations in the ontology. In gUFO, qualities are intrinsic

aspects that are measurable by receiving a literal, while reified quality values are abstract

individuals that can use pre-defined data to provide the value of the quality, instead of literals.

The reified quality values are instantiated in the gUFO taxonomy of types as abstract individual

types and the qualities as kinds and subkinds. The characteristics of each concrete individual

related to the ML process and explanation process are described below.

4.5.1. Metadata for the ML Process

The specific characteristics of concrete individuals related to the ML process that are included in

the ontology are detailed in Table 3 and described as follows.

To define the information related to the creator and the creation date of the object we use the

annotation properties creator and date, respectively. The duration time or execution time of

Experiments, WFExecutions, and Operations are defined using the data properties

hasBeginPointInXSDDateTimeStamp and hasEndPointInXSDDateTimeStamp, since they are

properties related to events in gUFO.

The Experiment is enriched with a description as a comment value. The field of the experiment is

a quality that receives, for example, the value “Healthcare”. The type of experiment is defined as

a subclass of gUFO Quality, named ExperimentType. It receives a nominal value, for example,

“ML experiment”.

The Goal specifies the required measurements for the experiment with the quality

SuitableMeasurement.

MLAlgorithms have MachineLearningTechnique as a characteristic, which defines the type of

technique that the algorithm uses, for example, classification or regression. Similarly,

PreprocessingAlgorithms have PreprocessingTechnique to indicate if the algorithm performs

dimensionality reduction, feature extraction, or split data, among others. Other nominal values

used by MLAlgorithms are LearningType, which indicates the kind of learning performed by the

ML algorithm (supervised or unsupervised learning); and DataType, which indicates the kinds of

data they require. MLAlgorithms also have the Transparency intrinsic quality, which receives

information about how the algorithm usually works.

Data has a description, the number of features, the number of instances, and the data source,

with information related to the access date and the source. Each Feature present in the data has

the description of its meaning and the reified quality value about the type of data, indicating, for

example, if it is text, image, continuous, discrete, tabular, or categorical data. They also have

51

qualities related to the number of categories they represent in case of categorical data, the

number of null values, and the number of instances for each category represented, which can

help identify imbalances. Features might have correlations between them, which is represented

by the relator Correlates and the quality CorrelationCharacteristic, which indicates the strength of

the correlation.

Implementations receive optionally the library that implements the algorithm, for example, scikit-

learn for Python [52]. They also have parameters set when running the operation, receiving the

setting value through the quality ParameterValue.

The MLModel generated by the Train operation receives the Interpretability quality value, with

nominal values “Inscrutable” or “Transparent”.

The measures to evaluate the ML model may receive descriptions that help clarify their meaning

for the users. They also specify the ModelEvaluation that is generated by the EvaluateModel

operation, having a relator that mediates them. The values obtained for the measure are

expressed as a quality of this relator.

Table 3. Metadata of the ontology related to the ML process

Concrete
Individual

Metadata Metadata Description Characteristic Type

All Creator Creator of the element Annotation Creator

Date Date created Annotation Date

Experiment,

WFExecution,

Operation

Date Duration time or execution time of the

individual

Dataproperties

hasBeginPointInXSDDateTimeStamp

and

hasEndPointInXSDDateTimeStamp

Experiment

Experiment
Description

Description of the experiment Annotation comment

Experiment
Domain

Domain of the experiment, e.g.
"Healthcare"

Quality

Experiment
Type

Type of the experiment, e.g. "ML
experiment"

Quality

Goal Suitable
Measurement

Suitable measures for the
experiment, e.g., "accuracy" and
"sensitivity"

Quality

ML Algorithm ML Technique Type of technique used by ML
Algorithm, e.g., classification or
regression

Reified quality value

Learning Type Kind of learning performed by the ML
Algorithm, e.g., supervised,
unsupervised

Reified quality value

52

Data Type Type of data required by the ML
Algorithm, e.g., categorical,
continuous, discrete, image, tabular,
text

Reified quality value

Transparency Description about how the algorithm
usually works

Quality

Preprocessing
Algorithm

Preprocessing
Technique

Type of technique used by
Preprocessing operation, e.g.,
dimensionality reduction, feature
extraction, split data, etc.

Reified quality value

Data Data
Description

Description of the data Annotation comment

Number of
Features

Number of features present in the
data

Quality

Number of
Instances

Number of instances of the data Quality

Access Data Access date to the data source Quality

Source Source location, e.g., website link Quality

Source Name Name of the source Quality

Feature Feature
Description

Description of the meaning of the
feature

Annotation comment

Data Type The data type of the feature, e.g.,
continuous, discrete, image, tabular,
text

Reified quality value

Number of
categories

Number of categories present in the
feature

Quality

Number of Nulls Number of null values present in the
feature

Quality

Category
Quantity

Number of instances for each
category represented by the feature

Quality

Correlates Correlation
Characteristic

The intensity of the correlation
between features

Quality

Implementation Implementation
Library

Library that implements the
algorithm, e.g., "scikit-learn"

Quality

Parameter Parameter
Value

Parameter value set when running
the operation

Quality

ML Model ML
Interpretability

Interpretability of the ML model, e.g.,
inscrutable, transparent

Reified quality value

Evaluation
Measure

Evaluation
Measure
Description

Description of the measure Annotation comment

53

Specifies
Model
Evaluation

Measure Value The value obtained for the measure
that evaluates the ML model

Quality

4.5.2. Metadata for the Explanation Process

The components of the Explanation Module have the following characteristics:

● The explainable algorithm is characterized by the quality value ExplanationScope, which

indicates if the algorithm approach is local or global to the number of instances they apply;

● The ExplanationFormat indicates the type of explanation it generates, for example, a

decision tree, rules, etc.;

● ExplanationInteraction expresses whether the explanation is static or interactive;

● ExplainedElement points out if the ML model or the output result is explained;

● ExplanationFidelity indicates how faithful the explanation is to the underlying ML model,

indicating, for example, local fidelity or unfaithful;

● ExplainableMethodFlexibility identifies if the post-hoc method is model-specific or model-

agnostic.

The explanations have components with ExplanationComponentCharacteristic qualities, which

receive the values obtained in the Explain operation, for example, each rule of the rule set

generated using a rule extractor method.

The explanations are evaluated by the EvaluateExplanation operation, which has qualities such

as Fidelity or Coverage. Fidelity is a quality that inheres in the whole Explanation. Coverage

indicates the number of instances that are covered by the ExplanationComponent and applies

only to global explanation methods because local explanation methods apply only to one instance.

Since the coverage refers to one ExplanationComponent, a relator is defined between the

ExplanationComponentEvaluation and the ExplanationComponent, with a quality that

characterizes the relationship.

Table 4 shows the specific characteristics of concrete individuals related to the explanation

process we included in the ontology.

Table 4. Metadata added to the ontology related to the Explanation Process

Concrete

Individual

Metadata Metadata Description Characteristic

Type

Explainable

Algorithm

Explanation Scope Scope of the explainable algorithm, e.g., local or

global

Reified quality

value

Explanation Format Type of explanation generated by the algorithm,

e.g., rules, decision tree, image highlight, input

variable weight, natural language

Reified quality

value

54

Explanation

Interaction

Indicates if the explanation generated by the

algorithm is static or interactive

Reified quality

value

Explained Element The element that is explained by the explanation,

i.e., if it explains the logic behind the ML model or

the result

Reified quality

value

Explanation Fidelity Indicates how faithful the explanation is to the

underlying ML model with values, e.g., local

fidelity or unfaithful

Reified quality

value

Explanation method

Flexibility

Identifies if the post-hoc method is model-specific

or model-agnostic

Reified quality

value

Explanation

Component

Explanation

Component

Characteristic

Receives explanation component values, e.g.,

each rule from the rule set

Quality

Evaluates

Explanation

Component

Coverage Number of instances covered by the Explanation

Component

Quality

Explanation

Evaluation

Fidelity How faithful is the explanation to the underlying

ML model. It can receive an intensity value or

indicate "local fidelity"

Quality

Explanation

Evaluation

Accuracy Accuracy of the post-hoc model in predicting the

correct class for the instances

Quality

4.6. Ontology Design and Implementation

The ontology design and implementation steps have the objective of generating the operational

version of the ontology. In the design step, we define the technical aspects of the ontology and

the implementation environment. Since the OntoUML plugin is based on UFO and it already

supports transforming the conceptual model to the implementation language, the gap between

the conceptual models to the operational is shortened, so that fewer decisions are necessary for

the design step. We adopt OWL as the implementation language of the ontology, considering that

the plugin provides the model transformation into OWL supported by gUFO. In addition, the

transformation requires the absence of verification errors among the exported entities, thus, the

selection of all elements to be transformed should not introduce new violations to constraints.

The implementation step consists of implementing the ontology in the operational language. This

is performed by executing a transformation of the OntoUML conceptual model by exporting it to

OWL in Turtle (Terse RDF Triple Language) format, which represents the ontology in the RDF

data model. We then open the exported file using Protégé and make further adjustments.

One of the limitations encountered using OntoUML is that the transformation to the operational

ontology did not transform named relationships into sub-properties, being only possible to use

55

native relationships of OntoUML and their correspondents in gUFO. Therefore, we implemented

manually the sub-properties in Protégé, creating executedBy as a sub-property of participatedIn

and specializations of mediates with their specific domain and ranges, such as

implementsInvolvesImplementation and implementsInvolvesAlgorithm, which have as domain the

relator Implements and as range Implementation and Algorithm, respectively.

OntoUML allows the definition of detailed metadata, however, we chose to keep the conceptual

model simpler to focus on the concepts of the ML process and explanation process and represent

the semantic information only as generic characteristics, which can already be used to

characterize the objects. Therefore, we include the metadata described in Section 4.5 directly in

Protégé and associate them with the objects with the object properties inheresIn for qualities and

with hasReifiedQualityValue for quality values.

56

5. Case Study

In this chapter, we present the application scenario that we used to conduct experiments and

validate our ontology. The scenario adopted is the COVID-19 (Coronavirus disease), which is a

highly contagious respiratory virus disease first reported in China in December 2019 that has

spread rapidly around, being declared by the World Health Organization (WHO) in January 2020

as a pandemic with an international concern of public health emergency (Sohrabi C. et al., 2020

as cited by [53]). The academic and medical communities have been searching for new

technology to identify infections, find the best clinical trials, and control the spread of the virus.

In this scenario, many studies have been conducted using ML and AI to learn about the disease

and identify infected patients, with promising technologies for decision-support that enable better

scale, processing power, and speed, outperforming humans in specific operations (Davenport T.

et al., 2019 as cited by [53]). These studies have shown that there are many characteristics in

clinical data that can influence the probability of infection, such as reported symptoms, risk factors,

age, and gender. There are also many different ML classification models to predict the probability

that a patient has the infection [54] or other related purposes, such as predicting mortality or the

need for ventilation [55]. However, the comparison of these models usually relies only on the

accuracy, not being clear about the logic of the model and the characteristics the model considers

as more relevant to generate the results.

We adopt the COVID-19 scenario as a case study to illustrate and validate our ontology. We use

supervised learning algorithms that perform classification operations to predict mortality among

infected patients and existing explanation methods to generate explanations that intend to make

the steps and the logic of the algorithm clear to data scientists to improve the model. Based on

the results, instances are created to populate the ontology, validating it and refining it if necessary.

The case study was developed in Python.

5.1. Data Description

In this project, we used an epidemiology dataset of people tested for COVID-19 in Mexico. These

data are publicly available and reported daily by the Mexican government [56]. The dataset was

also applied in [54] [55], but we used the same dataset as Muhammad et al. [54] available in [57],

which was already preprocessed and translated to English. This is in accordance with the

assumption that the ontology requires the data to be already preprocessed, and only the

preprocessing steps are modeled in the ontology without specific details (Section 3.3.1.1).

The dataset has 566.602 instances with 23 features, containing demographic data such as age

and gender of the patient, pre-existing conditions, for instance, diabetes, chronic obstructive

pulmonary disease (COPD), asthma, immunosuppression, hypertension, obesity, pregnancy,

chronic renal failure, other prior diseases, and whether the patient used tobacco. It indicates if the

patient was hospitalized, had pneumonia, needed a ventilator, was treated in an intensive care

unit (ICU), but also the result of the Reverse Transcription Polymerase Chain Reaction (RT-PCR)

test, and the date when the patient deceased, if applicable. Figure 17 represents a fragment of

the dataset.

57

Information of the dataset, such as its description, the source, the date when the source was

accessed and the data period are included as metadata to the ontology. We also include all the

features of the dataset, with the description of what they represent, their data type, their categories

in case they are categorical features, the encoded label that the number of the category

represents (for example, pneumonia with value 1 indicates that the patient had pneumonia, and

value 2 indicates that he/she did not have), the number of instances for each category in the

feature, and the number of null values.

Figure 17. Fragment of the COVID-19 dataset [57]

5.2. Experiments

Considering the application scenario and the available data, we define two machine learning

experiments in the healthcare field. The goal of the first experiment is to classify mortality of

confirmed cases using an ML model on the epidemiology dataset of tested people for COVID-19

in Mexico and to understand the ML model using the RIPPER rule extractor method. The second

experiment is similar to the first, but it uses the LIME method to generate explanations, instead of

RIPPER.

Each experiment involves two main workflows: the ML Workflow that consists of preprocessing

the data, training, and testing the classifier, and the Explanation Workflow that comprises the

generation and evaluation of explanations. The second experiment reuses the ML Workflow of

the first experiment. The components of the ML Workflow are detailed in Section 5.3 and the

Explanation Workflow in Section 5.4.

In order to describe the experiment using the ontology, we include instances containing the

experiments and their characteristics, the experiment’s goals, the workflows involved, and metrics

to evaluate the ML models. The goal of classifying mortality is a binary classification, requiring

the ML model to be evaluated using metrics such as accuracy, sensitivity, and specificity.

58

5.3. ML Workflow

The ML Workflow represents the workflow for the ML process and contains the steps of

preprocessing the input dataset, training, and testing the ML model. In the ontology, the ML

Workflow is executed by the ML Workflow execution and it contains sequences of

implementations, which are each executed by the operations. These operations are components

of the ML Workflow execution. The details of each step are described in the following subsections.

5.3.1. Data Preprocessing

The first step of the ML Workflow consists of preprocessing the dataset. From the dataset

available we used a small sample of patients that entered the hospital between the first two days

of June 2020 and that were diagnosed with positive results for COVID-19. Patients with unknown

information were manually removed, keeping only the ones that indicated the presence or

absence of conditions. The date of death was converted to a binary column indicating 1 if the

patient was deceased and 0 if she/he recovered.

After importing the dataset into a Python environment, we removed the columns id (patient’s

identifier), the date that the patient started feeling symptoms, if the patient had contact with other

COVID-19 cases, the result of the RT-PCR test (since they were already manually filtered), and

pregnancy. The column ‘inmsupr’ was renamed to ‘immunosuppression’. The final dataset

remained with 9.451 cases and was split into 70% for training and 30% for testing. No feature

extraction or dimensionality reduction methods were adopted.

The preprocessing steps performed in Python and the parameters used to the preprocessing

functions are included in the ontology by adding instances of the implementation that were

executed by the preprocessing operation. Manual steps are disregarded. Differences between

the original dataset and the preprocessed can be identified, for example, as the difference

between the number of instances of each dataset and, after deleting some columns from the

original data, the presence of some features as components of the input dataset and their absence

on the preprocessed datasets.

5.3.2. Data Analysis

We perform a dataset analysis in order to obtain a more detailed description of the datasets. For

this, we chose to adopt an explainability tool available for ML that helps identify imbalances

between features across classes and provides functions to identify correlations between features

in the dataset, facilitating the data analysis. The application of functions from the explainability

toolbox EthicalML-XAI [58] available in Python resulted in the identification of imbalances in the

dataset (Figure 18a) and the identification of correlations between features (Figure 18b). This is

an optional step, since there are many other ways to obtain information about feature correlation.

59

Figure 18. (a) Imbalances for the field gender in the dataset, where 1 defines female and 2 male (b) Highest
correlations found in the training dataset

Figure 18 shows that mortality of COVID-19 cases is related to the type of patient (if they are

hospitalized or attended in ambulatory) and their age. In addition, patients with hypertension often

have diabetes. Patients that are intubated were usually in the ICU, and these cases are related

to pneumonia. These views are useful to see correlations between variables and identify

unexpected correlations, for example, if intubation were not related to ICU, it would be abnormal,

leading the user to verify possible problems in the dataset.

The imbalances and correlations are included in the ontology as characteristics of features that

belong to the training dataset. Imbalances are represented by including for each categorical

feature their categories and the corresponding number of instances. For correlations, we include

relators that connect two features, representing the correlation between them, and the values of

the correlations are represented by qualities.

5.3.3. ML Model Training

The preprocessed training data is used to train a black-box model to classify the mortality of

confirmed COVID-19 cases, similar to the study performed in [55]. We use SVM as the black-

box algorithm, given its popularity in making classifications due to its ability to capture non-linearity

[33], and its common application in COVID-19 detection in the literature, as found in [59] [60] [61]

[62] [63].

The ML train operation is described in the ontology as the operation that receives the COVID-19

training dataset as input and generates the SVMModel as output. It executes the SVM

implementation that implements the SVM algorithm provided by the scikit-learn library in Python

[52], using a linear kernel type as a parameter. The ML algorithm is described in terms of the

author of the algorithm; the algorithm transparency, defined by Molnar [21] as the description of

how the algorithm usually works; the type of data adequate for this algorithm; the involved ML

technique, in this case, classification; and the learning type, which in this example is supervised

learning.

60

5.3.4. ML Model Evaluation

After the ML model is trained, we perform a step to evaluate it according to the metrics established

by the goal. For this, we first classify the test set using the Test (Predict) operation that executes

the PredictImplementation. This implementation calls the SVMModel function to generate the

predictions. These predictions together with the original labels of the test set are then used as

input for the EvaluateModel.

The EvaluateModel operation executes an implementation of the classification report provided by

the scikit-learn library in Python [52], which already contains usual metrics for classification,

including accuracy, specificity, and sensitivity. The SVM achieves an accuracy of 0.91 in the test

set, specificity 0.92 (recall of the negative class), and sensitivity of 0.64 (recall of positive class),

as shown in Figure 19. The metric values and the description of each metric are included in the

ontology.

Figure 19. Metrics for the SVM in the test set. Class 0 represents the negative class with recovered patients and
class 1 represents the positive class with deceased patients.

5.4. Explanation Workflow

The explanation workflow represents the explanation process, which consists of two main steps,

namely the generation of explanations and the evaluation of these explanations. The objective of

the first step is to generate explanations from the black-box model using post-hoc methods that

identify the behavior of the ML model or try to explain results, indicating, for example, how the

input variables impact the final results. The second step is to evaluate the generated explanations,

which is necessary since post-hoc solutions generate hypotheses to explain the black-box model.

In the ontology, the explanation workflow (ExplainWorkflow) is executed by the explanation

workflow execution (ExplainWorkflow_exec) and it contains sequences of implementations, which

are each executed by the operations Explain and EvaluateExplanation. These operations are

components of the explanation workflow execution.

In our proposal, the generation of explanations can be done by extracting rules with algorithms

using the training dataset and the corresponding labels predicted by the fitted model, and by

identifying the relevance of input variables to the classification. We explore the rule extraction

method RIPPER in the first experiment. The impact of input variables on the corresponding class

is analyzed using LIME in the second experiment. The representation of both methods is

discussed in the sequel.

61

5.4.1. Rule Extraction with RIPPER

The SVM is a complex non-linear function that maps the input space into a higher dimensional

feature space in which a hyperplane can separate two classes, in a way that the margin between

the classes is maximized [33]. The opaqueness of SVM models can be remedied by extracting

rules that mimic the black-box as closely as possible, since some insight is gained into the logical

workings of the SVM by obtaining a set of rules that mimic the model’s predictions [33]. Therefore,

rule extraction was performed to understand the classifications of the SVM, opening up the black-

box.

In order to extract rules from the SVM, we apply RIPPER (detailed in Section 2.5.1) in the dataset

with labels predicted by the SVM. This algorithm extracts a rule set for the classification of the

COVID-19 mortality class as depicted in Figure 20. The rule set is composed of disjunctive rules

that lead to the classification of the positive class, in this case, mortality. Each line is a rule

compound by a conjunction of clauses. We interpret the rule set as follows: if the first rule applies

to the instance, for example, the patient has an age between 66 and 99 years (age=66-99), has

pneumonia (pneumonia=1), has hypertension (hypertension=1), is hospitalized (hospitalized=2),

and is a man (sex=2), then he will be classified with a high chance of mortality. If the patient does

not fit in this first rule, we try the second, and so on, until the last rule. If none of the rules applies

to the patient, he/she will be classified with the negative class, that is, recovery.

Figure 20. The rule set extracted using RIPPER to classify mortality in COVID-19 cases

In the ontology, the RIPPER algorithm is described in terms of its author, the source reference

paper, and further descriptions to indicate that it consists of a global model-agnostic method that

explains the ML model and is unfaithful to the underlying model, because it extracts rules from

the training examples, not directly from the ML model. The explanations generated by the

algorithm are also described in terms of its format, i.e., the method generates static explanations

in the format of rules. Its implementation in Python is provided by the Wittgenstein library [64].

The generated explanation is included in the ontology as an instance of Explanation, more

specifically ModelExplanation because it explains the logic behind the whole ML model instead

of explaining only one instance, and each of the rules instantiates ExplanationComponents. The

62

relator ExplainsModel indicates that the explanation explains the SVMModel, and the relator

ExplainsResultInstance connects one prediction of the dataset to the rule that explains it.

5.4.2. LIME Explanations

The rules obtained from SVM with RIPPER could give the intuition behind the model but did not

clearly indicate which input variables were more decisive to determine the classification. In order

to generate a more complete view of the black-box model and identify the impact of each input

variable on the classification, we use the post-hoc model-agnostic tool LIME[3] (detailed in

Section 2.5.2). The implementation of this algorithm is easily accessible through the LIME

package in the Python environment. In this work, SP-LIME is applied in the SVM model to

generate the most representative explanations that indicate how the input variables contribute to

each class, and we also use the LIME functions to generate explanations for single instances.

The application of SP-LIME generates explanations that show the positive and negative impact

of the input variables for each class. Figure 21 shows the five most representative explanations

for class 0 representing recovered and class 1 representing deceased. Because it is a binary

classification, the positive impact of one variable on a class represents its negative impact on the

other. The highest feature impacts are highlighted in red, if the impact for predicting the class

specified in the first column is positive, and green, if the impact is negative.

In the same Figure, we can identify that intubation has the biggest impact on the classification. If

the intubation has a value of 97, it means that the intubation is not applicable because the patient

is not hospitalized, having a big chance of recovery. If it has value 2 (meaning that the patient is

not intubated but he/she is hospitalized), or value 1 (patient is intubated), higher is the chance of

death. ICU has also a high impact in classifying the patients. If the ICU value is 97, the patient is

not hospitalized so the intensive care is not applicable, if the value is 2, the patient is hospitalized

but not in intensive care, and if the value is 1, the patient needs intensive care. However, it is

expected that the patient in ICU would have more impact on death than the patients not in ICU.

Since SP-LIME gets the most representative instances, it is possible using the explanations to

evaluate the impact of each variable in the classification and verify if the model behaves

adequately as expected.

Figure 21. Explanations generated by SP-LIME that show the impact of input variables on the classification problem

63

The same explainer used in SP-LIME to generate the most representative explanations for the

ML model was used to generate explanations of specific instances, as shown in Figure 22. The

explanation of a single instance shows the high prediction probability of recovery using the trained

SVM and the impact of each variable on each class, with intubation having the highest impact on

the recovery.

Figure 22. Explanation generated by LIME for one instance, indicating a higher probability of recovery and the
weights of the most impacting features for each class

In the ontology, the LIME algorithm is described in terms of its authors, the source reference

paper, and further descriptions to indicate that it is a local model-agnostic method that explains

the ML model and the outputs, and that it is locally faithful to the underlying model. The

explanations generated by the algorithm are also described regarding its format, i.e., the method

generates static explanations in the format of the weight impact of the variables. Its

implementation in Python is provided by the LIME library [3].

The generated explanations are included in the ontology as instances of Explanation.

SPLIMEExplanations instantiates ModelExplanation because it explains the logic behind the

whole ML model by using the most representative instance explanations, and each of the

instances instantiates ExplanationComponent. LIMEExplanation instantiates ResultExplanation

because it explains only one instance. The relator ExplainsModel indicates that the

SPLIMEExplanation explains the SVMModel. The relator ExplainsResultInstance connects one

prediction of the dataset to the rule that explains it.

5.4.3. Explanation Evaluation

The generated explanations are evaluated in the EvaluateExplanation operation, which executes

the EvaluationExplanationImplementation, which is a procedure implemented in Python but not

related to any already existing algorithm. The output of the EvaluateExplanation operation

(ExplanationEvaluation) has components that describe each element of the explanation

evaluation.

The RIPPER rules can be evaluated considering the coverage of the rules and the accuracy

achieved by applying the rule set to predict the classes of a data set. Using the train set to identify

the features and the coverage of each rule, we obtain the values in Figure 23, which are included

in the ontology as characteristics of each component of the ExplanationEvaluation. Another

component is the accuracy achieved by applying the rule set to determine the class of the test

set, which has value 0.90.

64

The SP-LIME explanations can also be evaluated considering the coverage of the explanations.

Using the train set, we obtain the number of instances covered by the explanation, which are

included in the ontology as characteristics of each component of the ExplanationEvaluation.

Figure 23. Features of each rule of the rule set generated by RIPPER and the corresponding number of instances of
the train set they cover

65

6. Evaluation

The last step of ontology development is ontology evaluation. SABiO’s evaluation process

proposes ontology verification, which aims to ensure that the ontology is built meeting

specifications previously defined, such as the ontology requirements, and ontology validation,

which aims to ensure that the ontology fulfills its intended purpose [10].

In order to verify the ontology, we first analyzed if the ontology meets the requirements defined in

Section 3.2. For the ontology quality attributes, our ontology proposes a more generic module

that can be further adapted and specialized, satisfying REQ2. For the project requirements, our

operational ontology is implemented in Protégé represented in OWL, satisfying REQ3.

Considering the intended uses-related requirements, our ontology is grounded in gUFO,

complying with REQ4. With the aid of Protégé Reasoner and gUFO Protégé Plugin [65], we also

checked the quality and correctness of the ontology implementation to assess if it meets language

specifications in terms of having an ontology without inconsistencies and that satisfies rules of a

gUFO-based ontology.

The first ontology quality attribute, REQ1, requires that the ontology is adequate for data scientists

and developers to understand the adequacy of the ML model and make adaptations and

improvements, and is related to ontology validation. Ontology validation is conducted by

instantiating data of the ontology, implementing competency questions (CQ) as queries in the

implementation environment, and checking if the obtained results are the expected outputs [10].

For this, the instances of the ontology are created based on the case study and we implement

the CQ as queries using SPARQL, which consists of a query language applicable to RDF data

models. The queries and the results obtained to answer the competency questions are described

as follows.

6.1. Data Input

CQ1. Which data were used to train the model?

Figure 24 shows the SPARQL code used to query the ontology to obtain information about the

data used to train the ML model in Experiment1. The same code was also applied to query the

ontology for Experiment2 by substituting the value “Experiment1” to “Experiment2”.

66

Figure 24. SPARQL query for CQ1 for Experiment1

The outputs of the query are depicted in Figure 25 and Figure 26 and represent the information

of the same dataset (COVID-19) used in Experiment1 and Experiment2. The images also show

the same MLWorkflow execution for both experiments because the second experiment reused

the workflow of the first experiment. The queries retrieved information about the data period, the

source, when the source was accessed, the number of instances and features, and a description

of the data.

Figure 25. Output of the query for CQ1 related to Experiment1

Figure 26. Output of the query for CQ1 related to Experiment2

CQ2. How balanced are the data?

The SPARQL code used to query the ontology to obtain information about the imbalances of the

data used to train the ML model in the experiments is depicted in Figure 27.

67

Figure 27. SPARQL query for CQ2 for Experiment1

Figure 28 shows a sample of the outputs of the query for Experiment1, containing the information

of features of the dataset used in the MLWorkflow. This information is the same as in Experiment2

because the second experiment reused the data of the first. The information comprises the

features, their descriptions, the categories present in each feature in case of categorical data, and

the number of instances of each category.

Figure 28. Output sample of the query for CQ2

CQ3. How were the data preprocessed?

Figure 29 shows the SPARQL code used to query the ontology to obtain information about the

preprocessing steps applied in the data, in terms of implementations and algorithms used to

process the data. Since some implementations do not use well-known algorithms or are not pre-

existing implementations provided by packages and libraries, we defined part of the code as

optional.

68

Figure 29. SPARQL query for CQ3 for Experiment1

The outputs of the query depicted in Figure 30 represent the information of the preprocessing

steps in Experiment1, which consist of renaming columns, dropping columns, and splitting data.

The preprocessing steps of Experiment2, obtained by substituting the value “Experiment1” to

“Experiment2” in the query, are identical to Experiment1, since it reused the MLWorkflow of

Experiment1. The result also shows the parameters used for each preprocessing step, being

possible to keep track of changes in the dataset.

Figure 30. Output of the query for CQ3

CQ4. What are the correlations of the input datasets?

Figure 31 shows the SPARQL code used to query the ontology to obtain information about the

correlations between features present in the data used to train the ML model.

69

Figure 31. SPARQL query for CQ4 for Experiment1

The outputs of the query depicted in Figure 32 represent the information of the correlations

between features of the training data used in Experiment1 in the MLWorkflow, after being

preprocessed. Each line indicates one correlation between two features and the value of the

correlation. For example, the biggest correlation is between Intubated and ICU, with a value of

0.99. The correlations values are the same for Experiment2.

Figure 32. Output of the query for CQ4

6.2. ML Algorithm and ML Model

CQ5. What are the characteristics of the ML algorithm?

The SPARQL code used to query the ontology to obtain information about the characteristics of

the ML algorithm used in the experiments is depicted in Figure 33.

70

Figure 33. SPARQL query for CQ5 for Experiment1

Figure 34 shows the query results containing the characteristics of the ML algorithm. The SVM

algorithm is described in terms of its author and transparency, which describes how the algorithm

usually works. The results also indicate that the algorithm performs supervised learning and

classification, which in this scenario requires tabular data.

Figure 34. Output of the query for CQ5

CQ6. What is the logic behind the ML model?

Figure 35 shows the SPARQL code used to query the ontology to obtain information about the

logic behind the ML model in Experiment1. This code was also applied to query the ontology for

the second experiment by substituting the value “Experiment1” to “Experiment2”.

71

Figure 35. SPARQL query for CQ6 for Experiment1

The outputs of the query depicted in Figure 36 represent the information of the rules generated

by the RIPPER method that aim to explain the logic behind the ML model.

Figure 37 represents the explanations generated by SP-LIME with explanations of the most

relevant instances. In both figures, it is also possible to identify the different workflows and

operations used to generate RIPPER rules and LIME explanations.

Figure 36. Output of the query for CQ6 related to Experiment1

Figure 37. Output of the query for CQ6 related to Experiment2

6.3. Output

CQ7. Why did the model generate this output?

72

Figure 38 shows the SPARQL code used to query the ontology to obtain information about the

reason why did the ML model generate such outputs. This query aims to retrieve all predicted

instances that have a connection with an explanation.

Figure 38. SPARQL query for CQ7 for Experiment1

The outputs of the query depicted in Figure 39 show the predicted instances of the test set and

the corresponding rules generated by the RIPPER method that are applicable to the instances in

Experiment1. For example, result instance 15 can be explained by rule 7. Figure 40 depicts the

predicted instances using the test set and their corresponding LIME explanations in Experiment2.

Figure 39. Output of the query for CQ7 concerning Experiment1

Figure 40. Output of the query for CQ7 concerning Experiment2

6.4. ML Model Evaluation

CQ8. How was the ML model evaluated? What is the meaning of those metrics?

The SPARQL code used to query the ontology to obtain information about the metrics used to

evaluate the ML model of the first experiment is depicted in Figure 41. Similar to all previous

queries, this code was also applied to query the ontology for the second experiment by

substituting the value “Experiment1” to “Experiment2”.

73

Figure 41. SPARQL query for CQ8 for Experiment1

The outputs of the query depicted in Figure 42 represent the metrics used to evaluate the ML

model and the obtained value for the metric. In addition, the query result contains the description

of the measure as comments.

Figure 42. Output of the query for CQ8

6.5. Explanation

CQ9. How were the explanations generated? How are the explanations presented to the

user? How faithful are the explanations?

Figure 43 shows the SPARQL code used to query the ontology to obtain information about the

explanations generated in the experiments.

Figure 43. SPARQL query for CQ9 for Experiment1

74

The outputs of the query depicted in Figure 44 indicate the implementation and algorithm used to

generate explanations (RIPPER) in Experiment1, and the characteristics of the method. It is a

global model-agnostic method that aims to explain the ML model, and it generates static

explanations in the form of rules. The query also indicates that the explanation is unfaithful, so

the user can be aware of how faithful the explanation is to the underlying ML model.

Figure 45 describes the LIME explanation method used in Experiment2, which is model-agnostic

and locally faithful to the underlying classifier. It generates static local explanations that indicate

the impact of the input variables by giving weights to them. LIME explanations explain outputs,

but the module SP-LIME samples representative instances as a way to explain the whole ML

model.

Figure 44. Output of the query for CQ9 concerning Experiment1

Figure 45. Output of the query for CQ9 concerning Experiment2

CQ10. How general are the explanations (do they apply to all instances)?

Figure 46 shows the SPARQL code used to query the ontology to obtain information about the

coverage of the explanations generated in the experiments.

Figure 46. SPARQL query for CQ10 for Experiment 1

75

Figure 47 depicts the result of the SPARQL to answer CQ10 for Experiment1. It shows the

coverage of each RIPPER rule regarding the number of instances of the train set to which the

rule is applicable. In addition, the query retrieved the accuracy of 0.9 obtained by applying the

rules to predict the classes of instances from the test set.

Figure 48 shows each explanation of SP-LIME and the number of instances to which the

explanations can be applied. For LIME, it generates explanations that explain the output,

therefore, the explanation always covers only one instance.

Figure 47. Output of the query for CQ10 related to Experiment1

Figure 48. Output of the query for CQ10 related to Experiment2

76

7. Final Remarks

In this chapter, we present the final remarks of this work, by first summarizing the main

conclusions, followed by the contributions, limitations, and future work.

7.1. General Conclusions

This project provided an overview of the concepts related to Semantic Web Technologies,

Machine Learning, and Explainable AI, focusing on how SWT are being applied to make ML

explainable, and categorizing the existing solutions as ante-hoc and post-hoc methods. Focusing

on post-hoc methods that generate explanations after the ML model is trained, we proposed an

ontology to describe the main components of the ML process and post-hoc explanation process,

providing means that enable a user to have a holistic understanding of why the ML model arrived

at such specific results. We developed the ontology following the SABiO methodology and in the

knowledge acquisition phase, we selected ML-SCHEMA as the domain-specific ontology and we

grounded it in the foundational ontology gUFO, aiming at interoperability.

The process of grounding the domain ontology presented some challenges because it required

the alignment of ontologies that follow different philosophies and deep knowledge of their

concepts. To overcome this challenge, we studied each concept thoroughly to determine where

to allocate each element, but the complexity of having two taxonomies in gUFO with many

elements made it difficult to be certain whether the element was properly allocated. Hence,

besides studying their concepts, we developed a conceptual model using OntoUML, whose

functionalities showed up fundamental to facilitate the grounding process. It helped overcome the

alignment difficulties by enabling transforming the conceptual model to the gUFO ontology, in a

way that the transformation mapped the OntoUML stereotypes to both the taxonomy of individuals

and the taxonomy of types. Cardinalities and restrictions in the conceptual model were also

considered in the transformation. For example, cardinality restrictions were transformed into

axioms, as well as descriptions of each component. However, specifying sub-properties of

mediator in OntoUML was not possible, which was done manually in Protégé with the definition

of domain and ranges in the gUFO-based ontology. OntoUML also made further maintenance

difficult after we included instances to the ontology using Protégé because instances were lost in

each new transformation.

After grounding MLS in gUFO, we structured our ontology using modules. The general ML module

proposed a more generic ontology to represent ML processes that could be adapted or

specialized to other ML processes besides classification. We developed this module by aligning

the grounded ontology with the ML process, solving some issues encountered in MLS. For

example, the lack of cardinality indicated that one Run of MLS generated both the ML model and

the evaluation, when in reality they are usually generated in separate Runs. The specific ML

module proposed a more detailed ML ontology to describe the ML process for classification,

specifying each operation and its inputs and outputs. The explanation module extended the

ontology to describe the ML explanation process, more specifically post-hoc explanation. We

77

finally added to the ontology the descriptors for each element that we considered necessary to

describe the processes.

The ontology was then evaluated first by using the OntoUML plugin for Visual Paradigm, which

was adopted to build the conceptual model and also provided verification, giving more assurance

about the quality of the ontology. After the transformation of the conceptual model to the gUFO-

based operational ontology, we used Protégé to create individuals according to a case study to

validate the ontology.

We defined the case study considering the scenario of the COVID-19 disease, and trained an

SVM model with data of infected patients to predict the mortality according to demographic data,

such as age and gender, and comorbidities. We then applied existing explanation methods to get

feature correlations among the training data, and post-hoc explanation methods to generate

explanations concerning the behavior of the ML model, by generating rules with RIPPER and

obtaining the impact of each variable on the result with LIME. The ontology was then populated

with instances that describe the case study, which helped identify necessary changes. The

reasoner and the UFO plugin available to Protégé also assisted the evaluation process by

verifying consistency and ensuring that the rules of our gUFO-based ontology were satisfied.

The validation of the ontology consisted not only in populating the ontology with instances but

also querying it, retrieving information for each CQ to ensure that the obtained results were the

expected outputs and that the ontology fulfilled its intended purpose. The CQs correspond to the

RQs of this project, which were answered as follows:

RQ1. Which data were used to train the model?

We used the ontology to describe and retrieve information about the data used to train the model,

indicating the description of the data, the source, the period, the date it was accessed, and the

number of instances and features.

RQ2. How balanced are the data?

We created individuals in the ontology to represent the features present in the data and, in case

of categorical features, we included the number of instances of each category of the feature. This

way, it was possible to represent and query imbalances present in categorical data.

RQ3. How were the data preprocessed?

The ontology was used to describe the steps taken to preprocess the data, for example, renaming

columns, dropping columns, and splitting data. For each preprocessing step, we represented the

parameters used, being possible to keep track of changes in the dataset. However, we assumed

that the data were already preprocessed in the experiment, creating individuals in the ontology to

represent the steps taken without more details, and including only information about the

preprocessing programmatically performed, disregarding manual updates.

RQ4. What are the correlations of the input datasets?

78

We used the ontology to represent the strongest correlations between features in the dataset

obtained by applying the XAI toolbox [58], indicating which were the features involved in the

correlation and its value.

RQ5. What are the characteristics of the ML algorithm?

The ontology was used to describe and retrieve information about the type of the ML algorithm

used in the experiment, the transparency containing the description of how the algorithm usually

works, the author and origin of the algorithm (for example, a scientific paper), the type of learning

applicable such as supervised learning, the type of task performed, and the type of data it

required.

RQ6. What is the logic behind the ML model?

We used the ontology to represent the explanations generated by the two post-hoc methods,

LIME and RIPPER, indicating the impact of each feature on the result and explaining the logic

behind the model using rules, complementing each other. The ontology also indicated if the

explanation explained the ML model or explained one instance of the output.

RQ7. Why did the model generate this output?

With a relation between the explanation obtained from the explanation method and the instance

of the output result, we represented the predicted instance of the test set and the corresponding

rule generated by the RIPPER method that was applicable to the instance, justifying why the ML

model generated specifically this output. We also indicated the predicted instances and connected

them to their corresponding LIME explanations.

RQ8. How was the ML model evaluated? What is the meaning of those metrics?

We used the ontology to describe the metrics that evaluated the ML model and the obtained value

for the metric. The description of the measure could also be included in the ontology and queried.

RQ9. How were the explanations generated? How are the explanations presented to the

user? How faithful are the explanations?

The results for queries of CQ9 retrieved information about the implementation and the algorithm

used to generate explanations, together with their characteristics. For RIPPER, the query result

indicated that it is a global model-agnostic method that aims to explain the ML model, and it

generates static explanations in the format of rules. The query also returned the characteristic

that the explanation is unfaithful, so the user could be aware of how faithful the explanation is to

the underlying ML model. For LIME, the retrieved information described the LIME explanation

method, which is model-agnostic and locally faithful to the underlying classifier. It generates static

local explanations that indicate the impact of the input variables by giving weights to them. LIME

explanations explain outputs, but the module SP-LIME samples representative instances as a

way to explain the whole ML model.

RQ10. How general are the explanations (do they apply to all instances)?

79

In order to describe the coverage or generality of the explanations, we evaluated the explanations

by implementing in the case study functions to count the number of instances covered by the

RIPPER rules and the accuracy obtained by predicting the correct class using the rules. The

coverage was then included in the ontology and could be retrieved in the queries for CQ10. The

queries returned the coverage of each RIPPER rule regarding the number of instances of the train

set that the rule is applicable. In addition, they retrieved the accuracy of 0.9 obtained by applying

the rules to predict the classes of instances from the test set.

Similarly, for SP-LIME, we identified the number of instances on which each of the explanations

could be applied. For LIME, it generates explanations that explain the output, therefore, the

explanation always covers only one instance.

Research question: Can we leverage ML post-hoc explainability to classification tasks by

enabling the user to have a holistic view of ML and explanation processes using

ontologies?

We verified that the ontology described information about components of the ML classification

process and post-hoc explanation process. It could be queried, retrieving the intended information

and answering the competency questions, which correspond to the research questions of this

project. By answering them, we ensure that the ontology fulfills its intended purpose.

This way, we understand that the user could also perform these queries to gather the desired

information from the components of the processes, which gives a holistic view of them.

Furthermore, obtaining information besides the explanations generated by post-hoc methods,

such as the correlations between input features, the preprocessing steps, the characteristics of

algorithms, and the provenance of the data, complement the post-hoc explanations leveraging

the ML explainability.

7.2. Contributions

The main contribution of this work is an ontology that represents ML and ML explanation

experiments, allowing data scientists and developers to have a holistic view and better

understanding of the whole ML and explanation process, and assuring provenance, enabling

them to keep track of the steps of the process. In the literature, we can find different ontologies

for data mining and ML, but none of them covers the explanation process or aims at explainability.

Our ontology describes components of the processes that can affect the ML result, starting from

the input data until the evaluation of the explanation. The ontology can be used to store metadata

about these experiments in a central repository, and the stored metadata can be queried to get

details of each step of learning and explanation.

The information that could be retrieved from our ontology during the validation process showed

that the ontology was capable of answering all competency questions, consequently, answering

the research questions defined in this project, leveraging the post-hoc explainability. We verified

that our ontology was capable of describing the data used to train the ML model (with their source,

instances, and features), detailing the imbalances of categorical features in the data, representing

correlations between features, and keeping track of the preprocessing steps applied to the data.

80

Our ontology also described the ML algorithm and the trained ML model with their characteristics

and the logic behind the model, represented the reason why the ML generated specific outputs,

and described the metrics used to evaluate the ML model, providing details of the meaning of

those metrics. In terms of describing the explanation process, the ontology was used to describe

post-hoc explanation methods and the generated explanations, connecting the explanations to

the ML model or predictions they explain, and describing the evaluation of these explanations in

terms of accuracy, faithfulness and coverage.

The ontology is based on already existing ontologies, but it also considered different points of

view from domain experts. MLS, which is the main domain-specific ontology that inspired the

development of our ontology, was aligned with the ML process and grounded to a foundational

ontology, becoming interoperable with existing ontologies that follow UFO. The development of

the ontology followed best practices adhering to the SABiO methodology and explored the use of

existing technologies for ontology engineering, for instance, the OntoUML plugin and the UFO

plugin for Protégé, being developed in OWL.

Our ontology allows the description of different kinds of ML experiments, with different ML

algorithms, and it is modularized in a way that the general ML module can be extended and used

for other purposes. It also can be used to describe different post-hoc explanation methods.

Furthermore, the information that describes ML algorithms, explanation methods, metrics, etc.

can be easily reused.

7.3. Limitations

One of the limitations of the developed ontology concerns the lack of involvement of users, such

as data scientists and developers to validate the use of the ontology as a tool that complements

the explanations and helps understand the adequacy of the ML Model. The validation was mainly

carried out by instantiating the ontology and using it to retrieve information to answer the

competency questions.

The ontology was evaluated only with textual datasets, but not with images or other different kinds

of data, neither integrated datasets, which combines data from multiple technologies. Additionally,

considering that we focused on classification tasks, we represented only the imbalances of

categorical features of the data. However, some limitations can be introduced to REQ2 in

situations that use the ontology to represent imbalances for continuous features.

We also assumed that the dataset was preprocessed, which can impose some limitations on

REQ3. Although we can represent the steps taken in preprocessing the data, it is only possible

to model the input and output states of the features and the steps taken in the preprocessing

operation, but we did not consider manual preprocessing steps nor represent in detail the

preprocessing steps that are machine learning models themselves, for example, when applying

ML to execute dimensionality reduction or feature extraction.

In addition, the correlations between features detected using the explainability toolbox EthicalML-

XAI [58] were identified in the training data, but the ontology does not keep track of these

correlations in the subsequent steps. In order to be able to identify the correlations and their

81

influence on the results or to keep track of them in each step of the process, it is necessary to

have an explanation method that can detect this influence. Moreover, the ontology represented

the explanations by modeling the components of the explanation generated by a post-hoc

explanation method. Nonetheless, the explanation as a mapping between the inputs to the output

was not explicitly represented in the ontology, keeping the ontology more generic for different

types of explanations generated by post-hoc explanation methods.

Another limitation concerns the use of the lightweight version of UFO, gUFO. On the one hand,

gUFO aims to guarantee computational properties and it is supported by OntoUML, which was

used to develop the conceptual models and transform them into gUFO-based operational

ontology, facilitating the grounding process and the design and implementation steps. On the

other hand, the lightweight version lacks the support of UFO-C, whose elements could be used

in this ontology to represent, for example, actions and goals. The components suitable to be

modeled with components of UFO-C were modeled considering only the available classes in

UFO-A and B, for example, with events and objects.

Furthermore, manually feeding the ontology with instances was laborious and time-consuming,

especially when including characteristics of features from the data, such as the number of

categories and the number of instances of each category. Automation of this step should facilitate

and encourage the use of the ontology.

7.4. Future Work

As future work, we propose automating the process of feeding the ontology with instances by

adopting technologies that can create individuals in the ontology while conducting the

experiments. The automation would gather information from the data and the workflows and

automatically feed the ontology. However, some information will still need to be included

manually, for example, the characteristics of algorithms.

Since this project focuses on tackling post-hoc explanation methods for supervised learning, more

specific classification, the ontology can be further tested with other ML models for other purposes

and with other types of data, verifying if they have peculiarities that should be modeled or

extending the vocabulary. Likewise, it can be tested using other post-hoc explanation methods

besides RIPPER and LIME.

Finally, considering the novelty of exploiting the post-hoc explanation methods and representing

them using ontologies, ante-hoc approaches could also be evaluated in terms of whether they

can be generically represented by a single ontology, taking into account the diverse approaches

that require changes in the implementation of ML algorithms. If this is the case, the ontology

presented in this work can be analyzed regarding its suitability to be extended to cover also ante-

hoc approaches, or if it is necessary to develop a new ontology.

82

Appendix A. Dictionary of Terms

Table 5. Dictionary of Terms

Module Term Definition

General Experiment An experiment is a complex process composed of sub-processes that
belong together to do some kind of analysis on its results. This analysis
can be general or very specific (e.g. a hypothesis test), having a specific
goal.

General WFExecution Workflow execution (WFExecution) is a complex process composed of
series of operations. It executes the implementations of operations by
executing Workflows, which organize sequentially the implementations of
these operations.

General Workflow Workflow is a complex structure that is composed of series of
implementations that need to be completed sequentially. One experiment
may have, for example, a workflow for the ML process and a workflow for
the explanation.

General Operation The operation, similarly as in DMOP [40], is an execution of an
implementation that accomplishes a specific piece of work that needs to
be addressed. It is limited in time (has a start and end point), can be
successful or failed.

General Goal The main goal of the experiment, for example, is to diagnose patients with
COVID-19.

General Data Data are facts and statistics collected together for reference or analysis.
They can be images, tables, texts, etc.

General InputData Input data are the data used in the experiment. It is a phase of the data,
representing the raw data before the preprocessing step.

General Feature Features are measurable properties or characteristics of a phenomenon.
In a dataset, they can be the input variables.

General Output Artifact created in the Operation, which is the event that brought the
output into existence. It can be a preprocessed dataset, a machine
learning model, an evaluation, etc.

General ParameterSetting ParameterSetting is an entity that connects a parameter and its value that
is being set before an implementation execution.

General Parameter Prior parameter of implementation, i.e., a parameter that is set before the
implementation execution. For example, a Hyperparameter when training
an ML model.

General Implementation Implementation is an executable implementation of an algorithm. It is
versioned and sometimes belongs to a library (e.g. scikit-learn).

General Software Software is implemented in computer programs, procedures, scripts, or
rules with associated documentation, possibly constituting an organized
environment, stored in read/write memory to be executed within a
computer system [9].

83

General MLModel Machine Learning Model (MLModel) is a generalization of a set of training
data able to predict values for unseen instances. It is an output from the
Train operation, which executes an ML algorithm implementation. ML
models have a dual nature. They can be treated as data structures and as
such represented, stored, and manipulated. On the other hand, they act
as functions and are executed, taking as input data examples and giving
as output the result of applying the function to a data example. Models
can also be divided into global or local ones. A global model has global
coverage of a data set, i.e., it generalizes the whole data set. A local
model, such as a pattern set, is a set of local hypotheses, i.e. each
applies to a limited region of the data set [9].

General ModelEvaluation ModelEvaluation is a setting of a value of the performance measure
specified by the evaluation specification. It connects an evaluation
measure with its value.

General Algorithm The algorithm regardless of software implementation. An algorithm can be
a machine learning algorithm, a preprocessing algorithm, an evaluation
procedure, etc.

General MLAlgorithm Machine Learning Algorithm (MLAlgorithm) is a specific type of algorithm
that is used to perform machine learning, such as NN, SVM, Decision
Trees, Logistic Regression.

General EvaluationProcedure EvaluationProcedure evaluates ML models, being considered a specific
type of algorithm, and can be implemented in different programming
languages. Examples are cross-validation and leave-one-out.

General EvaluationMeasure EvaluationMeasure is a measure to assess the performance of the ML
model generated by the train operation. Examples are accuracy or f-
measure.

General SpecifiesParameter Relator that indicates that the ParameterSetting is specified by the
Parameter.

General HasParameter Relator that indicates that the Implementation may have Parameter(s).

General Implements Relator that indicates that the Implementation implements an Algorithm.

General Addresses Relator that indicates that the ML Algorithm addresses the goal of the
study.

General SpecifiesMeasure Relator that indicates that the Goal of the study specifies which evaluation
measures are adequate to evaluate the ML model.

General SpecifiesModelEvaluation Relator that indicates that the evaluation measures specify the model
evaluation.

General Assesses Relator that indicates that the model evaluation assesses the Machine
Learning Model.

Specific Preprocess A specific type of operation that focuses on preprocessing the input data
to make them more adequate to train and test the ML model.

Specific Train A specific type of operation that trains the ML model, executing the ML
Algorithm implementation.

Specific Test(Predict) A specific type of operation that executes the PredictImplementation,
generating results from the testing data.

Specific EvaluateModel A specific type of operation that focuses on evaluating the ML model. It
executes the implementation of the evaluation procedure, generating the
values for the measurements that assess the ML model.

Specific PreprocessedData Type of output that is generated by the preprocessing operation. It

84

represents the phase of the data after the preprocessing step.

Specific TrainData It is part of preprocessed data that is usually used by the Train operation
but can be used by Predict operation to generate explanations.

Specific TestData It is part of preprocessed data that is usually used by the Test (predict)
operation.

Specific PreprocessImplementation A specific type of implementation that implements preprocessing
algorithms.

Specific MLImplementation A specific type of implementation that implements ML Algorithms.

Specific PredictImplementation A specific type of implementation that implements the code to generate
predictions/results by calling the MLModel as a function.

Specific EvaluateModelImplementation A specific type of implementation that implements the evaluation
procedure.

Specific PreprocessingAlgorithm A specific type of algorithm that focuses on preprocessing the input data
making them more adequate to train and test the ML model.

Specific Result Type of output that is generated by the test (predict) operation. It has the
results or predictions generated using the fitted MLModel.

Specific ResultInstance One ResultInstance represents one result or prediction from the total
results.

Specific Correlates Relator that indicates that two features from the data are mathematically
correlated.

Specific Calls Relator that indicates that the implementation used to generate results or
predictions calls the MLModel, which can act as functions and are
executed.

Specific hasMeasure Relator that indicates that the implementation of the evaluation procedure
takes into account the evaluation measurements.

Explanation Explain A specific type of operation that focuses on generating the explanations
from the MLModel.

Explanation EvaluateExplanation A specific type of operation that focuses on evaluating the explanations
generated by the Explain operation.

Explanation ExplainImplementation A specific type of implementation that implements the explainable
algorithm.

Explanation EvaluateExplanationImplementation A specific type of implementation that implements the evaluation of the
explanation.

Explanation ExplainableAlgorithm A specific type of post-hoc method that focuses on generating
explanations from the MLModel.

Explanation Explanation Type of output that is generated by the explain operation, which contains
the explanation generated by the post-hoc method.

Explanation ExplanationComponent Components of the Explanation, which can represent the explanation of a
single instance or one single rule.

Explanation ResultExplanation A specific type of explanation, which focuses on explaining the result
(predictions) obtained by applying the MLModel function to the data.

Explanation ModelExplanation A specific type of explanation, which can focus on explaining the fitted
MLModel by expressing the logic behind it.

85

Explanation ExplanationEvaluation Type of output that is generated by the EvaluateExplanation operation. It
indicates, for example, the fidelity of the Explanation or the coverage of its
components.

Explanation ExplanationComponentEvaluation A component of the explanation evaluation that evaluates explanation
components (e.g., coverage).

Explanation ExplainsModel Relator that indicates that the Model Explanation explains the ML model,
instead of explaining only one instance of the result.

Explanation ExplainsResultInstance Relator that indicates that the explanation component explains the result
instance, enabling describing the explanation of a specific instance of the
result.

Explanation EvaluatesExplanationComponent Relator that indicates that the component of the explanation evaluation
evaluates explanation components (e.g., coverage).

86

Appendix B. Axioms

Table 6. Axioms of the ontology

Module Axiom Formalization in OWL

General An Experiment is part of a Study SubClassOf(ObjectSomeValuesFrom(a:isEventProperPartOf a:Experiment)

a:Study)

General An Experiment has at least one
WFExecution

SubClassOf(ObjectMinCardinality(1 a:isEventProperPartOf a:WFExecution)

a:Experiment)

General Every Experiment has one Goal SubClassOf(ObjectExactCardinality(1 a:participatedIn a:Goal) a:Experiment)

General A WFExecution has at least one
Operation

SubClassOf(ObjectMinCardinality(1 a:IsEventProperPartOf a:Operation)

a:WFExecution)

General A Workflow has at least one
Implementation

SubClassOf(ObjectMinCardinality(1 a:IsComponentOf a:Implementation)

a:Workflow)

General The Goal defines the
EvaluationMeasures

SubclassOf(a:specifiesMeasure a:relator)

SubObjectPropertyOf(a:specifiesMeasureInvolvesGoal a:mediates)

ObjectPropertyDomain(a:specifiesMeasureInvolvesGoal a:SpecifiesMeasure)

ObjectPropertyRange(a:specifiesMeasureInvolvesGoal a:Goal)

SubObjectPropertyOf(a:specifiesMeasureInvolvesMeasure a:mediates)

ObjectPropertyDomain(a:specifiesMeasureInvolvesMeasure a:SpecifiesMeasure)

ObjectPropertyRange(a:specifiesMeasureInvolvesMeasure a:EvaluationMeasure)

General An MLAlgorithm addresses a Goal SubclassOf(a:Addresses a:relator)

SubObjectPropertyOf(a:addressesInvolvesAlgorithm a:mediates)

ObjectPropertyDomain(a:addressesInvolvesAlgorithm a:Addresses)

ObjectPropertyRange(a:addressesInvolvesAlgorithm a:Algorithm)

SubObjectPropertyOf(a:addressesInvolvesGoal a:mediates)

ObjectPropertyDomain(a:addressesInvolvesGoal a:Addresses)

ObjectPropertyRange(a:addressesInvolvesGoal a:Goal)

General MLAlgorithm is an Algorithm SubClassOf(a:MLAlgorithm a:Algorithm)

General EvaluationProcedure is an
Algorithm

SubClassOf(a:EvaluationProcedure a:Algorithm)

General executedBy implies participatedIn SubObjectPropertyOf(a: executedBy a:participatedIn)

General One Operation executes one or
more Implementation

SubClassOf(ObjectMinCardinality(1 a:ExecutedBy a:Implementation)

a:Operation)

General One Implementation implements
Algorithms

SubclassOf(a:Implements a:relator)

SubObjectPropertyOf(a:implementsInvolvesAlgorithm a:mediates)

ObjectPropertyDomain(a:implementsInvolvesAlgorithm a:Implements)

ObjectPropertyRange(a:implementsInvolvesAlgorithm a:Algorithm)

SubObjectPropertyOf(a:implementsInvolvesImplementation a:mediates)

ObjectPropertyDomain(a:implementsInvolvesImplementation a:Implements)

ObjectPropertyRange(a:implementsInvolvesImplementation a:Implementation)

General One Implementation is a component
of a Software

SubClassOf(ObjectExactlyCardinality(1 a:IsComponentOf a:Implementation)

a:Software)

87

General One Implementation has
Parameters

SubclassOf(a:HasParameter a:relator)

SubObjectPropertyOf(a:hasParameterInvolvesImplementation a:mediates)

ObjectPropertyDomain(a:hasParameterInvolvesImplementation

a:HasParameter)

ObjectPropertyRange(a:hasParameterInvolvesImplementation

a:Implementation)

SubObjectPropertyOf(a:hasParameterInvolvesParameter a:mediates)

ObjectPropertyDomain(a:hasParameterInvolvesParameter a:HasParameter)

ObjectPropertyRange(a:hasParameterInvolvesParameter a:Parameter)

General Parameters are set when executing
the Operation.

SubClassOf(ObjectExactlyCardinality(1 a:ParticipatedIn a:ParameterSetting)

a:Operation)

General Operations generate at least one
Output

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:Output) a:Operation)

SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(a:wasCreatedIn)

a:Operation) a:Output)

General An MLModel is an Output SubClassOf(a:MLModel a:Output)

General Each Output (Explanation,
MLModel) is disjoint with each other

DisjointClasses(a:Explanation a:MLModel a:ExplanationEvaluation

a:ModelEvaluation a:Result a:PreprocessedData)

General A ModelEvaluation is a
specialization of an Output

SubClassOf(a:ModelEvaluation a:Output)

General Features are components of Data SubClassOf(ObjectExactlyCardinality(1 a:IsComponentOf a:Feature) a:Data)

General Data are generalizations of
InputData

SubClassOf(a:InputData a:Data)

General One Feature has at least one
FeatureCharacteristic

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:inheresIn) a:Feature)

a:FeatureCharacteristic)

General Data have at least one
DataCharacteristic

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:inheresIn) a:Data)

a:DataCharacteristic)

General MLModel may have
ModelCharacteristics

SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(a:inheresIn) a:MLModel)

a:ModelCharacteristic)

General One Implementation may have
ImplementationCharacteristics

SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(a:inheresIn)

a:Implementation) a:ImplementationCharacteristic)

General One ModelEvaluation has one or
more ModelEvaluationCharacteristic

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:inheresIn)

a:ModelEvaluation) a:ModelEvaluationCharacteristic)

General One Algorithm can have more than
one characteristic

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:inheresIn) a:Algorithm)

a:AlgorithmCharacteristic)

General All objects are disjoint to others
except for Output and Data

DisjointClasses(a:Algorithm a:Parameter a:Feature a:ResultInstance

a:Implementation a:Goal a:ExplanationComponentEvaluation a:Workflow

a:Software a:Data a:ExplanationComponent a:EvaluationMeasure

a:ParameterSetting)

General One Characteristic (quality) is
disjoint with other Characteristics

DisjointClasses(a:AlgorithmCharacteristic a:CorrelationCharacteristic

a:DataCharacteristic a:ExperimentCharacteristic

a:ExplanationComponentCharacteristic

a:ExplanationComponentEvaluationCharacteristic a:FeatureCharacteristic

a:GoalCharacteristic a:ImplementationCharacteristic a:ModelCharacteristic

a:ModelEvaluationCharacteristic a:ParameterSettingCharacteristic)

88

General One ParameterSetting can have
only one characteristic, which is the
value set to the parameter

SubClassOf(ObjectExactlyCardinality(1 ObjectInverseOf(a:inheresIn)

a:ParameterSetting) a:ParameterSettingCharacteristic)

General Preprocess operation occurs before
Train

SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(a:historicallyDependsOn)

a:Preprocess) a:Train)

General Test(Predict) operation is executed
after Train

SubClassOf(ObjectMinCardinality(1 a:historicallyDependsOn a:Predict) a:Train)

General EvaluateModel is executed after
Test(Predict) operation

SubClassOf(ObjectMinCardinality(1 a:historicallyDependsOn a:EvaluateModel)

a:Predict)

Specific Operation is a generalization of
Preprocess, Train, Predict, and
EvaluateModel

SubClassOf(a:Preprocess a:Operation)

SubClassOf(a:Train a:Operation)

SubClassOf(a:Predict a:Operation)

SubClassOf(a:EvaluateModel a:Operation)

Specific Each operation is disjoint to the
others

DisjointClasses(a:EvaluateExplanation a:EvaluateModel a:Explain a:Predict

a:Preprocess a:Train)

Specific PreprocessingAlgorithm is an
Algorithm

SubClassOf(a:PreprocessingAlgorithm a:Algorithm)

Specific Preprocess operation receives as
input the InputData

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn)

a:Preprocess) a:InputData)

Specific Preprocess operation generates
PreprocessedData

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:PreprocessedData)

a:Preprocess)

Specific Preprocess executes
PreprocessImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy) a:Preprocess)

a:PreprocessImplementation)

Specific Train operation executes
MLImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy) a:Train)

a:MLImplementation)

Specific Train operation receives TrainData SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn) a:Train)

a:TrainData)

Specific Train operation generates MLModel SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:MLModel) a:Train)

Specific Test(Predict) operation receives
PreprocessedData

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn) a:Predict)

a:PreprocessedData)

Specific Test(Predict) operation executes
PredictImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy) a:Predict)

a:PredictImplementation)

Specific PredictImplementation calls
MLModel as a function

SubclassOf(a:Calls a:relator)

SubObjectPropertyOf(a:callInvolvesMLModel a:mediates)

ObjectPropertyDomain(a:callInvolvesMLModel a:Calls)

ObjectPropertyRange(a:callInvolvesMLModel a:MLModel)

SubObjectPropertyOf(a:callInvolvesPredictImplementation a:mediates)

ObjectPropertyDomain(a:callInvolvesPredictImplementation a:Calls)

ObjectPropertyRange(a:callInvolvesPredictImplementation

a:PredictImplementation)

Specific Test (predict) operation generates
Result

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:Result) a:Predict)

Specific The result is compound by SubClassOf(ObjectExactlyCardinality(1 a:IsComponentOf a:ResultInstances)

89

ResultInstances a:Result)

Specific Evaluate operation receives
TestData and Result

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn)

a:EvaluateModel) a:TestData)

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn)

a:EvaluateModel) a:Result)

Specific EvaluateModel executes
EvaluateModelImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy)

a:EvaluateModel) a:EvaluateModelImplementation)

Specific EvaluationModelImplementation
has EvaluationMeasures

SubclassOf(a:HasMeasure a:relator)

SubObjectPropertyOf(a:hasMeasureInvolvesEvaluateModelImplementation

a:mediates)

ObjectPropertyDomain(a:hasMeasureInvolvesEvaluateModelImplementation

a:HasMeasure)

ObjectPropertyRange(a:hasMeasureInvolvesEvaluateModelImplementation

a:EvaluateModelImplementation)

SubObjectPropertyOf(a:hasMeasureInvolvesMeasure a:mediates)

ObjectPropertyDomain(a:hasMeasureInvolvesMeasure a:HasMeasure)

ObjectPropertyRange(a:hasMeasureInvolvesMeasure a:EvaluationMeasure)

Specific EvaluateModel operation generates
ModelEvaluation

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:ModelEvaluation)

a:EvaluateModel)

Specific ModelEvaluation is specified by the
EvaluationMeasure

SubclassOf(a:SpecifiesModelEvaluation a:relator)

SubObjectPropertyOf(a:specifiesInvolvesModelEvaluation a:mediates)

ObjectPropertyDomain(a:specifiesInvolvesModelEvaluation

a:SpecifiesModelEvaluation)

ObjectPropertyRange(a:specifiesInvolvesModelEvaluation a:ModelEvaluation)

SubObjectPropertyOf(a:specifiesInvolvesEvaluationMeasure a:mediates)

ObjectPropertyDomain(a:specifiesInvolvesEvaluationMeasure

a:SpecifiesModelEvaluation)

ObjectPropertyRange(a:specifiesInvolvesEvaluationMeasure

a:EvaluationMeasure)

Specific Feature can have correlations to
another Feature

SubclassOf(a:Correlates a:relator)

SubObjectPropertyOf(a:correlates a:mediates)

ObjectPropertyDomain(a:correlates a:Correlates)

ObjectPropertyRange(a:correlates a:Feature)

ObjectMinCardinality(2 a:correlates a:Feature)

Specific Correlates relator has only one
CorrelationCharacteristic, which
indicates the correlation value

SubClassOf(ObjectExactlyCardinality(1 a:inheresIn a:CorrelationCharacteristic)

a:Correlates)

Specific PreprocessData are Data SubClassOf(a:PreprocessData a:Data)

Specific PreprocessData are Outputs SubClassOf(a:PreprocessData a:Output)

Specific TestData are PreprocessedData SubClassOf(a:TestData a:PreprocessedData)

Specific TrainData are PreprocessedData SubClassOf(a:TrainData a:PreprocessedData)

Specific TestData are disjoint with TrainData DisjointClasses(a:TestData a:TrainData)

Specific PreprocessedData are created in a
Preprocess operation

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:ProcessedData)

a:Preprocess)

90

Specific PreprocessedData are disjoint with
InputData

DisjointClasses(a:PreprocessedData a:InputData)

Specific PreprocessImplementation is an
Implementation

SubClassOf(a:PreprocessImplementation a:Implementation)

Specific MLImplementation is an
Implementation

SubClassOf(a:MLImplementation a:Implementation)

Specific PredictImplementation is an
Implementation

SubClassOf(a:PredictImplementation a:Implementation)

Specific EvaluateModelImplementation is
an Implementation

SubClassOf(a:EvaluateModelImplementation a:Implementation)

Specific Implementations are disjoint with
each other

DisjointClasses(a:EvaluateExplanationImplementation

a:EvaluateModelImplementation a:ExplainImplementation

a:PredictImplementation a:PreprocessImplementation a:MLImplementation)

Explanation Explain is executed after Train
operation

SubClassOf(ObjectExactlyCardinality(1 a:historicallyDependsOn a:ExplainModel)

a:Train)

Explanation Explain is an operation SubClassOf(a:Explain a:Operation)

Explanation EvaluateExplanation is an operation SubClassOf(a:EvaluateExplanation a:Operation)

Explanation Explain receives Results as inputs SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn) a:Explain)

a:Result)

Explanation Explain executes
ExplainImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy) a:Explain)

a:ExplainImplementation)

Explanation Explain operation generates
Explanation

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:Explanation) a:Explain)

Explanation Explanation can be a
ModelExplanation or a
ResultExplanation

SubClassOf(a:ModelExplanation a:Explanation)

SubClassOf(a:ResultExplanation a:Explanation)

Explanation An explanation cannot be a
ModelExplanation and a
ResultExplanation at the same time
(disjoint)

DisjointClasses(a:ModelExplanation a:ResultExplanation)

Explanation ModelExplanation explains
MLModel

SubclassOf(a:ExplainsModel a:relator)

SubObjectPropertyOf(a:explainsModelInvolvesModel a:mediates)

ObjectPropertyDomain(a:explainsModelInvolvesModel a:ExplainsModel)

ObjectPropertyRange(a:explainsModelInvolvesModel a:MLModel)

SubObjectPropertyOf(a:explainsModelInvolvesModelExplanation a:mediates)

ObjectPropertyDomain(a:explainsModelInvolvesModelExplanation

a:ExplainsModel)

ObjectPropertyRange(a:explainsModelInvolvesModelExplanation

a:ModelExplanation)

Explanation Explanation has one or more
ExplanationComponents

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:IsComponentOf)

a:Explanation) a:ExplanationComponent)

91

Explanation One ExplanationComponent can
explain one ResultInstance

SubclassOf(a:ExplainsResultInstance a:relator)

SubObjectPropertyOf(a:explainsInvolvesResultInstance a:mediates)

ObjectPropertyDomain(a:explainsInvolvesResultInstance

a:ExplainsResultInstance)

ObjectPropertyRange(a:explainsInvolvesResultInstance a:ResultInstance)

SubObjectPropertyOf(a:explainsInvolvesExplanationComponent a:mediates)

ObjectPropertyDomain(a:explainsInvolvesExplanationComponent

a:ExplainsResultInstance)

ObjectPropertyRange(a:explainsInvolvesExplanationComponent

a:ExplanationComponent)

Explanation EvaluateExplanation operation
receives Explanation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:participatedIn)

a:EvaluateExplanation) a:Explanation)

Explanation EvaluateExplanation executes
EvaluateExplanationImplementation

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:ExecutedBy)

a:EvaluateExplanation) a:EvaluateExplanationImplementation)

Explanation EvaluateExplanation generates
ExplanationEvaluation

SubClassOf(ObjectExactlyCardinality(1 a:wasCreatedIn a:ExplanationEvaluation)

a:EvaluateExplanation)

Explanation ExplanationEvaluation is compound
of one or more
EvaluateExplanationComponent

SubClassOf(ObjectMinCardinality(1 ObjectInverseOf(a:IsComponentOf)

a:ExplanationEvaluation) a:EvaluateExplanationComponent)

Explanation Each
ExplanationComponentEvaluation
has exactly one characteristic that
contains the value of the evaluation

SubClassOf(ObjectExactlyCardinality(1 ObjectInverseOf(a:inheresIn)

a:ExplanationComponentEvaluation)

a:ExplanationComponentEvaluationCharacteristic)

Explanation EvaluateExplanationComponent
evaluates one
ExplanationComponent

SubclassOf(a:EvaluatesExplanationComponent a:relator)

SubObjectPropertyOf(a:evaluatesInvolvesExplanationComponent a:mediates)

ObjectPropertyDomain(a:evaluatesInvolvesExplanationComponent

a:EvaluatesExplanationComponent)

ObjectPropertyRange(a:evaluatesInvolvesExplanationComponent

a:ExplanationComponent)

SubObjectPropertyOf(a:evaluatesInvolvesExplanationComponentEvaluation

a:mediates)

ObjectPropertyDomain(a:evaluatesInvolvesExplanationComponentEvaluation

a:EvaluatesExplanationComponent)

ObjectPropertyRange(a:evaluatesInvolvesExplanationComponentEvaluation

a:ExplanationComponentEvaluation)

Explanation ExplainableAlgorithm is an
Algorithm

SubClassOf(a:ExplainableAlgorithm a:Algorithm)

92

References

[1] A. Seeliger, M. Pfaff and H. Krcmar, "Semantic Web Technologies for Explainable

Machine Learning Models: A Literature Review," PROFILES/SEMEX@ISWC, 2019.

[2] D. Weld and G. Bansal, "The Challenge of Crafting Intelligible Intelligence," Commun.

ACM, vol. 62, no. 6, pp. 70-79, 2019.

[3] M. Ribeiro, S. Singh and C. Guestrin, "Why Should I Trust You?: Explaining the

Predictions of Any Classifier," ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD '16), vol. 22, p. 1135–1144, 2016.

[4] V. Dignum, Responsible Artificial Intelligence: How to Develop and Use AI in a

Responsible Way, Springer, 2019.

[5] A. Mikolajczyk, M. Grochowski and A. Kwasigroch, "Towards explainable classifiers

using the counterfactual approach - global explanations for discovering bias in data,"

CoRR, vol. abs/2005.02269, 2020.

[6] G. Jacobusse and C. Veenman, "On Selection Bias with Imbalanced Classes," in

Calders T., Ceci M., Malerba D. (eds) Discovery Science. DS 2016. Lecture Notes in

Computer Science, vol 9956. , Springer, 2016.

[7] H. Simon, "Spurious Correlation: A Causal Interpretation," Journal of the American

Statistical Association, vol. 49, pp. 467-479, 1954.

[8] A. Chander and R. Srinivasan, "Creation of User Friendly Datasets: Insights from a

Case Study concerning Explanations of Loan Denials," CoRR, vol. abs/1906.04643,

2019.

[9] D. Esteves, A. Ławrynowicz, P. Panov, L. Soldatova, T. Soru and J. Vanschoren, "ML

Schema Core Specification," 17 October 2016. [Online]. Available: http://ml-

schema.github.io/documentation/ML%20Schema.html. [Accessed 01 February 2021].

[10] R. A. Falbo, "SABiO: Systematic approach for building ontologies," 2014.

[11] W3C, "Semantic Web," 2020. [Online]. Available:

https://www.w3.org/standards/semanticweb/#:~:text=The%20term%20%E2%80%9CSe

mantic%20Web%E2%80%9D%20refers,SPARQL%2C%20OWL%2C%20and%20SKO

S.. [Accessed 2020].

[12] GraphDB, "GraphDB," [Online]. Available:

https://graphdb.ontotext.com/documentation/standard/index.html.

[13] A. Dörthe, "Notation3 as the Unifying Logic for the Semantic Web," 2019.

[14] J. Domingue, D. Fensel and J. Hendler, Handbook of Semantic Web Technology,

Springer, 2011.

[15] W3C, "OWL 2 Web Ontology Language Document Overview (Second Edition)," 11 12

2012. [Online]. Available: https://www.w3.org/TR/owl2-

overview/#Relationship_to_OWL_1. [Accessed 27 01 2021].

93

[16] R. Studer, S. Grimm and A. Abecker, Semantic Web Services: Concepts, Technologies

and Applications, Springer, 2007.

[17] L. Ehrlinger and W. Wöß, "Towards a Definition of Knowledge Graphs," International

Conference on Semantic Systems - SEMANTiCS, 2016.

[18] R. Akerkar and P. Sajja, Knowledge-Based Systems, Jones & Bartlett Learning, 2010.

[19] D. Fensel, U. Simsek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J.

Umbrich and A. Wahler, Knowledge Graphs: Methodology, Tools and Selected Use

Cases, Springer, 2020.

[20] M. Sarker, N. Xie, D. Doran, M. Raymer and P. Hitzler, "Explaining Trained Neural

Networks with Semantic Web Technologies: First Steps," ArXiv, abs/1710.04324, 2017.

[21] C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models

Explainable., 2021.

[22] E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2010.

[23] A. Singh, N. Thakur and A. Sharma, "A review of supervised machine learning

algorithms," 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), pp. 1310-1315, 2016.

[24] A. Ng, J. Ngiam, C. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun, B. Huval, T.

Wang and S. Tandon, "Deep Learning Tutorial," UFLDL Stanford, [Online]. Available:

http://ufldl.stanford.edu/tutorial/. [Accessed 2020].

[25] A. Adadi and M. Berrada, "Peeking Inside the Black-Box: A Survey on Explainable

Artificial Intelligence (XAI)," IEEE Access 6, pp. 52138-52160, 2018.

[26] F. Keil, L. Rozenblit and C. Mills, "What lies beneath? Understanding the limits of

understanding," Thinking and seeing: Visual metacognition in adults and children, 2004.

[27] European Comission, "White Paper On Artificial Intelligence - A European approach to

excellence and trust.," 2020.

[28] D. Gunning and D. W. Aha, "DARPA’s Explainable Artificial Intelligence Program," AI

MAGAZINE, vol. 40, pp. 44-58, 2019.

[29] R. Hoffman, S. Mueller, G. Klein and J. Litman, "Metrics for Explainable AI: Challenges

and Prospects," arXiv:1812.04608v2, 2018.

[30] A. Arrieta , N. Díaz-Rodríguez, J. Ser, A. Bennetot , S. Tabik , A. Barbado, S. García ,

S. Gil-López , D. Molina , R. Benjamins , R. Chatila and F. Herrera, "Explainable

Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges

toward Responsible AI," ArXiv abs/1910.10045, 2020.

[31] L. Longo, R. Goebel , F. Lecue , P. Kieseberg and A. Holzinger , "Explainable Artificial

Intelligence: Concepts, Applications, Research Challenges and Visions," olzinger A.,

Kieseberg P., Tjoa A., Weippl E. (eds) Machine Learning and Knowledge Extraction.

CD-MAKE 2020. Lecture Notes in Computer Science, vol. 12279, 2020.

[32] C. Musto, F. Narducci, P. Lops, M. Gemmis and G. Semeraro, "ExpLOD: A Framework

for Explaining Recommendations based on the Linked Open Data Cloud," Proceedings

of the 10th ACM Conference on Recommender Systems (RecSys '16). Association for

Computing Machinery, p. 151–154, 2016.

94

[33] D. Martens, J. Huysmans, R. Setiono and J. Vanthienen, "Rule Extraction from Support

Vector Machines: An Overview of Issues and Application in Credit Scoring," in Studies

in Computational Intelligence, vol. 80, Springer, 2008.

[34] W. W. Cohen, "Fast effective rule induction," in Proceedings of the Twelfth International

Conference on Machine Learning, Tahoe City, 1995.

[35] T. Pedersen , S. V. Pakhomov , S. Patwardhan and C. G. Chute , "Measures of

semantic similarity and relatedness in the biomedical domain," J Biomed Inform., 2007.

[36] A. Bühmann, J. Lehmann and P. Westphal, "DL-Learner - A Framework for Inductive

Learning on the Semantic Web," eb Semantics: Science, Services and Agents on the

World Wide Web, 2016.

[37] N. F. Noy and D. L. McGuinness, "Ontology Development 101: A Guide to Creating

Your First Ontology," 2001.

[38] M. Fernández, A. Gómez-Pérez and N. Juristo, "METHONTOLOGY: from ontological

art towards ontological engineering," AAAI Technical Report, 1997.

[39] J. Braga, J. L. R. Dias and F. Regateiro, "A Machine Learning Ontology," 2020.

[40] C. M. Keet, A. Ławrynowicz, C. d’Amato, A. Kalousis, P. Nguyen, R. Palma, R. Stevens

and M. Hilario, "The Data Mining OPtimization Ontology," Journal of Web Semantics,

vol. 32, pp. 43-53, 2015.

[41] J. Vanschoren and L. Soldatova, "Exposé: An ontology for data mining experiments,"

Third Generation Data Mining Workshop at ECML PKDD 2010, 2010.

[42] P. Panov, S. Džeroski and L. Soldatova, "OntoDM: An Ontology of Data Mining," 2008

IEEE International Conference on Data Mining Workshops, pp. 752-760, 2008.

[43] Open Machine Learning Community, "Open ML," [Online]. Available:

https://www.openml.org/. [Accessed 20 February 2021].

[44] M. Keet, "Foundational Ontologies," 7 July 2020. [Online]. Available:

https://eng.libretexts.org/@go/page/6436. [Accessed 8 April 2021].

[45] G. Guizzardi and G. Wagner, "A Unified Foundational Ontology and some Applications

of it in Business Modeling," in CAiSE'04 Workshops in connection with The 16th

Conference on Advanced Information Systems Engineering, Knowledge and Model

Driven Information Systems Engineering for Networked Organisations, Riga, 2004.

[46] L. Schneider, "How to Build a Foundational Ontology," in KI 2003: Advances in Artificial

Intelligence. KI 2003. Lecture Notes in Computer Science, vol. 2821, Springer, 2003.

[47] G. Guizzardi, G. Wagner, R. de Almeida Falbo, R. Guizzardi and J. Almeida, "Towards

Ontological Foundations for the Conceptual Modeling of Events," in Conceptual

Modeling, Springer, 2013.

[48] J. P. A. Almeida, R. A. Falbo, G. Guizzardi and T. P. Sales, "gUFO: A Lightweight

Implementation of the Unified Foundational Ontology (UFO)," [Online]. Available:

http://purl.org/nemo/doc/gufo. [Accessed 10 April 2021].

[49] OntoUML Community, "OntoUML Specification," [Online]. Available:

https://ontouml.readthedocs.io/en/latest/intro/ontouml.html.

95

[50] J. Guerson, T. P. Sales, G. Guizzardi and J. P. A. Almeida, "OntoUML Lightweight

Editor," in 19th IEEE Enterprise Computing Conference , 2015.

[51] C. M. Fonseca, T. P. Sales, L. Bassetti and V. Viola, "OntoUML Plugin for Visual

Paradigm," May 2021. [Online]. Available: https://github.com/OntoUML/ontouml-vp-

plugin. [Accessed 12 May 2021].

[52] Pedregosa et al., "Scikit-learn: Machine Learning in Python," JMLR 12, pp. 2825-2830,

2011.

[53] S. Lalmuanawma, J. Hussain and L. Chhakchhuak, "Applications of machine learning

and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: A review," Chaos

Solitons Fractals, 2020.

[54] L. J. Muhammad, E. A. Algehyne, S. Usman, A. Ahmad, C. Chakraborty and I. A.

Mohammed , "Supervised Machine Learning Models for Prediction of COVID-19

Infection using Epidemiology Dataset," SN Comput Sci., 2021.

[55] S. Wollenstein-Betech, C. G. Cassandras and I. C. Paschalidis, "Personalized

Predictive Models for Symptomatic COVID-19 Patients Using Basic Preconditions,"

International Journal of Medical Informatics, vol. 142, 2020.

[56] Secretaría de Salud, "Datos Abiertos Dirección General de Epidemiología," [Online].

Available: https://www.gob.mx/salud/documentos/datos-abiertos-152127. [Accessed 9

March 2021].

[57] M. R. Franklin, "Kaggle: Mexico COVID-19 clinical data," 6 May 2020. [Online].

Available: https ://www.kaggle.com/marianarfranklin/mexico-COVID19-clinical-

data/metadata. [Accessed 9 March 2021].

[58] Ethical Institute, "XAI - An eXplainability toolbox for machine learning," [Online].

Available: https://github.com/EthicalML/xai. [Accessed 10 March 2021].

[59] A. Khanday, S. Rabani, Q. R. Khan, N. Rouf and M. M. U. Din , "Machine learning

based approaches for detecting COVID-19 using clinical text data," International Journal

of Information Technology volume, vol. 12, p. 731–739, 2020.

[60] C. An, H. Lim, D. Kim, J. H. Chang, Y. J. Choi and S. W. Kim, "Machine learning

prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean

cohort study," Scientific Reports volume, vol. 10, 2020.

[61] D. Brinati, . A. Campagner, D. Ferrari , M. Locatelli, G. Banfi and F. Cabitza , "Detection

of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility

Study," J Med Syst, 2020.

[62] J. Lu, R. Jin, E. Song, M. Alrasho, K. N. Al-Mutib and M. S. Al-Rakhami, "An

Explainable System for Diagnosis and Prognosis of COVID-19," IEEE Internet of Things

Journal, 2020.

[63] M. M. Ahamad, S. Aktar, M. Rashed-Al-Mahfuz, S. Uddin, P. Liò, H. Xu, M. A.

Summers, J. M. W. Quinn and M. A. Moni , "A machine learning model to identify early

stage symptoms of SARS-Cov-2 infected patients," Expert systems with applications,

vol. 160, 2020.

96

[64] I. Moscovitz, "Wittgenstein," 19 May 2020. [Online]. Available:

https://github.com/imoscovitz/wittgenstein. [Accessed 5 February 2021].

[65] L. C. Barcellos, J. O. Batista and J. P. A. Almeida, "UFO validation for Protégé," 23

November 2020. [Online]. Available: https://github.com/nemo-ufes/ufo-protege-plugin.

[Accessed 16 April 2021].

	Acknowledgments
	Abstract
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	1. Introduction
	1.1. Semantic Web Technologies and XAI
	1.2. Problem Definition
	1.3. Research Questions
	1.4. Research Goals
	1.5. Methodology
	1.6. Structure

	2. Background
	2.1. Semantic Web Technologies
	2.1.1. Ontologies
	2.1.2. Semantic Data Sources

	2.2. Machine Learning
	2.3. Explainable Machine Learning
	2.4. Explainable ML and Semantic Web Technologies
	2.5. Explainable ML Tools
	2.5.1. RIPPER
	2.5.2. LIME

	3. Ontology Specification
	3.1. Overview of the Ontology Development Process
	3.2. Ontology Purpose and Requirements
	3.3. Knowledge Acquisition and Reuse
	3.3.1. ML Process and Explanation Process
	3.3.1.1. The ML Process
	3.3.1.2. The Explanation Process

	3.3.2. Domain-Specific Ontology
	3.3.3. The Unified Foundational Ontology (UFO)

	4. Ontology Development
	4.1. Grounding Domain-Specific Ontology in a Foundational Ontology
	4.2. General ML Module
	4.3. Specific ML Module
	4.4. Explanation Module
	4.5. Metadata
	4.5.1. Metadata for the ML Process
	4.5.2. Metadata for the Explanation Process

	4.6. Ontology Design and Implementation

	5. Case Study
	5.1. Data Description
	5.2. Experiments
	5.3. ML Workflow
	5.3.1. Data Preprocessing
	5.3.2. Data Analysis
	5.3.3. ML Model Training
	5.3.4. ML Model Evaluation

	5.4. Explanation Workflow
	5.4.1. Rule Extraction with RIPPER
	5.4.2. LIME Explanations
	5.4.3. Explanation Evaluation

	6. Evaluation
	6.1. Data Input
	6.2. ML Algorithm and ML Model
	6.3. Output
	6.4. ML Model Evaluation
	6.5. Explanation

	7. Final Remarks
	7.1. General Conclusions
	7.2. Contributions
	7.3. Limitations
	7.4. Future Work

	Appendix A. Dictionary of Terms
	Appendix B. Axioms
	References

