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Abstract 

Motor sequence learning (MSL) plays a substantial role in everyday life and much research has 

been done in the field. MSL has frequently been investigated using the Discrete Sequence 

Production (DSP) task during which participants reproduce sequences by pressing keys. Most 

research to date has been focussed on small movements executed with fingers only, rendering 

the need to validate those findings with large spatial movements involving the whole body. In 

the present study, the DSP task was transformed into a step-based version. First, the study aimed 

to extract information about the individual participants’ learning process using exponential 

learning curves. Second, the study aimed to compare the concatenation patterns from the 

Dance-Step DSP (DS-DSP) task with the usual Key-Press DSP (KP-DSP) task. Participants 

practised two sequences over eight training blocks on a commercially available dance mat and 

learning was measured in terms of response time (RT) and accuracy. The results showed that 

learning was evident in all participants but participants displayed very different learning rates. 

Three participants showed great improvement during the first blocks of the experiment which 

resulted in model parameters that could be identified with great certainty, while two participants 

showed short RT’s throughout but did not improve much during the experiment leading to 

uncertain model parameters. Concatenation, as found with the KP-DSP task, could only partly 

be observed in the DS-DSP. While the first four keys in a sequence were executed as a coherent 

chunk, the fifth and sixth response was slowed. It is believed that this is due to an initial 

acceleration of movements followed by a slowing to avoid jerks and reduce torque, aimed 

towards a smooth performance. Future research could explore the use of an adaptive and 

individualised approach through the used of different sequence lengths to challenge learners in 

the most optimal way. 

 

Keywords: Motor sequence learning, Discrete Sequence Production task, exponential learning 

curves, concatenation 
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1.0 Introduction 

Motor sequence learning (MSL) is a substantial part of people’s lives. Nearly every daily 

activity involves the use of motor skills, many of which are executed in an automated manner 

by retrieving previously learnt motor sequences. Activities such as brushing teeth or driving a 

car to work are all examples. MSL is a goal-directed activity and in this context, is used to 

describe the process in which one learns a sequence of movements with the goal being speed, 

precision and efficiency (Abrahamse et al., 2013). Once the sequence is learned, reproduction 

usually requires reduced cognitive effort with high efficiency. MSL has been well researched 

and evidence suggests that a combination of cognitive control functions and autonomous motor 

control facilitates performance in reproducing motor sequences (Abrahamse et al., 2013). 

Similarly, a distinction has been made between externally guided and internally guided control 

when performing sequences. While the former relies on external feedback in cases where people 

are unfamiliar with the task, the latter is characterised by rapid motor sequence production with 

less reliance on external cues. This is often believed to be supported by a well-established 

internalised representation of the sequence and its corresponding movements (Verwey & 

Abrahamse, 2012). 

As the foundation of motor learning is based on information processing, it can be 

investigated by measurements of response time (RT), movement time and accuracy of the 

performance (Verwey et al., 2014). Many studies made use thereof and several tasks have been 

developed for investigating how participants learn and produce a specific set of movements. 

Two of the most widely known in psychological research are the Discrete Sequence Production 

(DSP) task (Verwey, 1999) and the Serial Reaction Time (SRT) task (Nissen & Bullemer, 1987). 

Traditionally, in these tasks, participants produce quick and simple movements (i.e. pressing 

keys) in which cognitive processes can be separated from the movement execution itself 

(Rhodes et al., 2004). However, since daily activities require a combination of complex whole-

body movements, there are limitations to which the learning phenomenon of key-pressing tasks 

can be applied.  For example, MSL has been argued to be effector-specific (Barnhoorn et al., 

2016), meaning the motor program learnt in one modality, may not necessarily transfer to other 

body parts.  An integral understanding of whole-body MSL is lacking in the field, and therefore 

should be further investigated. 

Several recent studies extended keyboard-based sequence learning tasks to draw more 

general conclusions about motor learning abilities (Dotan Ben-Soussan et al., 2013; Du & 

Clark, 2017, 2018; Olivier et al., 2019, 2021). Notably, a study by Du et al. (2017) indicated 

that children and adults showcased different learning patterns when executing a step-based SRT 
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task. It was found that fewer children were able to demonstrate declarative knowledge of the 

learned sequences than adults. Also, children showed the most reduction in RT between the 

learning blocks as compared to adults who showcased a steady reduction in RT during the 

learning blocks. While Du et al. (2017) put forward the explanation that children have a smaller 

memory capacity as compared to adults and are therefore unable to develop explicit knowledge 

of the sequences inhibiting them to improve their performance while doing the task, it also 

seems likely that adults use a cognitive-based approach to learning and that children learn rather 

intuitively and motorically during execution. This may imply that children learn faster in a 

whole-body task as they are using a more bottom-up approach, directly accessing motor cortical 

loops (King et al., 2010) rather than a top-down control approach like adults (Ward & 

Frackowiak, 2003). Moreover, Adi-Japhaid et al. (2019) found that children need less practice 

than adults to retain a learned motor skill long-term which also alludes to different learning 

strategies. Yet, it is unclear whether adults are able to use the same approach as children when 

learning a motor skill. Segregating adults based on their performance and comparing the 

cognitive with the motoric approach may disclose valuable insights. 

While other sequence learning tasks have been redesigned to incorporate whole-body 

movement (Dotan Ben-Soussan et al., 2013; Du & Clark, 2017, 2018), insights of a Dance-Step 

version of the DSP (DS-DSP) task have yet to be validated. Thus, the goal of this study is to 

investigate whether individual learning differences in a DS-DSP task can be observed using a 

non-linear approach. Specifically, individual learning curves will be created to obtain insights 

into motor learning on an individual basis that may be hidden through aggregated data. Further, 

it will be investigated whether the results  from the DS-DSP are comparable to results from the  

Key-Press DSP (KP-DSP) task.  

1.1 Discrete Sequence Production Task 

Verwey (1999) developed the DSP task in order to be able to investigate the processes 

that support sequential motor skill acqusition. More specifically, the DSP task initially aimed 

to separate the cognitive processes that initiate a movement from the actualexecution itself 

during sequence production.  

 In the standard setting, participants are seated in front of a computer screen and 

instructed to place four to eight fingers on specific keys on a keyboard in front of them 

(Abrahamse et al., 2013). Considering a QWERTZ keyboard layout, these are for example y, 

d, f, g and j, k, l, - for four fingers from the left and right hand, respectively. The computer 

screen displays as many placeholders (normally squares) as there are fingers placed on the 
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keyboard, corresponding to the spatial positioning of the keys. Then, a fixed series of two to 

seven stimuli is presented to the participants (Ruitenberg et al., 2014), in that the placeholders 

light up and participants must respond by pressing the appropriate key. Over time, a learner 

goes through different learning phases and execution strategies to perform faster and more 

efficiently (Abrahamse et al., 2013).  

 It is well known that learners develop associations when practising a motor sequence 

leading them to be able to respond faster. Four different accounts have been put forward to 

explain how those associations develop (Abrahamse et al., 2008). First, with unfamiliar 

sequences, information processing occurs at stimulus-level with much reliance on external 

feedback. Initially, stimulus-to-response (S-R) mappings are assumed to be in use meaning that 

information processing occurs at sensory level upon which an appropriate response is selected 

(Chan, 2018). Second, stimulus-to-stimulus (S-S) mapping refers to the process of forming 

associations between successive stimulus characteristics such as the location of a stimulus. This 

process occurs independently from response characteristics. Third, when associations are 

developed between successive responses and are independent of perceptual impressions this is 

referred to as response-to-response (R-R) mapping and illustrates the shift from externally 

guided to internally guided control. Finally, associations can also develop as response-to-

stimulus (R-S) mappings. That is, stimuli are anticipated on the basis of previous responses 

(Hoffmann et al., 2001). Previous research showed that advanced sequence learning is 

predominantly motor- rather than perceptually-driven that is supported by response-based 

mapping (Willingham et al., 2000). 

1.2 The cognitive control and execution strategies in the DSP task 

 The development of representations beyond that of S-R bindings is reflected in the 

different execution modes that learners utilize (Verwey & Abrahamse, 2012). The underlying 

processes of these modes can be explained by the Cognitive Framework for Sequential Motor 

Behaviour (C-SMB) which assumes processors exist at three different levels (Verwey et al., 

2014). Firstly, the perceptual processors are responsible for sensory input and provide 

information about a stimulus to the central processor. Secondly, the central processor serves as 

a connector between the perceptual and the motor processor and involves symbolic 

representations of stimuli and responses. After processing the information it initiates a response 

and transmits it to the motor processors (Verwey et al., 2014). Finally, the motor processors are 

responsible for initiating and producing movements to reach a goal (Shaffer, 1991).  
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During the learning process, learners utilise three distinct execution modes before they 

are proficient in reproducing a sequence (Verwey & Abrahamse, 2012). Firstly, the reaction 

mode is common in executing unfamiliar sequences. It is characterized by sustained cognitive 

control, whereby attention is mainly placed on the stimulus to link it with an appropriate 

response. Secondly, after sufficient training and experience, associations between successive 

stimuli develop at perceptual, cognitive and/or motor level. Both modes are thought to be 

supported by more sensory-based S-S and S-R bindings. This leads to faster execution of the 

task if stimuli are presented in a familiar order due to an increasingly robust internalised model 

of the sequence. In reaction mode, the central processor responds to each stimulus individually 

by selecting a response and providing it to the motor processor while in association mode some 

short chunks are already developed (Verwey & Abrahamse, 2012). 

Finally, the chunking mode is evident after sufficient training and experience with 

discrete sequences whereby learners can produce the sequences rapidly. In chunking mode, a 

sequence of successive responses is executed as if it was a single response. The first response 

in a chunk is executed rather slow compared to the following responses due to the process of 

identifying the stimulus and selecting the appropriate motor chunk to execute. Yet, there is no 

need to have explicit knowledge of the sequences (Verwey & Abrahamse, 2012), as  the central 

processor responds to the first stimulus of a sequence and signals for the motor processor to  

execute the whole motor sequence (Verwey, 2001). Such fast execution relys on R-R and R-S 

bindings for sequence execution (Verwey & Abrahamse, 2012). 

Specifically, three stages have been observed during the execution of a well-practised 

sequence (Abrahamse et al., 2013). That is, the first key-press is slowed down due to the 

selection and preparation of the sequence (Verwey, 1999). This initiation time increases with 

sequence length since increasingly more responses are loaded into the motor buffer after 

stimulus presentation (Sternberg et al., 1978). After sequence initiation, subsequent responses 

become faster since they have been loaded and responding only requires execution (Verwey, 

1996, 1999). Finally, with sequences including more than four stimuli another slow response 

midway through the sequence has been observed. In a typical 6-key DSP sequence, this is 

usually at the fourth response (Verwey, 1999; Verwey et al., 2002). This is due to  a limited 

motor buffer capacity and, thus, longer sequences are divided into two or more segments to 

ensure smooth conduct (Verwey & Eikelboom, 2003). The process of grouping responses to 

enable cohesive initiation and fast execution is referred to as concatenation and the increase of 

response time midway through the sequence is thus the concatenation point (Abrahamse et al., 

2013). 
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1.3 Previous work implementing step-based sequence learning 

 Previous studies showed that sequence learning tasks can be modified into foot-based 

tasks. For example, the SRT task was modified to better resemble daily tasks. As Du & Clark 

(2018) point out, this has the advantage of segregating stimulus from motor processes for large 

spatial movements. Another advantage is that data on movements, such as the position of the 

centre of mass, can be collected using appropriate technology (e.g. force plate; motion sensor 

technology). Several studies have successfully modified keyboard based SRT task to step-based 

versions (Du, 2016; Du et al., 2017; Du & Clark, 2017, 2018; Olivier et al., 2019, 2021; Paul 

et al., 2018). Strong similarities are apparent between the SRT task and the DSP task in that 

both involve a series of stimuli presented on a computer screen that participants need to respond 

to by pressing spatially corresponding keys (Verwey & Abrahamse, 2012). This suggest that 

the DSP task could also be successfully transformed into a DS-DSP task rendering the 

possibility to examine differences between the results from the KP-DSP task and the DS-DSP 

task.  

1.4 Latent growth curves in sequence learning 

 To date, the Analysis of Variance (ANOVA) is one of the predominant statistical 

methods in MSL research to understand difference between conditions (Dotan Ben-Soussan et 

al., 2013; Verwey, 2010; Verwey et al., 2011). For example, Verwey et al. (2011) analyzed RT 

in the DSP task using ANOVAs based on the key position, practice block and age of the 

participant. While this enabled them to gain valuable insights (e.g., into the processing modes 

during MSL), ANOVAs have some severe limitations with the most important one being that 

they depend on an aggregation of data, which results in a loss of information at an individual-

level. Averaging data over participants has been criticized to produce distorted results, 

especially when individual learning rates vary significantly, because the outcome would in 

many cases not accurately reflect the individual participants (Brown & Heathcote, 2003). Other 

methods frequently employed in MSL studies are linear regression models such as Ordinary 

Least Squares Regression (Verstynen et al., 2012) and Linear Mixed-Effects Regression (Chan 

et al., 2018, 2020). The latter provides an improvement over the ANOVA as subject level 

random effects can be accounted for with trial level data being utlized.  

The present study introduces individual latent growth curve analysis as an alternative 

method to further understand subject-level differences. While latent growth curve analysis has 

frequently been used to model learning processes over time (Brooks & Meltzoff, 2008; 

DeKeyser, 1997) few studies have applied them to data from MSL tasks. One of them, from 

Acuna et al. (2014), applied exponential curves to the DSP task to understand chunk 
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development. Yet, their focus was not on individuals, but they applied the Bayesian approach 

to the population resulting in a loss of participant-level information. Besides providing 

information on differences between learners, growth curves can also account for non-linearity. 

This is a crucial aspect since learning rates are known to not be steady but to decrease as 

learning progresses (Freedman, 1987). Growth curves are therefore more realistic as they can 

model maximum performance by approaching a certain value and not having an x-intercept. 

Additionally, they can be used to model between-subject differences in within-subject changes 

and provide a framework to analyse time-series data (Curran et al., 2010). Finally, this method 

provides additional information in the form of Rate, Amplitude and Asymptote parameters that 

may be utilized to individualise training such as the amount of training or difficulty in training.  

While growth curves have generally been proven useful, there have been discussions 

about which mathematical function optimally reflects the learning process. The power curve 

and the exponential curve have been argued to be most appropriate (Daller et al., 2013; 

Heathcote et al., 2000). Notably, power curves proved to be a better fit for averaged datasets 

while exponential curves better resembled unaveraged data. As outlined before, unaveraged 

data is preferred in the present study leading to the choice of exponential learning curves.  

1.5 Predictions  

Firstly, it is predicted that learners will learn the DS-DSP task, and that latent growth curve 

analysis would showcase the usual reduction in response times. Secondly, should the latent 

growth curve analysis be successful, it would be possible to extract three parameters that are 

useful for understanding individual learning progression (Rate, Asymptote and Amplitude). 

Thirdly, I aim to showcase that each participant can be ranked and assessed based on their 

learning parameters and that this information could be useful for providing feedback on 

designing individual learning approaches. Lastly,  I predict that the concatenation pattern that 

is found in the KP-DSP task will also be observable in the DS-DSP task. Specifically, the first 

as well as the fourth response is expected to be slowed down due to the loading of separate 

chunks. 

2.0 Method 

2.1 Design 

In this study, a between-subject design has been implemented as individual differences 

are investigated. The study was part of a larger-scale study that collected motion-related data 

which would be the subject of a separate report. The project was approved by the Ethics 

committee of the University of Twente in the Netherlands. 
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2.2 Participants 

Participants aged 18 to 35 were recruited via the website “Sona System” of the 

University of Twente, which provides students with course credits in exchange for their 

participation. Participants were also recruited within circles of acquaintances living inside of a 

20 km radius around Enschede in the Netherlands. It was explicitly required for participants to 

be healthy. Additionally, they should not have a history of neurological, psychological or 

psychiatric disorders, no alcohol, tobacco or other drug addictions or dependencies, no signs of 

cognitive impairment as well as no obvious physical injuries or impairments that would affect 

their performance during the stepping task. Finally, they should not have taken part in similar 

sequence learning studies in the past. To facilitate participants to learn as best they could during 

task learning, they were told that they could win a prize based on their performance: €15, €10 

and €5 for the first, second and third fastest. 

Five participants took part in the study 

(3 females, average age 22 ±1.87 years; 60% 

right-footed). Participants were identified as 

being right-footed (i.e., reacting faster and 

possibly being stronger with their right leg) 

by having participants stand straight and 

slightly pushing them which caused them to 

take a step forward with their strong foot. 

2.3 Dance-step DSP task 

During the DS-DSP task, participants 

stood in the centre area on a commercially 

available dance mat (Nonslip Dance Pad 

Version 5 from D-Force). The stimuli in the 

task included four rectangles that spatially 

corresponded to four areas on the dance mat 

(↑,↓, → and ←) and a cross in their middle 

(See Figure 1). They were presented on a TV 

screen (LG model nr. OLED77CX6LA) with 

a size of 77 inches that was positioned in front 

of the participants at a distance of 1.20 m from 

the dance mat. The TV screen and the dance 

mat were connected to a laptop that ran the 

Figure 1. A picture of the experimental set-

up. During the DS-DSP participants stand 

in the centre are of a commercially 

available dance mat. After six stimuli have 

been presented to them, they reproduce the 

sequence by stepping on the spatially 

corresponding areas on the dance mat. 
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stimuli of the DS-DSP task. Stimuli were presented using E-Prime Version 2.0.10.356. RT and 

accuracy measures were collected as 

part of E-Prime. 

Each trial consisted of six 

stimuli that were presented by a lighting 

up of the rectangles on the screen. As 

depicted in Figure 2, first the default 

screen was presented with a cross in the 

middle lighting up in yellow for one 

thousand milliseconds upon which six 

rectangles took turns in lighting up in 

yellow for 750 ms each. Next, 

participants saw the default screen for 

another 1500 ms after which the cross in 

the middle lit up in either blue (Go) or 

red (NoGo). In the case of a Go stimulus, 

participants needed to reproduce the 

sequence they had seen by taking six 

steps on spatially corresponding areas 

on the dance mat while in the case of a 

NoGo stimulus, the waiting time lasted 

three seconds until the next sequence 

was displayed. As outlined by De Kleine 

& Van der Lubbe (2011), the break 

during which participants wait for a 

signal makes it possible to separate 

motor preparation and action. The 

frequency of Go or NoGo stimuli was 

92% and 8%, respectively. 

Participants were given the liberty to 

organise their responses in the most naturalistic manner. In the case of a mistake, feedback 

showed which steps were wrong after six steps have been taken.  When no mistakes were made, 

a ‘good’ word was displayed and the next trial was shown. 

Figure 2. An example of a sequence of stimuli 

from the onset of stimuli to the Go/NoGo signal. 

The duration of presentation is indicated for each 

phase. 



12 
LEARNING CURVES IN A DANCE-STEP TASK 

Specifically, participants practised the following two sequences: ←→↑↓→← and 

→↑←↑→↓. To counterbalance foot-specific responses, both sequences were rotated four times 

resulting in eight different counter-balanced sequences. Participants received different 

sequences. Thus, possible variations in sequence difficulty or foot strength were expected to 

not have an effect on the participants’ learning process. To give an example, the sequence 

←→↑↓→← rotated once resulted in a different counter-balanced sequence ↑↓→←↓↑. 

There were eight practice blocks during which participants practised two 6-key 

sequences. The order in which sequences were presented was randomized but each sequence 

was practised 12 times per block. After block four, there was a break of 10 minutes. Between 

all other blocks, there were short breaks of approximately three minutes. Halfway through every 

block, there also was a 20-second break. Breaks were considered important to avoid 

physiological and mental fatigue and, therefore, participants were requested to not end breaks 

early.  

2.4 Motion Capture Technology: Xsens 

While for the present report only behavioural data regarding RT and accuracy was 

investigated, data on changes in the centre of mass was also collected for the purpose of another 

project. This was done by the use of Xsens technology which is a motion capture technology 

that can be attached to the body (Xsens Inc., 2017). More specifically, sensors were attached to 

both feet, both lower legs, both upper legs and the pelvis of the participants. Data was then 

wirelessly transmitted to a computer and loaded into the software MVN Analyze for further 

analyses (for a review of the MTw Awinda technology see Paulich et al., 2018).  

2.5 Procedure 

After welcoming participants in the lab, they were briefed about the study, its purpose 

and their right to leave at any time upon which they provided written informed consent 

(Appendix A and B). Body measures such as arm span and hip height were taken and entered 

in the MVN Analyze software for accurate results on the centre of mass movement. Then the 

Xsens sensors were attached to the participants’ body and calibrated by having them walk a 

straight line. Finally, they were instructed about the stepping task in detail and offered to ask 

further questions. As there was no way for the software to account for it, participants were 

explicitly instructed to step with their whole foot during the task and not just with their toes. 

Preparation for the experiment took approximately 20-30 minutes.  
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At the beginning of the experiment, participants were asked to stand in the middle of 

the dance mat and step on the X area (top left area) as soon as they were ready. Each block took 

between 11-15 minutes depending on how fast the participants responded. 

2.6 Data Analysis 

Before analysing the data, data extraction was performed using Python 3.8. Raw data 

were averaged per trial. That is, the six RT’s corresponding to each step in a sequence were 

summed up and divided by six to obtain the average RT for each trial (i.e., sequence 

reproduction). Also, the data were tested for outliers. Since all trials were considered to be 

conducted accurate and RT’s lay within a reasonable range no data were excluded.  

Following, learning as measured by RT (s) was analysed using a non-linear mixed-

effects model. An exponential learning curve was chosen as a likelihood function. The number 

of practised repetitions was taken as the independent variable. Analyses were conducted using 

the statistical programming language R 4.1.0. The model was built using the package brms 

2.15.0. A posterior distribution was approximated using Markov-Chain Monte Carlo sampling. 

An ex-gaussian distribution was fitted to the target variable RT and weakly informative priors 

have been used based on data from previous studies that used whole body stepping tasks (Du 

& Clark, 2017, 2018). The following formula described by Heathcote et al. (2000) was used for 

building the model: 

(1)      ypN = Asymp + Amplp ∙ exp(-Ratep ∙ N)  

 

 

y: response time 

p: participant 

N: trial 
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Figure 3. An example of an exponential learning curve. The three key parameters are marked. 

The Asymptote describes the maximum performance, the Rate reflects the speed of 

improvement and the Amplitude reflects someone’s overall improvement. 

 

The approximate shape of the resulting learning curves is depicted in Figure 3. The 

Asymptote parameter describes the maximum performance that someone could achieve with 

continuous practice. The Rate parameter reflects the speed at which someone improves their 

performance. The Amplitude parameter displays the overall improvement someone makes. 

Thus, it reflects the distance between someone’s initial performance without training and their 

maximum performance (i.e. Asymptote). The Rate parameter is most informative to the concept 

of individual learning. The Asymptote is the next most informative as it provides information 

on the maximum level of learning and therefore the hypothetical amount of training required.  

The Amplitude carries some ambiguity because a small Amplitude can imply little overall 

improvement and that a person already had a good performance from the start (e.g. from 

previous practice), or that the person did not show much learning and good performance in 

general. The Amplitude although the least informative is still required to create a robust 

understanding of individual learning. 

To investigate concatenation as found with the KP-DSP task, the initial raw dance-step 

level data was used. Again, no data were excluded from the analyses. Concatenation was 

analyzed with linear mixed-effects models using the lme4 package Version 1.1-25.  In this 

model, RT in seconds was the response variable with two predictor variables: (1) Dance-Step 
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Position (1 to 6), and (2) Block (8).  Subjects and Accuracy were specified as random factors 

to account for intraclass correlations.  Although plots would be sufficient to understand possible 

significant interactions between Dance-Step Position and learning Blocks, posthoc Tukey tests 

were also performed to further ascertain these interactions.  For each model, type II Wald chi-

square tests were reported to present the significance level of effects for each interaction. 

The syntax for extracting data from E-prime text files, cleaning and structuring data, 

model creation and displaying model output and graphical representations can be found in 

Appendix C to F. 

3.0 Results 

3.1 Raw data 

To get an initial idea about the learning progress of participants, raw data were inspected. Figure 

4 displays the RT’s in seconds of all participants throughout the experiment. The two 

counterbalanced sequences each participant practised are illustrated separately as facets. Every 

time a sequence was practised was considered as one repetition. To get a better overview and 

make the graphs comparable, outliers, as defined by those values two standard deviations above 

the mean and higher, were excluded from the visualizations (mean=0.50, sd=0.39, 2% of data 

removed for visualization purposes). All participants displayed a learning effect as RT’s 

decreased with an increased number of training trials. Figure 5 shows each participant’s 

progress over the eight blocks of the experiment. Those initial graphs confirm the expectation 

that learning is not linear but seems to follow the shape of an exponential function. 
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Figure 4. Visualization of raw data. Subjects are indicated by different colours. Each subject 

practised two different sequences which are illustrated separately. Outliers, as defined by those 

values two standard deviations above the mean and higher, were excluded for visualization 

purposes (mean=0.50, sd=0.39, 2% of data excluded). Learning is visible in all participants as 

RT’s decreased with increased repetitions of a sequence.  
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Figure 5. Visualization of raw data across participants. Each curve illustrates a participant’s 

RT’s in seconds over the eight learning blocks. Learning is visible as for all participants as RT’s 

decreased with increased practice. 

3.2 Population average of learning Rate, Asymptote and Amplitude 

The non-linear fixed effects model was then computed using the formula previously described 

(See Formula 1). Table 1 shows the coefficient estimates resulting from the model for the 

population average of the fixed effect Trial rounded to three decimal places. Confidence 

intervals for all parameters are rather large. 

Table 1 

Coefficient estimates with 95% credibility limits for fixed effect Trial 

Parameter Centre Lower Upper 

Rate 0.054 0.010 0.122 

Amplitude 0.505 0.142 1.066 

Asymptote 0.384 0.139 0.756 

 

Table 2 displays the random factor variation as standard deviation of the parameters. The 

estimates should be interpreted with caution due to the small sample size. Yet, there is an 

indication that participants do not have equal possibilities in terms of their maximum 

performance. Thus, some participants will likely display better performance compared to others 

after exhaustive practice which is reflected in the Asymptote parameter. 

Table 2 

Coefficient estimates with 95% credibility limits for the random factor variation 

Parameter Centre Lower Upper 

Rate 0.057 0.028 0.150 

Amplitude 0.432 0.213 1.210 

Asymptote 0.294 0.135 1.077 

 

3.3 Learning curves with model estimates 

Based on the model estimates, learning curves of individual participants over trials were 

created. Figure 6a and 6b both display the same estimates for each participant but in Figure 6a 

scales on the y-axis vary while they are normed in Figure 6b. Also, in Figur 6b data points were 

added. While all participants display a clear decrease in RT with increased practice, participants 

differ to a great degree in their learning rate. For example, participants two and four have a 
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steep learning curve followed by a flattening out of the curve as compared to participant five 

who seems to have a relatively constant learning rate throughout the experiment. The 

Asymptote (i.e., the maximum performance) of participant five is very difficult to estimate 

although it does suggest that further improvement can still be gained. The same can be observed 

for participant three. Yet, it should be noted that participant three starts with a performance that 

other participants do not even reach towards the end of the experiment. Further, participant one, 

two and four seem to reach their maximum performance roughly after 50 trials while this can 

hardly be determined for participant three and five. 

  

Figure 6a. Visualization of each participant’s learning curve based on model estimates. Be 

aware of the different scales on the y-axis.  
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Figure 6b. Visualization of each participant’s learning curve based on model estimates with 

normed y-axes ranging from 0 to 1.5 to ensure comparability. Also, data points were added. 

3.4 Individual learning parameters 

Following, estimates of the Rate, Amplitude and Asymptote parameters for individual 

participants were investigated (Figure 7 and Table 3-5). Besides the centre estimates, certainty 

also varies to a great degree. From the learning curves, it already became apparent that 

participants three and five are rather slow learners, i.e. they do not improve their performance 

much during the experiment. This can be confirmed when looking at individual parameters. 

Their learning Rate is shortly above zero and their Asymptote can hardly be estimated due to a 

high level of uncertainty. However, the estimate for their asymptote is much lower than for the 

other participants indicating that their performance is very good even though they do not 

improve their performance much. Yet, due to the uncertainty of the parameter the inner quartiles 

of the asymptote for these participants include negative values which is impossible. As the 

Asymptote is tightly connected to the Amplitude, the Amplitude is also uncertain for 

participants three and five. In contrast, participants one, two and four display a high learning 

Rate but seem to have reached their maximum performance early which is reflected in the high 

certainty of their Asymptote and Amplitude.  
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Figure 7. Estimates of the Rate, Amplitude and Asymptote parameters for individual 

participants. The thick lines represent the median of each parameter per participant. The bars 

are restricted by the upper and lower bounds of the 95% confidence interval. Thus, shorter bars 

indicate more certain centre estimates. 

 

Table 3 

Coefficient estimates with 95% credibility limits of the Rate parameter for the random effect 

Participant 

Participant Centre Lower Upper 

1 0.046 0.042 0.050 

2 0.092 0.071 0.120 

3 0.008 0.001 0.206 

4 0.092 0.080 0.107 

5 0.003 0.002 0.008 

 

Table 4 

Coefficient estimates with 95% credibility limits of the Amplitude parameter for the random 

effect Participant 
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Participant Centre Lower Upper 

1 1.034 0.974 1.091 

2 0.311 0.246 0.371 

3 0.178 0.074 0.433 

4 0.587 0.528 0.643 

5 0.477 0.305 0.834 

 

Table 5 

Coefficient estimates with 95% credibility limits of the Asymptote parameter for the random 

effect Participant 

Participant Centre Lower Upper 

1 0.649 0.639 0.660 

2 0.482 0.472 0.491 

3 0.178 -0.166 0.223 

4 0.499 0.489 0.509 

5 0.134 -0.232 0.332 

 

3.5 Influence of key position on RT 

To test for an effect of stimulus position on RT a linear mixed-effects model was 

computed which revealed a significant Block x Position interaction on key-press RT, χ²(35, N 

= 5) = 78.8, p < .001, which showed that RT was changing for each of the positions across 

learning blocks. Visualizing the effects and interactions (See Figure 8) showed that indeed in 

general, RT was decreasing for each position for each of the blocks.  The posthoc Tukey tests 

for each position across blocks revealed that this significant interaction was a result from the 

differences, in that Position one always had longer RTs compared to Position two, three and 

four (p < .05).  Position one exhibited similar RTs to the other Positions only by Block 

eight.  However, Position one had a significantly longer RT compared to Position four 

throughout all eight learning Blocks. Also, in block eight, Position four showed significantly 

shorter RTs than Position six. Full contrasts between key positions can be inspected in 

Appendix G. 
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Figure 8. Visualization of estimated RTs in seconds per key position for each block. 

4.0 Discussion 

In this study, the traditional DSP task was transformed into the DS-DSP task. The first aim of 

the study was to examine the information that can be extracted from individual learning curves 

if applied to data collected from the DS-DSP task. Overall, the expectation that learning would 

be evident in all participants (i.e., RT decreased with increased practice) was confirmed and 

learning curves mostly displayed the expected shape of an exponential function. The non-linear 

mixed-effects analysis resulted in multifaceted results.  

First, it could be observed that learning differs to a great degree between individuals as 

reflected in individual learning parameters and their corresponding certainty. Some learners 

have a rather steep learning curve reaching their maximum performance early, while others 

have a flat learning curve, suggesting more training for them to reach their maximal 

performance. In this study, specifically the learning curves of participant three and five showed 

to be rather flat and less curved while their performance was faster than that from other 

participants. In contrast, participant two and four had a steep curve reaching their highest 

possible performance roughly at trial 50 already which is the beginning of block three. 

Participant one reached their maximum performance roughly at trial 60. Thus, it can be said 

that those three participants are quick learners which is also reflected in the centre estimates of 
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their Rate parameter since they are considerably higher than the estimate for participant three 

and five. Also, the Asymptote and Amplitude parameters of participant one, two and four could 

be estimated with sufficient certainty. The fact that participant three and five did not show much 

improvement throughout the experiment had a considerable effect on the certainty of the results 

obtained as all three parameters have large 95% confidence intervals for those participants. 

There is one exception, namely the rate of participant five which has a small confidence interval. 

It seems like the participant displayed a steady decline in RT leading to the modelled learning 

curve approximating a linear shape. 

However, learning ability should not be equalized with performance. That is, participant 

three and five who seem to be slow learners, in fact, displayed the shortest RT’s throughout all 

blocks. Particularly, participant three demonstrated RTs in the first block already that other 

participants did not even reach towards the end of the experiment. Notably, neither accuracy 

nor cognitive workload measures were included in the analyses which is why it cannot be 

concluded that participant three and five are better performers than the other participants. They 

might have made more errors or put more effort into the task than the other participants. 

Assuming that the number of errors and the degree of mental worklaod was equal for all 

participants, one plausible explanation is that that participant three and five had previous 

training. Even though it was requested from participants that they did not recently take part in 

any other motor learning studies, they might exercise a sport that requires them to learn motor 

sequences such as dancing. They might have been very close to their maximum performance at 

the beginning of the study already which resulted in an uncertainty of the model parameters. 

This explanation seems likely as their learning curves seem to be shifted. Another plausible 

explaination would be that participant three and five are naturally talented so improvements are 

very incremental but significant compared to the faster rates shown by other participants. They 

might not have reached their maximum performance during this study and additional trials 

would still be advantageous. Even though this interpretation seems unlikely it should not be 

disregarded. 

While there is some uncertainty about the maximum performance of participants three 

and five, the results suggest that participants one, two and four overlearned the sequences. 

These individual differences call for an adaptive design of the study, especially, when the 

learning rates of participants vary a lot. While sequence learning tasks such as the DSP and 

SRT task have previously adhered to a static design, it seems advantageous to adapt the number 

of trials as well as sequence length during the task based on the participants’ learning progress. 

This is not a new idea as previous studies have suggested adaptive approaches to save time and 
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costs while increasing the insights gained from a study. For example, Myung & Pitt (2009) 

developed such an approach using Bayesian decision theory and highlight the need for a design 

that renders a model with high certainty on the model parameters. As could be observed in the 

present study, learning curves were very useful to extract information on individual participants. 

For those showing considerable improvement during the task confidence interval ranges were 

as small as 0.02. Thus, intermediate model computation including a predefined stopping rule 

may provide the advantage of shortening the task for fast learners and extending it for slower 

learners to gain more certain insights. Yet, extending the task should be treated with caution as 

fatigue is known to adversely affect performance (Carron & Ferchuk, 1971) and is expected to 

increase the longer the experiment lasts. Also, in a study conducted by Du et al. (2017) 

involving the SRT task, children showed the most reduction in RT between learning blocks as 

compared to adults who displayed a constant decrease in RT. Thus, some cognitive strategies 

may inhibit the participant to improve their performance during the task. This implies that there 

should be a limit to the extension of the experiment as some improvements in performance may 

only become visible after an extensive break. Having participants come back one day later 

renders the possibilities to overcome these constraints. 

Further, adjusting the task by gradually extending the sequence lengths would be a 

suitable approach to assess the participants’ maximum performance which would be reached as 

soon as RTs significantly increase. If participants three and five indeed approximated their 

maximum performance in the first block already, RTs only reflect their physical capacity while 

their cognitive capacities were not exhausted. Previous research found that with increased 

practice participants utilize different cognitive strategies and tend to use longer chunks 

(Abrahamse et al., 2013). Thus, it might be that participant three and five are able to use longer 

chunks than other participants leading them to respond faster. Increasing the sequence length 

may open up the possibility to provide skill-level appropriate training and uncover those 

participants’ full potential while possibly also leading to more certain parameter estimates. 

The second goal of the study was to investigate differences between response times for 

different step positions in the sequence and compare the results to that of KP-DSP task. It was 

found that participants seemed to switch to the chunking mode very fast. This was indicated by 

the fact that, from the first block, response times decreased up to key position four and increased 

at key position five and six. In block eight, key position four still displayed significantly faster 

RTs than key position one and six but all other significant differences in RT disappeared. These 

findings point to the fact that the first four responses were executed as a coherent chunk while 

the slowed RT at response five and six points to a different strategy. 
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Those findings display a different concatentation pattern than was found with the KP-

DSP task. Usually, the first response of familiar sequences is slowed down because a chunk of 

responses is loaded into the motor buffer and is followed by responses that are executed very 

fast. In sequences exceeding four stimuli, the sequence is split into two or more chunks 

indicated by another slow response midway through the sequence. Considering 6-key 

sequences, the fourth response is usually slowed (Verwey, 1999; Verwey et al., 2002). A 

notable difference between the KP-DSP task and the DS-DSP is the number of effectors 

corresponding to the target positions. While in the traditional task there are four to eight fingers 

used for four to eight response keys, respectively, in the DS-DSP task participants use two legs 

to reach four response keys on the dance mat. This requires them to be more flexible as they 

need to choose a foot and the optimal movement to reach the target which possibly incorporates 

different undiscovered cognitive strategies. 

Previous research found that people frequently develop a motor rhythm when learning 

a sequence which may deliver an explanation for the findings in the present study (Sakai et al., 

2004). Those rhythms can be sequence-specific or be developed independently from the 

sequence. In the present study, all participants seemingly displayed similar RT patterns across 

key positions pointing towards an inherent rhythm of the sequence. But given that the same 

patterns are found across two different sequences that are also counterbalanced this explanation 

does not seem plausible.  

Rather, movements in the DS-DSP seem to follow a “bell-shaped velocity profile” 

(p.38) as outlined by Rosenbaum et al. (1995). That is, movements start rather slow, then 

accelerate and slow down when approaching the target. The phenomenon has been found in 

movements of the shoulder, elbow, wrist and even the eye (Abrams, 1994; Lacquaniti & 

Soechting, 1982) and has been explained by various factors such as an intended reduction of 

jerk and torque (Flash & Hogan, 1985; Uno et al., 1989). In the DS-DSP task, participants stay 

in motion until the end of the sequence. Thus, the execution of one sequence seems to involve 

the grouping of several movements into one bigger movement. Likely, RT’s have not been 

found to be bell-shaped in the KP-DSP task because it only involves small movements where 

excessive jerks do not play a role and there is not much force that would need to be reduced 

when approaching the target (the last key). Future research should evaluate this explanation by 

examining whether RT’s across key positions still display a bell shape when sequences are 

extended. It is probable that chunks will be observable and that there is a slowing down towards 

the end of the sequence. 
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4.1 Limitations  

A first limitation to note is the small sample size. Since the study was conducted within 

a short timeframe, data collection was terminated after data on five participants were collected. 

Having data from a bigger sample would render the possibility to draw general conclusions 

about MSL. Particularly, participant three and five displayed unexpected but similar learning 

patterns while participant one, two and four also showcased similar learning patterns. Thus, it 

remains undiscovered whether these are, for example, typical patterns for learners with previous 

practise and those without, or whether there is a variety of learning patterns that were not 

reflected by the data collected in this study. Future research could build up on this. Notably, the 

present findings highlight the advantage of learning curves over other statistical methods as the 

two learning patterns would remain hidden when aggregating data. 

Next, to ensure that participants could be recruited within a reasonable time, the study 

was conducted on a single day. Yet, this prevented the possibility to study consolidation of the 

learned sequences which could have been achieved by having participants come back on the 

next day to investigate whether they had retained the learned sequences. Adi-Japhaid et al. 

(2019) found that consolidation is not similar for everyone which points to different learning 

strategies and thus should not be omitted when studying the learning progress. Nonetheless, 

this study gives valuable insights into short-term processes of learning. 

Further, the differences in learning rate between participants caused some participants 

to overlearn the sequences while others possibly were not able to reach their maximum 

performance. The former case is believed to not have a negative effect on the results. 

Nonetheless, more data than needed was collected from participant one, two and four and it is 

possible that participants became bored which may have decreased their performance towards 

the end. In contrast, it still remains unclear whether participants three and five would have been 

able to further improve their performance. 

4.2 Future research 

Future research could investigate adaptive/individualized training designs of the DS-

DSP task to optimize learning. Specifically, this can be achieved by intermediate model 

computation. As participant one, two and four reached their maximum performance at the 

beginning of block three, future researchers could compute a non-linear mixed-effects model 

using data from the first three blocks while participants execute block four. Based on the centre 

estimate of the Asymptote parameter and its certainty, the results could determine whether 

additional trials are necessary based on a predefined stopping rule. Further, future studies 
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should increase sequence lengths when observing a learning pattern like this of participant three 

and five. Incremental steps could be incorporated into the task. For example, at first, participants 

could be given 6-key sequences which are extended by one element at a time up to twelve 

elements. As soon as RT’s significantly increase the participant’s maximum performance is 

reached and extending should be stopped. This way, cognitive control and motor learning 

abilities could be optimally challenged and the results would be optimsed. Finally, extending 

the sequence lengths also renders the possibility to examine whether RTs across key positions 

still display a bell shape or that new concatenation points are found compared to the present 

study. 

4.3 Conclusion 

Learning curves provide many possibilities to investigate individual patterns and 

requirements for effective learning. Computing learning curves can be useful in practice to 

optimally improve performance while allowing time for consolidation in populations that 

perform a lot of precision manual tasks such as machine operators, surgeons, athletes and 

musicians. The duration needed for practice could be determined early in the process and thus 

training could be delivered most effectively.  
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Appendix A 

Participant Information Sheet 

Research Project Title: Dance-step motor sequence learning 

This project has been approved by the University of Twente’s Behavioral, Management and 

Social sciences (BMS) Ethics Committee No. 210390. 

Researcher Contact details:                  Supervisor Contact details: 

 

Invitation to participate in the study: You are invited to participate in the following 

research study that will investigate how motor sequence learning is reflected in dance-step 

manner. Participation in this study is strictly voluntary with informed consent required before 

you begin. You can withdraw your participation from this research study at any time without 

any consequence to you. 

Purpose of the study: This study is designed to investigate reaction time and centre of mass 

movement when one is learning a new motor sequence. The study will only involve coming to 

the laboratory for 1 testing session to record your data during practice. This will be completed 

on a computer involving a step task while your reaction time as well as your movements are 

recorded using 7 Xsens motion capture sensors fixated on your legs, feet and pelvis. 

Eligibility to participate: In order to participate, you must meet the following eligibility 

criteria: 

• You are healthy and aged between 18 and 35 years 

• You are not currently taking any prescribed medication on a regular basis (oral or 

implanted birth contraceptives are ok) 

• You are not physically injured 

• You do not have any learning disabilities or diagnosed mental health issues or any 

neurological disorders (such as Alzheimer's, Parkinson's, Stroke, Multiple Sclerosis, 

Brain tumor, Physical Brain injuries, Seizures or previous concussion/coma) 

• You have not previously taken part in any motor learning experiments involving 

sequence learning tasks in the BMS or via SONA. 

• You can attend one session of data collection for up to 4 hours. 
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• You do not mind having motion capture sensors attached to your legs, feet and pelvis. 

• You are not feeling unwell in general. 

Interested participants will be screened for eligibility by a researcher prior to participation 

once more. 

Requirements: Participation in the study involves attending a laboratory session ONCE for up 

to 4-hour research – with up to 4 SONA Credits will be give. 

What is Xsens and how is this data collected? The Xsens gear is a 3D motion capture 

program that uses inertial sensors based on the miniature MEMS technology. Xsens inertial 

sensor technology will be used for orientation, velocity and positioning data.  

Lab Session (~4 hour): In the first session, you will first be asked to provide information 

about your demographics such as age, education status etc. After this, your body 

measurements will be taken and entered in the MVN analyze software. Following, you will be 

fitted with the xsens sensors which communicate wireless with the Awinda base station, 

which is connected to the stimulus PC. Once the equipment is setup and you are ready, you 

will be asked to perform a calibration routine that consists of standing still, walking in a 

straight line, turning around and walking back. This lasts about 5 to 10 minutes. After this, 

you will perform a step-dance task in which you train motor sequence and a testing block. 

Halfway through the training blocks, you will be given a 10 minute break and provided with 

some sweets and a drink. Upon completion of the testing block, you will be assisted in taking 

the sensors off. To complete the session, you will be debriefed and thanked for your 

participation. 

Risks and benefits: This research study does not involve any risk to your well-being beyond 

what would be expected from typical daily activities.  

Reporting and maintenance of data and participant information: All records containing 

personal information (i.e., signed written consent form) will remain confidential and no 

information which could lead to identification of any individual will be released unless 

required by law. All of the research data in this study is recorded by a unique number, 

meaning that your results will be non-identifiable. 

There will be no way to identify your data in any communication of results. The information 

collected as part of the study will be retained for 10 years and stored in the principal 

investigator’s office (University of Twente Drienerlolaan 5, Cubicus (building no. 41), room 
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B320, 7522 NB Enschede The Netherlands) and on secured electronic storage housed within 

the University of Twente, BMS Labs. 

The researcher will take every care to remove responses from any identifying material as 

early as possible. Likewise individuals' responses will be kept confidential by the researcher 

and not be identified in the reporting of the research. 

Summary report of this study’s findings: When the study is published, a summary abstract 

of the findings will be made available to all participants. This summary will be sent via email 

as an electronic document upon request by the participant. 

This project has been approved by the University of Twente BMS Ethics Committee. If you 

have any ethical concerns about the project or questions about your rights as a participant 

please contact the Secretary of this Committee:  

Dr. Lyan Kamphuis-Blikman  

Tel:+31534893399; email: l.j.m.blikman@utwente.nl 
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Appendix B 

Consent Form for Dance-Step Motor Sequence Learning 

You will be given a copy of this informed consent form. 

Please tick the appropriate boxes    Yes No 

Taking part in the study   

I have read and understood the study information dated [    ] 

(DD/MM/YYYY), or it has been read to me. I have been able to ask 

questions about the study and my questions have been answered to my 

satisfaction. 

 

⚪     ⚪    

I consent voluntarily to be a participant in this study and understand that I 

can refuse to answer questions and I can withdraw from the study at any 

time, without having to give a reason. 

 

⚪     ⚪    

I understand that taking part in the study involves one laboratory session and 

data recording is performed on the computer with Xsens sensor technology. 

 

⚪     ⚪    

Use of the information in the study   

I understand that information I provide will be used for publication, 

conference presentation and scientific reports. 

 

⚪     ⚪    

I understand that personal information collected about me that can identify 

me, such as [e.g. my name or where I live], will be de-identified and not be 

shared beyond the study team. 

 

⚪     ⚪    

Future use and reuse of the information by others   

I give permission for the data that I provide to be archived in BMS 

Datavault and made anonymous so it can be used for future research and 

learning. 

 

⚪     ⚪    

I agree that my information may be shared with other researchers for future 

research studies that may be similar to this study or may be completely 

different. The information shared with other researchers will not include any 

⚪     ⚪    
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information that can directly identify me. Researchers will not contact me 

for additional permission to use this information.  

 

I give the researchers permission to keep my contact information and to 

contact me for future research projects. 

⚪     ⚪    

 

Signatures 

_________________________   __________________ ______________ 

Name of participant [printed]        Signature  Date 

I have accurately read out the information sheet to the potential participant and, to the best of 

my ability, ensured that the participant understands to what they are freely consenting. 

_________________________   __________________ ______________ 

Researcher name [printed]         Signature  Date 

Study contact details for further information: Dr. Russell Chan, r.w.chan@utwente.nl 

Contact Information for Questions about Your Rights as a Research Participant If you 

have questions about your rights as a research participant, or wish to obtain information, ask 

questions, or discuss any concerns about this study with someone other than the researcher(s), 

please contact the Secretary of the Ethics Committee of the Faculty of Behavioural, 

Management and Social Sciences at the University of Twente by ethicscommittee-

bms@utwente.nl 

 

 

  

mailto:r.w.chan@utwente.nl
mailto:ethicscommittee-bms@utwente.nl
mailto:ethicscommittee-bms@utwente.nl
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Appendix C 

Python Syntaxt to Extract the Data from E-Prime Text Files 

import pandas as pd 

import os 

import re 

 

#Here you choose the folder with the txt.files you want to merge into an 

excel file  

directory = r"C:/Users/Emma/Documents/Uni/Thesis/Data dance" 

 

def clean_data(original_df): 

# split up all elements in df into [variable, value] and collect data 

in a list 

    data_list=[] 

    for index,row in original_df.iterrows(): 

        boolean=row.str.contains(":").sum() 

        if boolean>0: row = row.str.split(pat=":") 

        data_list.append(row.item()) 

 

print("A session has been added with "+str(len(data_list))+" elements 

in the list containing data from ",end="") 

 

    # remove all tabs and whitespaces from the data 

    regex = re.compile(r'[\t\s]') 

    for e in range(len(data_list)): 

        if type(data_list[e])==list: 

            data_list[e][0]=regex.sub("",data_list[e][0]) 

            data_list[e][1]=regex.sub("",data_list[e][1]) 

        else: 

            data_list[e]=regex.sub("",data_list[e]) 

     

    return data_list 

     

def get_logframe_indices(my_list): 

# create a list with the starting and ending indices of each logframe 

    indices=[] 

     

    for row in range(len(my_list)): 

        if my_list[row] == '***LogFrameStart***' or my_list[row] ==    
      '***LogFrameEnd***': 

            indices.append(row) 

     

    return indices 

 

def get_data (initial_df): 

     

    #the other two functions are called to clean the data first and get the 

 indices where each logframe starts and ends 

    part_list=clean_data(initial_df) 

    indices=get_logframe_indices(part_list) 

     

    function_columns=["subject","session","procedure","sub trial 

 number","feedback.ACC","feedback.CRESP","feedback.RESP","feedback.RT”

 ,"h","cue.OnsetTime","cue.OnsetDelay"] 

    file_df=pd.DataFrame(columns=function_columns) 

     

    #subject and session is only assigned once per file 

    for row in range(len(part_list)): 

        if part_list[row][0] == 'Subject':      

  subject=int(part_list[row][1]);print("subject "   

  +str(subject)+".") 
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        elif part_list[row][0] == 'Session':      

  session=int(part_list[row][1]);break 

     

    #loop over starting indices of LogFrames 

    for i in range(0, len(indices), 2): 

        #only loop over lines within a LogFrame 

        for e in range(indices[i]+1,indices[i+1]): 

            if part_list[e][0]=='sequentie' or      

   part_list[e][0]=='Experiment': flag=False; break #Level 1 

   and 5 from text file are excluded 

            elif part_list[e][0] == 'Procedure':  

                flag=True  

                procedure=part_list[e][1] 

                           

(feedbackACC,feedbackCRESP,feedbackRESP,feedbackRT,h,cueOnse

tTime,cueOnsetDelay)= tuple(["X"]*7) 

                if part_list[e][1] == 'cueprocedure' or part_list[e][1] == 

   'responsprocedure': 

                    count+=1 #count the sub trial number 

                else: 

                    count=0 

            elif part_list[e][0] == 'feedback.ACC':     

   feedbackACC=float(part_list[e][1]) 

            elif part_list[e][0] == 'feedback.CRESP':    

   feedbackCRESP=part_list[e][1] 

            elif part_list[e][0] == 'feedback.RESP':     

   feedbackRESP=part_list[e][1] 

            elif part_list[e][0] == 'feedback.RT':     

   feedbackRT=float(part_list[e][1]) 

            elif part_list[e][0] == 'h': h=int(part_list[e][1]) 

            elif part_list[e][0] == 'cue.OnsetTime':     

   cueOnsetTime=float(part_list[e][1]) 

            elif part_list[e][0] == 'cue.OnsetDelay':    

   cueOnsetDelay=float(part_list[e][1]) 

        if flag: 

            

data_dict={"subject":subject,"session":session,"procedure":proc

edure,"sub trial number":count, 

"feedback.ACC":feedbackACC,"feedback.CRESP":feedbackCRESP,"feed

back.RESP":feedbackRESP,"feedback.RT":feedbackRT,"h":h,"cue.Ons

etTime":cueOnsetTime,"cue.OnsetDelay":cueOnsetDelay} 

file_df=file_df.append(data_dict, ignore_index=True) #data from 

each LogFrame will be added as a row to the df of the file 

         

     

    #final dataframe of one file is returned 

    return file_df 

 

final_df=pd.DataFrame() 

 

#loop over all files in directory 

for path in os.listdir(directory): 

    path_complete = directory + '/' + path 

    #Create initial dataframe 

    df_base = pd.read_csv(path_complete, encoding='utf-16') 

    #final dataframe of one file will be returned by the function 

 get_data()... 

    temp_df=get_data(df_base) 

    #...and will be added to the overall dataframe 

    final_df=final_df.append(temp_df) 

         

#Save the file 

final_df.to_excel(r"df_P23678.xlsx",index= False)  
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Appendix D 

Python Syntax to Arrange the Data 

 

import pandas as pd 

 

df = pd.read_excel (r"C:/Users/Emma/Documents/Uni/Thesis/Code and df 

dance/df_P23678.xlsx") 

 

 

#arrange data on trial level: average RT and overall accuracy 

 

block_columns=["subject","session","trial","sub_trial","accuracy","RT","h"] 

df_block=pd.DataFrame(columns=block_columns) 

subjects=[] 

 

for index,row in df.iterrows(): 

    if row["subject"] not in subjects: 

        trial=0    #counts sequences over whole experiment 

        sub_trial=0    # counts sequences within one session 

        subjects.append(row["subject"]) 

        sessions=[row["session"]] 

    if row["procedure"]=="responsprocedure": 

        if row["sub trial number"]==1: 

            trial+=1 

            RT = float(row["feedback.RT"]) 

            accuracy = int(row["feedback.ACC"]) 

            if row["session"] in sessions: 

                sub_trial+=1 

            else: 

                sub_trial=1 

                sessions.append(row["session"]) 

        elif row["sub trial number"]==6: 

            RT += float(row["feedback.RT"]) 

            accuracy += int(row["feedback.ACC"]) 

            RT = RT / 6 

            if accuracy==6: accuracy=1 

            else: accuracy=0 

            

data_dict={"subject":row["subject"],"session":row["session"

],"trial":trial,"sub_trial":sub_trial,"accuracy":accuracy,"

RT":RT/1000,"h":row["h"]} 

df_block=df_block.append(data_dict, ignore_index=True) 

        else: 

            RT += float(row["feedback.RT"]) 

            accuracy += int(row["feedback.ACC"]) 

             

#create counts for how many times one specific sequence was practiced 

subjects=[] 

list_h=[] 

repetitions=[] 

 

for index, row in df_block.iterrows(): 

    if row["subject"] not in subjects: 

        list_h=[] 

        subjects.append(row["subject"]) 

    if list_h==[]:  

        a=row["h"] 

        list_h.append(a) 

        a_count=0 

        repetitions.append(a_count) 

    elif row["h"] not in list_h:  
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        b=row["h"] 

        list_h.append(b) 

        b_count=0 

        repetitions.append(b_count) 

    elif row["h"]==a: a_count+=1; repetitions.append(a_count) 

    else: b_count+=1; repetitions.append(b_count) 

df_block["repetition"]=repetitions 

 

#create new column to plot learning curves per subject per sequence 

 

subject=[] 

combi_count=-1 

combi=[] 

 

for i,r in df_block.iterrows(): 

    if r["subject"]not in subject:  

        subject.append(r["subject"]) 

        combi_count+=2 

    if r["h"]==1: 

        combi.append(combi_count) 

    else: 

        combi.append(combi_count+1) 

 

df_block["subject_h"]=combi 

 

subjects=[] 

for i,r in df_block.iterrows(): 

    if r["subject"]==2: 

        subjects.append(1) 

    elif r["subject"]==3: 

        subjects.append(2) 

    elif r["subject"]==6: 

        subjects.append(3) 

    elif r["subject"]==7: 

        subjects.append(4) 

    elif r["subject"]==8: 

        subjects.append(5) 

df_block["subject"]=subjects 

 

df_block.to_excel(r"C:/Users/Emma/Documents/Uni/Thesis/Code and df 

dance/df_triallevel_23678.xlsx",index= False) 
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Appendix E 

R Syntax for Non-Linear Mixed Effects Model (Learning Curves) 

library(tidyverse) 

library(mascutils) 

library(bayr) 

library(brms) 

library(ggthemes) 

 

df <- readxl::read_excel("C:/Users/Emma/Documents/Uni/Thesis/Code and df 

dance/df_triallevel_23678with_h_subject.xlsx") 

 

df$subject<- as.factor(df$subject) 

mycolors=c("#6b5f3c","#ccc627","#54ab8e","#587ed1","#b04366") 

 

 

## FREE LEARNING CURVES ## 

 

# Free learning curve 1 

# per subject per sequence 

df %>%  

  ggplot(aes(x = repetition, 

             y = RT, 

             color=subject)) + 

  geom_point() + 

  geom_smooth(se = F) + 

  facet_wrap(~subject_h, scales = "free_y")+ 

  ylab("RT (s)")+ 

  xlab("Repetition")+ 

  ylim(0,1.288)+ 

  theme_minimal()+ 

  scale_color_manual(values=mycolors) 

 

# Free learning curve 2 

# Individual learning curves over blocks/reps 

 

df %>%  

  ggplot(aes(x = repetition, 

             y = RT, 

             group = subject, 

             color=subject)) + 

  geom_smooth(se = F)+ 

  scale_x_continuous(limits = c(0,192), expand = c(0, 0))+ 

  theme_classic()+ 

  ylab("RT (s)")+ 

  xlab("Repetition")+ 

  scale_color_manual(values=mycolors)+ 

  geom_vline(xintercept = c(24,48,72,96,120,144,168),colour="grey”, 

show.legend=TRUE)+ 

  geom_text(aes(x=12, label="Block 1", y=0.1), colour="grey") + 

  geom_text(aes(x=36, label="Block 2", y=0.1), colour="grey") + 

  geom_text(aes(x=60, label="Block 3", y=0.1), colour="grey") + 

  geom_text(aes(x=84, label="Block 4", y=0.1), colour="grey") + 

  geom_text(aes(x=108, label="Block 5", y=0.1), colour="grey") + 

  geom_text(aes(x=132, label="Block 6", y=0.1), colour="grey") + 

  geom_text(aes(x=156, label="Block 7", y=0.1), colour="grey") + 

  geom_text(aes(x=180, label="Block 8", y=0.1), colour="grey")  

 

## NON-LINEAR MULTILEVEL REGRESSION ## 

 

# specify formula, variables and weakly informative priors 

F_ary <- formula(RT ~ asym + ampl * exp(-rate * repetition)) 
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F_ary_ef_1 <- list(formula(ampl ~ 1|subject), 

                   formula(rate ~ 1|subject), 

                   formula(asym ~ 1|subject)) 

 

F_ary_prior <- c(set_prior("normal(5, 100)", nlpar = "ampl", lb = 0), 

                 set_prior("normal(.5, 3)", nlpar = "rate", lb = 0), 

                 set_prior("normal(3, 20)", nlpar = "asym", lb = 0)) 

 

# create model including MCMC sampling 

M_1 <-  

  df %>%  

  brm(bf(F_ary, 

         flist = F_ary_ef_1, 

         nl = T),  

      prior = F_ary_prior, 

      family = "exgaussian", 

      data = ., 

      iter = 10,  

      warmup = 8, 

      save_pars=save_pars("subject")) 

 

P_1 <- posterior(M_1)  

PP_1 <- post_pred(M_1, thin = 10) 

 

# save model estimates 

save(M_1, P_1, PP_1, df, file = "model_estimates.Rda") 

 

# get parameters for fixed effects, random factor variation and random 

effects 

bayr::fixef(P_1) 

bayr::grpef(P_1) 

P_1 %>% re_scores() %>% bayr::ranef()  

 

## LEARNING CURVES BASED ON MODEL ESTIMATES ## 

df$Subject<-df$subject 

# learning curves per participant 

df %>%  

  mutate(M_1 = predict(PP_1)$center) %>%  

  ggplot(aes(x = repetition, 

             y = M_1, 

             color=Subject)) + 

  facet_wrap(~subject, scales = "free_y") + 

  geom_smooth(se = F) + 

  geom_point(alpha=0.2, size=1)+ 

  ylim(0,1.5)+ 

  labs(x="Trial",y="Model estimates")+ 

  theme_hc()+ 

  scale_color_manual(values=mycolors) 

 

# crossbar plots for each parameter and participant 

P_1 %>%  

  re_scores() %>%  

  bayr::ranef() %>%  

  ggplot(aes(x = re_entity,  

             y = center,  

             ymin = lower,  

             ymax = upper)) + 

  facet_grid(nonlin~1, scales = "free_y") + 

  geom_crossbar(width = .2) + 

  labs(x = "Subject", y = "Model estimates") + 

  theme_hc()  
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Appendix F 

R Syntax for Linear Mixed Effects Model and Post-Hoc Tukey Test 

library(lme4) 

library(car) 

library(effects) 

library(tidyverse) 

library(lsmeans) 

library(ggthemes) 

 

df <- readxl::read_excel("C:/Users/Emma/Documents/Uni/Thesis/Code and df 

dance/df_keypresslevel2.xlsx") 

 

#Creating factors 

df$subject <- factor(df$subject) 

df$Block <- factor(df$session) 

df$key <- factor(df$key) 

df$accuracy <- factor(df$accuracy) 

 

m.footstep1 <- lmer(RT ~ key * Block + (accuracy|subject), data = df) 

Anova(m.footstep1) 

 

summary(m.footstep1) 

 

##M1 

#Need Effects lib 

ae.m.footstep1<-allEffects(m.footstep1) 

ae.m.df.footstep1<-as.data.frame(ae.m.footstep1[[1]]) 

 

#The main plot 

ae.position<-ggplot(ae.m.df.footstep1, aes(x=key,y=fit, group=Block))+ 

  geom_ribbon(aes(ymin=lower, ymax=upper, fill=Block), alpha=0.2) + 

  geom_line(aes(size=0.5, color=Block)) + 

  geom_point(aes(color=Block, size=2))+ 

  ylab("RT (s)")+ 

  xlab("Position")+ 

  theme_classic() 

 

#Printing Session effects facet 

print(ae.position) 

 

#Interaction post-hocs (Fifth model) 

lsmeans(m.footstep1, pairwise ~ Block | key) 

 

lsmeans(m.footstep1, pairwise ~ key | Block) 
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Appendix G 

RT Contrasts between Key Positions for each Block 

## $contrasts 

## Block = 1: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.18072 0.0494 Inf  3.661  0.0034  

##  1 - 3     0.21624 0.0494 Inf  4.381  0.0002  

##  1 - 4     0.26809 0.0494 Inf  5.425  <.0001  

##  1 - 5     0.05984 0.0494 Inf  1.212  0.8314  

##  1 - 6    -0.22044 0.0494 Inf -4.464  0.0001  

##  2 - 3     0.03552 0.0494 Inf  0.720  0.9796  

##  2 - 4     0.08737 0.0494 Inf  1.769  0.4859  

##  2 - 5    -0.12088 0.0494 Inf -2.449  0.1397  

##  2 - 6    -0.40116 0.0494 Inf -8.121  <.0001  

##  3 - 4     0.05184 0.0494 Inf  1.050  0.9010  

##  3 - 5    -0.15640 0.0494 Inf -3.169  0.0191  

##  3 - 6    -0.43668 0.0494 Inf -8.840  <.0001  

##  4 - 5    -0.20825 0.0494 Inf -4.218  0.0004  

##  4 - 6    -0.48853 0.0494 Inf -9.890  <.0001  

##  5 - 6    -0.28028 0.0494 Inf -5.673  <.0001  

##  

## Block = 2: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.22649 0.0493 Inf  4.590  0.0001  

##  1 - 3     0.27550 0.0494 Inf  5.582  <.0001  

##  1 - 4     0.34441 0.0494 Inf  6.975  <.0001  

##  1 - 5     0.29322 0.0494 Inf  5.939  <.0001  

##  1 - 6     0.18485 0.0494 Inf  3.746  0.0025  

##  2 - 3     0.04900 0.0494 Inf  0.993  0.9204  

##  2 - 4     0.11791 0.0494 Inf  2.388  0.1602  

##  2 - 5     0.06672 0.0494 Inf  1.352  0.7559  

##  2 - 6    -0.04164 0.0494 Inf -0.844  0.9593  

##  3 - 4     0.06891 0.0494 Inf  1.396  0.7294  

##  3 - 5     0.01772 0.0494 Inf  0.359  0.9992  

##  3 - 6    -0.09064 0.0494 Inf -1.836  0.4422  

##  4 - 5    -0.05119 0.0493 Inf -1.037  0.9054  

##  4 - 6    -0.15955 0.0494 Inf -3.231  0.0156  

##  5 - 6    -0.10836 0.0494 Inf -2.195  0.2401  

##  

## Block = 3: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.15736 0.0494 Inf  3.189  0.0179  

##  1 - 3     0.21631 0.0494 Inf  4.382  0.0002  

##  1 - 4     0.27171 0.0494 Inf  5.504  <.0001  

##  1 - 5     0.19044 0.0494 Inf  3.857  0.0016  

##  1 - 6     0.08367 0.0493 Inf  1.696  0.5347  

##  2 - 3     0.05895 0.0493 Inf  1.195  0.8397  

##  2 - 4     0.11435 0.0494 Inf  2.317  0.1871  

##  2 - 5     0.03308 0.0494 Inf  0.670  0.9852  

##  2 - 6    -0.07368 0.0494 Inf -1.493  0.6688  

##  3 - 4     0.05540 0.0494 Inf  1.123  0.8722  

##  3 - 5    -0.02587 0.0494 Inf -0.524  0.9952  

##  3 - 6    -0.13263 0.0494 Inf -2.687  0.0777  

##  4 - 5    -0.08128 0.0493 Inf -1.647  0.5671  

##  4 - 6    -0.18804 0.0494 Inf -3.808  0.0019  

##  5 - 6    -0.10676 0.0494 Inf -2.162  0.2556  

##  

## Block = 4: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.15081 0.0493 Inf  3.056  0.0272  

##  1 - 3     0.19532 0.0493 Inf  3.958  0.0011  
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##  1 - 4     0.23851 0.0494 Inf  4.833  <.0001  

##  1 - 5     0.16192 0.0494 Inf  3.281  0.0133  

##  1 - 6     0.09788 0.0493 Inf  1.983  0.3518  

##  2 - 3     0.04451 0.0493 Inf  0.902  0.9461  

##  2 - 4     0.08770 0.0494 Inf  1.777  0.4807  

##  2 - 5     0.01111 0.0494 Inf  0.225  0.9999  

##  2 - 6    -0.05293 0.0493 Inf -1.073  0.8924  

##  3 - 4     0.04319 0.0493 Inf  0.875  0.9525  

##  3 - 5    -0.03340 0.0494 Inf -0.677  0.9845  

##  3 - 6    -0.09744 0.0493 Inf -1.975  0.3570  

##  4 - 5    -0.07659 0.0493 Inf -1.552  0.6304  

##  4 - 6    -0.14064 0.0494 Inf -2.849  0.0500  

##  5 - 6    -0.06405 0.0494 Inf -1.298  0.7865  

##  

## Block = 5: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.19971 0.0494 Inf  4.047  0.0007  

##  1 - 3     0.21573 0.0494 Inf  4.371  0.0002  

##  1 - 4     0.25481 0.0494 Inf  5.162  <.0001  

##  1 - 5     0.18316 0.0494 Inf  3.711  0.0028  

##  1 - 6     0.11282 0.0493 Inf  2.286  0.1995  

##  2 - 3     0.01603 0.0493 Inf  0.325  0.9995  

##  2 - 4     0.05510 0.0493 Inf  1.117  0.8747  

##  2 - 5    -0.01655 0.0493 Inf -0.335  0.9994  

##  2 - 6    -0.08689 0.0494 Inf -1.761  0.4915  

##  3 - 4     0.03907 0.0493 Inf  0.792  0.9690  

##  3 - 5    -0.03258 0.0493 Inf -0.660  0.9862  

##  3 - 6    -0.10292 0.0494 Inf -2.085  0.2950  

##  4 - 5    -0.07165 0.0493 Inf -1.452  0.6950  

##  4 - 6    -0.14199 0.0494 Inf -2.877  0.0463  

##  5 - 6    -0.07034 0.0494 Inf -1.425  0.7116  

##  

## Block = 6: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.20755 0.0493 Inf  4.206  0.0004  

##  1 - 3     0.23913 0.0494 Inf  4.845  <.0001  

##  1 - 4     0.27319 0.0494 Inf  5.534  <.0001  

##  1 - 5     0.22262 0.0494 Inf  4.510  0.0001  

##  1 - 6     0.09634 0.0493 Inf  1.952  0.3702  

##  2 - 3     0.03159 0.0493 Inf  0.640  0.9880  

##  2 - 4     0.06564 0.0494 Inf  1.330  0.7684  

##  2 - 5     0.01507 0.0494 Inf  0.305  0.9996  

##  2 - 6    -0.11121 0.0494 Inf -2.253  0.2135  

##  3 - 4     0.03406 0.0493 Inf  0.690  0.9831  

##  3 - 5    -0.01651 0.0493 Inf -0.335  0.9994  

##  3 - 6    -0.14279 0.0494 Inf -2.893  0.0442  

##  4 - 5    -0.05057 0.0493 Inf -1.025  0.9098  

##  4 - 6    -0.17685 0.0494 Inf -3.582  0.0046  

##  5 - 6    -0.12628 0.0494 Inf -2.558  0.1079  

##  

## Block = 7: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.14081 0.0494 Inf  2.853  0.0495  

##  1 - 3     0.17808 0.0494 Inf  3.608  0.0042  

##  1 - 4     0.21209 0.0494 Inf  4.297  0.0003  

##  1 - 5     0.14676 0.0494 Inf  2.973  0.0350  

##  1 - 6     0.07655 0.0494 Inf  1.551  0.6310  

##  2 - 3     0.03728 0.0493 Inf  0.755  0.9747  

##  2 - 4     0.07129 0.0493 Inf  1.445  0.6996  

##  2 - 5     0.00596 0.0494 Inf  0.121  1.0000  

##  2 - 6    -0.06425 0.0494 Inf -1.302  0.7844  

##  3 - 4     0.03401 0.0493 Inf  0.689  0.9832  

##  3 - 5    -0.03132 0.0493 Inf -0.635  0.9884  
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##  3 - 6    -0.10153 0.0494 Inf -2.056  0.3106  

##  4 - 5    -0.06533 0.0493 Inf -1.324  0.7719  

##  4 - 6    -0.13554 0.0494 Inf -2.745  0.0667  

##  5 - 6    -0.07021 0.0494 Inf -1.422  0.7137  

##  

## Block = 8: 

##  contrast estimate     SE  df z.ratio p.value 

##  1 - 2     0.08102 0.0494 Inf  1.642  0.5707  

##  1 - 3     0.12011 0.0494 Inf  2.433  0.1447  

##  1 - 4     0.16542 0.0494 Inf  3.351  0.0104  

##  1 - 5     0.09124 0.0494 Inf  1.848  0.4346  

##  1 - 6    -0.00296 0.0494 Inf -0.060  1.0000  

##  2 - 3     0.03909 0.0493 Inf  0.792  0.9690  

##  2 - 4     0.08440 0.0493 Inf  1.710  0.5249  

##  2 - 5     0.01022 0.0493 Inf  0.207  0.9999  

##  2 - 6    -0.08398 0.0494 Inf -1.701  0.5310  

##  3 - 4     0.04531 0.0493 Inf  0.918  0.9420  

##  3 - 5    -0.02887 0.0493 Inf -0.585  0.9920  

##  3 - 6    -0.12306 0.0494 Inf -2.493  0.1262  

##  4 - 5    -0.07418 0.0493 Inf -1.503  0.6622  

##  4 - 6    -0.16837 0.0494 Inf -3.410  0.0085  

##  5 - 6    -0.09419 0.0494 Inf -1.907  0.3976  

##  

## Degrees-of-freedom method: asymptotic  

## P value adjustment: tukey method for comparing a family of 6 estimates 

 


