
BSc Thesis Applied Mathematics

Operations Research and

Airlines:

Solving the Meal Provisioning

Problem

Marieke Mimi Cato Romeijn

Supervisor: N. M. van Dijk

June, 2021

Department of Applied Mathematics

Faculty of Electrical Engineering,

Mathematics and Computer Science

Preface

This paper was written as my Bachelor Thesis for the Bachelor Applied Mathematics at

the University of Twente. I want to thank my supervisor Nico M. van Dijk for guiding me

through this process and always being there when I needed help.

Operations Research and Airlines:

Solving the Meal Provisioning Problem

Marieke M. C. Romeijn∗

June, 2021

Abstract

This paper investigates the problem of meal provisioning on airplanes. Usually,
there are several moments that an airline can order meals for a flight, and as the day of
the flight comes closer, the price of the meals increase. On the other hand, as the day
of the flight gets closer, the airline has more information about how many tickets will
be solved. Using Operations Research methods such as Monte Carlo simulation and
analytically (Newsboy problem), we will solve the simplified problem of only having
one decision moment. Then we will focus on the main problem of having three decision
moments. We will solve this using Stochastic Dynamic Programming (SDP). For all
methods, Python is used to program and get results.

The Monte Carlo simulation and the Newsboy approach both came to the same
conclusions, which is very strong. The SDP gave us different results, as this method
has multiple decision moments.

Keywords: Meal provisioning, operations research, Markov decision problem, newsboy
problem, Monte Carlo simulation, Markov decision tree, stochastic dynamic program-
ming

∗Email: m.m.c.romeijn@student.utwente.nl

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 Pilot data . 1

1.3 Methods . 2

2 Single decision moment 3

2.1 Monte Carlo Simulation . 3

2.1.1 Results . 3

2.2 Newsboy Problem: Analytic Approach . 4

2.2.1 Results . 6

3 Multiple decision moments 8

3.1 Markov Decision Tree . 8

3.2 Stochastic Dynamic Programming . 11

3.2.1 Results . 13

4 Results 14

References 15

Appendices 16

A Monte Carlo Simulation Code 16

B Newsboy Code 18

C Stochastic Dynamic Programming Code 21

D Probability Distribution

Function 27

1 Introduction

1.1 Problem Description

Passengers on a plane expect the best service while they are in the air. They all want

to have access to drinks, and on longer flights, they of course expect a meal. Catering

meals for a flight is a difficult process, since the airline does not want to order too little or

too many meals. When ordering too little meals, the additional meals need to be brought

to the plane last minute, which is very expensive. When ordering too many meals, these

remaining meals have been paid for already while there is no use for them. Furthermore,

there are multiple moments in which meals can be ordered, from months prior to the flight

up to a day prior to the flight. The meals get more expensive as the day of the flight gets

closer, so we want to find a way to order meals in order to minimise the expected costs

while satisfying demands. Since there is no data available, we will study the problem with

fictional pilot data.

1.2 Pilot data

Suppose that we have a flight with 200 seats. The costs of a meal are €25,- three months,

€40,- two weeks and €75,- one day prior to the flight. In addition, when there are meals

short one hour before the flight itself, it not only costs €100,- per meal, but also €200,-

for the delivery of the meals, independent of the number of the meals.

We used theoretical data to estimate the optimal order at any moment that seems

reasonable. At two weeks before the flight, the following distribution will be used (Table

1).

Table 1: Probabilities two weeks before the flight.

tickets sold 0 40 80 120 160 200
Probability .05 .20 .25 .30 .15 .05

At one day before the flight, an extra 10, 20, or 30 tickets can be sold with the proba-

bilities in Table 2.

Table 2: Probabilities one day before the flight.

tickets sold 0 10 20 20
Probability .10 .40 .30 .20

Finally, some additional tickets can be sold the day of the flight. Those tickets are sold

according to the probabilities presented in Table 3.

1

Table 3: Probabilities one hour prior to the flight.

tickets sold 0 1 2 3 4 5 6 7 8 9
Probability .05 .10 .15 .15 .15 .10 .10 .10 .05 .05

This can be visualised in the simplified diagram shown below (Figure 1).

Figure 1: Visualised data

1.3 Methods

In an other paper, a similar problem has been studied ([2]). In this article, this problem is

solved using Stochastic Dynamic Programming. In this paper we will simplify the problem

by first only looking at one decision moment, and building it up to the complete problem.

To do this, we will incorporate multiple methods that are used in Operations Research.

We will work with Monte Carlo simulation, the Newsboy Problem and finally Stochastic

Dynamic Programming.

We begin with simplifying the problem so that we only have one decision moment

three months prior to the flight. This problem will be solved in two ways, namely Monte

Carlo simulation and by using the Newsboy Problem. First, we will focus on Monte Carlo

simulation (see Section 2.1). Next, we will move on to the Newsboy Problem approach,

in which we will solve the problem analytically (see Section 2.2). Then we will add the

remaining decision moments two weeks and one day ahead of the flight to solve the given

problem using Stochastic Dynamic Programming (SDP) (see Section 3). There, we will

start by visualising the problem using a Markov Decision Tree (Section 3.1), and finally we

will solve the problem by setting up the SDP (Section 3.2). For all approaches, we used

Python to code. The code can be found in the Appendix (see Appendix A, B, and C).

2

2 Single decision moment

2.1 Monte Carlo Simulation

The first method we will use is Monte Carlo simulation. We will use Monte Carlo simulation

to solve the simple problem of having only one decision moment three months prior to the

flight. Monte Carlo simulation can best be described as throwing a large number of dice

for any number of meals that can be ordered (0 to 200) to generate random numbers (in

this case the number of tickets sold) and generating the costs that will be made. The

optimum number of meals to order will be the number n∗ for which the average resulted

in the lowest costs. We can describe the simulation in Algorithm 1, where k is the number

of generated test values (or dice thrown).
Algorithm 1: Monte Carlo Simulation

for i = 0 to 200 do

tickets_sold = k random numbers according to a probability distribution;

for j = 0 to k do

costs[i][j] = costs of tickets_sold[j] when ordering i meals;

end

end

mean = mean of costs over experiments per # meals ordered// array of length 201

optimum = index of the minimum over mean;

2.1.1 Results

To start with, we will use an example in which the demand three months before the

flight can be estimated by a normal distribution with µ = 150 and σ = 30. We choose

k = 1, 000, 000, since this gives us consistent results. We find that n∗ = 172, where the

95% confidence interval of average expected costs is €(4692.388, 4692.391). This means

that the population mean of the costs when ordering 172 meals is in this interval with

probability 95%. In Figure 2, the average costs of ordering 167 to 177 are shown. We see

here that the costs of ordering 171, 172, 173 and 174 meals is very close to each other.

We will now focus on the given problem. Instead of the normal distribution, we will

use the distributions given in Tables 1, 2, and 3. By combining these distribution, we can

make a new distribution that represents the number of tickets sold one hour before the

flight, when we know nothing yet at three months prior to the flight. The values of the

probability distribution function can be found in Table 6 in Appendix D.

Now, we will choose k = 10, 000, 000, as this brings us consistent results. We find that

n∗ = 153, where the 95% confidence interval of average expected costs is €(4524.1384, 4524.1389).

The average costs of ordering 148 to 158 meals is shown again in Figure 3, where we see

that the costs of ordering 153, 154, or 155 meals are again relatively close to each other.

3

Figure 2: Costs when using N(150,
30) distribution.

Figure 3: Costs when using com-
bined distribution.

2.2 Newsboy Problem: Analytic Approach

The second method is in known in literature as the Newsboy Problem ([3]), it takes an

analytic approach. We will make a function of expected costs z(n) when ordering n meals,

and we will find the optimum number of meals n∗ so that the expected costs are minimised.

Let zt(n) be the expected costs depending on number of ordered meals n and moment

t, and let c be the total costs. Furthermore, let cu,n,q be the costs made for ordering n

meals while the demand is q and q > n, so there are too few meals ordered (undercosts).

Let co,n,q be the costs made for ordering n meals while the demand is q and q ≤ n, so

there are too many meals ordered (overcosts). Let ct be the costs for a meal at moment

t, t = 1, 2, 3 (t = 1 three months, t = 2 two weeks, and t = 3 one day prior to the flight). So

c1 = 25, c2 = 40, c3 = 75. Finally, let Q be the random variable representing the demand

of meals with probability density function f(q) and cumulative distribution function F (q).

It follows that limq→∞ F (q) = 1. Then

c =

cu,n,q if q > n, q ≤ 200,

co,n,q if q ≤ n, q ≤ 200,

ce,n,q if q > 200,

=

ct · n+ 200 + 100(q − n) if q > n, q ≤ 200,

ct · n if q ≤ n, q ≤ 200

ct · n+ 200 + 100(200− n) if q > 200.

Next, we can calculate the expected costs zt(n).

4

zt(n) = E[c]

=

∫ ∞
0

cf(q)dq

=

∫ 200

0
cf(q)dq +

∫ ∞
200

(ci · n+ 200 + 100(200− n))f(q)dq

=

∫ n

0
co,n,qf(q)dq +

∫ 200

n
cu,n,qf(q)dq + ctn

∫ ∞
200

f(q)dq

+(200 + 100(200− n))
∫ ∞
200

f(q)dq

=

∫ n

0
ctnf(q)dq +

∫ 200

n
(ctn+ 200 + 100(q − n))f(q)dq + ctn

∫ ∞
200

f(q)dq

+(200 + 100(200− n))(lim
x→∞

F (x)− F (200))

= ctn

∫ n

0
f(q)dq + ctn

∫ 200

n
f(q)dq + 100

[
(2− n)

∫ 200

n
f(q)dq +

∫ 200

n
qf(q)dq

+ctn

∫ ∞
200

f(q)dq + (2 + (200− n))(1− F (200))
]

= ctn

∫ ∞
0

f(q)dq + 100
[
(2− n)

∫ 200

n
f(q)dq +

∫ 200

n
qf(q)dq

+(202− n)(1− F (200))
]
.

(1)

We need to find the optimal value of n to minimise z. We will do this by taking the

derivative of Equation 1.

dzt
dn

=
ct

∫ ∞
0

f(q)dq + 100
[
−
∫ 200

n
f(q)dq + (2− n) · −f(n)− nf(n)

−(1− F (200))
]

=ct(lim
x→∞

F (x)− F (0)) + 100
[
F (n)− 2f(n)− 1

]
=ct(1− F (0)) + 100

[
F (n)− 2f(n)− 1

]
Let n∗ be the optimum number of meals to order such that the expected costs are

minimised. Then we need to find n∗ such that

ct(1− F (0)) + 100
[
F (n∗)− 2f(n∗)− 1

]
= 0. (2)

Remark: Note that Equation 2 can be used for any continuous or discrete probability

distribution. This makes the Newsboy approach powerful, as it can be used for any similar

problem.

5

2.2.1 Results

First, just as in Section 2.1, we let Q ∼ N(150, 30). Using Python, we get n∗ = 172 for

t = 1 (so c1 = 25) (see the code in Appendix B). This is expected, as it was also found in

Section 2.1 when using Monte Carlo simulation.

Next, we again use the distribution that combines the distributions given in Tables 1,

2, and 3. The values of the probability distribution function can be found in Table 6 in

Appendix D.

Using Python (see Appendix B), we find n∗ = 153 for t = 1 (so c1 = 25), which is

again the same as found in Section 2.1. This result is very powerful. We can calculate the

same result when using simulation as when we use an analytical approach, but when using

the analytical approach, we can get to this result quicker. The simulation takes longer as

it needs a lot of generated values to get an accurate result.

Now that we have a result for three months ahead, we can also find the optimal order

two weeks in advance. Two weeks in advance, we already know more than three months

prior to the flight. At that point, we know that there can be 0, 40, . . . , or 200 tickets sold,

so we can work with that. We will use c2 = 40, and we will now look at the case that

there 0 tickets sold at this moment. Now, we can combine the distributions from 2 and 3

to create a distribution that will tell us how many tickets will be sold at the time of the

flight. This probability distribution function can be found in Table 7.

When using Python (see Appendix B), we now find that it is best to order n∗ = 24.

We can do the same in the situation where there are 40, 80, . . . , or 200 tickets sold at

t = 2, or we can go one step further to t = 3.

One day before the flight (t = 3), we know that the number of tickets sold is 0, 10,

. . . or 200. We can use the distribution in Table 3 and we let c3 = 75. We can combine all

findings in the Table 4. At any t, we can look up the current demand. Below the current

demand, the optimal order and the expected costs from that point on including the current

order when ordering the given number of meals are shown.

6

Table 4: Optimal orders and their expected costs according to the Newsboy ap-
proach.

t = 1 Demand 0
Optimal order 153
Expected costs [€] 4522,70

t = 2 Demand 0 40 80 120 160 200
Optimal order 24 64 104 144 184 200
Expected costs [€] 1257,50 2857,50 4457,50 6057,49 7657,5 8000

t = 3 Demand 0 10 20 30 40 50
Optimal order 4 14 24 34 44 54
Expected costs [€] 485 1235 1985 2735 3485 4235
Demand 60 70 80 90 100 110
Optimal order 64 74 84 94 104 114
Expected costs [€] 4985 5735 6485 7235 7985 8735
Demand 120 130 140 150 160 170
Optimal order 124 134 144 154 164 174
Expected costs [€] 9485 10235 10985 11735 12485 13235
Demand 180 190 200
Optimal order 184 194 200
Expected costs [€] 13985 14735 15000

7

3 Multiple decision moments

We will solve the problem using Stochastic Dynamic Programming ([5]). This allows us to

have multiple decision moments. The SDP calculations do not take long when there are

just three decision moments, but the time will grow fairly quickly when there are more

moments. First, we will show a decision tree that describes the structure of the problem.

3.1 Markov Decision Tree

A Markov Decision Tree (MDT) is a tool to show the structure of the problem. The blue

boxes show the decisions that can be made. Those decisions can be made at the grey

triangles. Finally, the pink circles show the possible number of tickets sold with their

corresponding probabilities.

Below in Figure 4, an overview of the structure of the problem is shown. A few paths

are shown, to not make it too big. We see that the complexity grows very quickly, as there

are multiple decisions at any decision moment, and there are multiple possibilities of sold

tickets at any moment.

Figure 4: Structure of the catering problem.

8

We additionally made smaller diagrams of the individual decision moments to make

clear what is happening. We will work backwards, so we will look at the last decision

moment first. Figure 5 shows the decisions made at one day and one hour before the flight.

One day prior to the flight, we can choose to order 0, 20 or 40 meals extra, while there

is no decision to be made at one hour prior to the flight, since at that moment we know

exactly how many tickets are sold. The costs that are in the decision boxes are the expected

costs, which is the sum of the costs that are made by ordering the number of meals that

are specified by the decision (immediate costs), and the products of the probability of

something happening and the costs when that happens. For example, when we choose to

order 0 meals at one day before the flight, we can calculate the expected costs as follows:

E[c] = 0 · 75 + p(0) · 0 +
9∑

i=1

p(i)(200 + 100i) = 600, (3)

which can be found in the figure as well. The costs shown at the triangle is the

minimum of all expected costs corresponding to the decisions that can be made. The

Newsboy solution is also shown, including its expected costs. We see that ordering just 4

meals is the best decision, but this is only possible if we can order single meals. If we can

only order in batches of 20, the best option is to order 0 meals at one day before the flight.

Figure 5: Structure of the catering problem during third and final decision mo-
ment.

Figure 6 shows the decisions that can be made two weeks prior to the flight. Again, the

Newsboy solution is shown, including its expected costs. We see that ordering 24 meals

is the best decision, but this is only possible if we can order single meals. If we can only

order in batches of 20, the best option is to order 20 meals at two weeks before the flight.

The expected costs are calculated in the same way as before.

9

Figure 6: Structure of the catering problem during second decision moment.

Figure 7 shows the structure of the problem during the decision three months prior to

the flight. At this moment, we can either choose to follow the Newsboy approach (Section

2.2) in which we order 153 meals immediately and order extra one hour before the flight

if that is necessary, or we can choose to follow the SDP approach. We see that there are

many options when choosing the SDP approach, and we see that the optimal expected

costs of the SDP are smaller than the optimal expected costs for the Newsboy approach.

Figure 7: Structure of the catering problem during first decision moment.

10

Now, let us look at an example of possible paths. In this example, we will look at two

paths that can be taken, in which at any moment the number of tickets sold is equal, but

the number of meals that is ordered is different. One path will make random decisions,

while the other path will take optimal decisions, according to the solution of the SDP that

we will solve at the end of this section.

Figure 8 shows an example of a path that is not optimal. The red boxes show the

expected costs from that moment until the end when making that decision. It follows that

when following making these decisions, we eventually have to pay €8400,-, while this could

have been lower as we will see in the alternative path.

Figure 8: Example of a bad path.

Figure 9 shows the same path, but we will make the optimal decisions that we will find

in Section 3.2 using an SDP to solve the problem. The total costs when following this path

are €5400,- to €6500,-, depending on the final number of tickets sold in the last day. This

is significantly lower than when following the sub optimal path from Figure 8, while the

same number of tickets are sold at any moment.

Figure 9: Example of an optimal path.

Now that we see the importance of making the good decisions, we will carry on with

solving the problem using Stochastic Dynamic Programming.

3.2 Stochastic Dynamic Programming

We will start by setting up the Stochastic Dynamic Programming (SDP) system. A SDP

system is typically described by a 5-tuple (T, S,Dt, pt, ct) ([4]). We will define the time T ,

state space S, the decision set Dt, the transition rates pt and the costs ct.

11

Time: Meals can be ordered at four different moments, namely three months, two

weeks, one day and one hour before the flight. We have one extra decision moment, namely

the moment where the decision to follow the SDP approach or the Newsboy approach is

made. T = {0, 1, 2, 3, 4} is the set of time, where t = 0 represents the moment at which

can be decided to use the Newsboy approach or the SDP approach, t = 1 is three months

before the flight, t = 2 is two weeks before the flight, t = 3 is one day before the flight and

t = 4 is one hour before the flight.

State space: First, we will describe the state space S. This is a special Markov

Decision Problem, since we need two elements to describe the state of the system, namely

the number of tickets that are sold and the number of meals that are ordered up until now.

Therefore, the state space is defined as S = {(i, j)|i ∈ {0, 1, . . . , 200}, j ∈ {0, 20, . . . , 200}},
where i is the number of tickets sold, and j is the number of meals ordered. Since the

number of meals can be ordered in multiples of 20, the second element is in steps of 20.

Decision set: Furthermore, we will define the decision set Dt. The decision made at

moment t depends on how many tickets are sold and the number of meals already ordered.

The number of meals to order in the decision set cannot be less than the number of meals

already ordered. Moreover, the number of meals can be ordered in multiples of 20, so

we need to take that into account as well. Finally, it is not useful to order more than

200 meals, since that is the maximum load of the plane. The decision set is defined as

Dt(i, j) = {j, j + 20, . . . , 200}, where j ∈ N is a multiple of 20.

Transition probabilities: The transition probabilities pt+1 are the probabilities of

a state occurring at time t + 1 given the previous state and the decision made at time t.

They can be defined as p((it+1, jt+1)|(it, jt)), where it represents the number of tickets sold

at moment t and jt is the number of meals ordered at moment t.

Costs: Finally, we will define the costs ct. These costs represent the immediate costs

when being in state (i, j) and making decision d at time t. As the time t grows, the meals

get more expensive. In this case, we have

ct(i, j, d) =

25(d− j) if t = 1, d > j

40(d− j) if t = 2, d > j

75(d− j) if t = 3, d > j

100(d− j) + 200 if t = 4, d > j

0 else

We are now able to formulate the SDP equation. We want to minimise the costs,

therefore we will minimise over the decisions. We will start at t = 4 and work up to the

solution at t = 0, where we can choose whether to use the Newsboy solution, or to use the

SDP solution.

12

Let ft(i, j) be the minimised expected costs from stage t onward in state (i, j).

Then we start by:

f4(i, j) = min
d∈Dt(i,j)

{
ct(i, j, d)

}
.

And for t = 3, 2, 1:

ft(i, j) = min
d∈Dt(i,j)

{
ct(i, j, d) +

∑
(k,l)∈St+1

p((kt+1, lt+1)|(kt, lt))ft+1(k, l)
}
,

Finally, we are interested in f0, in which we take the minimum of the SDP solution

f1(0, 0) and the Newsboy solution (Section 2.2).

ft(i, j) = min

4522, 70 Newsboy solution: Order 153 meals (see Section 2.2)

f1(0, 0) SDP solution

3.2.1 Results

When implementing this in Python, this results in the following findings. In Table 5,

we can look up the demand at time t. Below the demand d, the optimal order and the

expected costs from that point on when ordering the given number of meals are shown.

The expected costs are calculated as in Equation 3, where it assumes that there are 0 meals

ordered before time t. That is, the expected costs are the sum of the costs when ordering

n meals and the expected costs from that point on.

Table 5: Optimal orders when using SDP.

t = 1 Demand 0
Optimal order 120
Expected costs [€] 4522,70

t = 2 Demand 0 40 80 120 160 200
Optimal order 20 60 100 140 180 200
Expected costs [€] 1280 2880 4480 6080 7680 8000

t = 3 Demand 0 10 20 30 40 50
Optimal order 0 20 20 40 40 60
Expected costs [€] 600 1500 2100 3000 3600 4500
Demand 60 70 80 90 100 110
Optimal order 60 80 80 100 100 120
Expected costs [€] 5100 6000 6600 7500 8100 9000
Demand 120 130 140 150 160 170
Optimal order 120 140 140 160 160 180
Expected costs [€] 9600 10500 11100 12000 12600 13500
Demand 180 190 200
Optimal order 180 200 200
Expected costs [€] 14100 15000 15000

13

4 Results

Operations Research (OR) is a useful discipline that can help solve many similar problems,

it has often helped airlines. Its methods has helped solve problems such as the overbooking

problem, in which OR methods calculate how many additional tickets can be sold on top

of the capacity of a flight, such that the plane will still be filled when passengers do not

show up ([6]). A different problem in which OR plays a significant role is fleet assignment,

in which the airline needs to assign the best size plane to a flight ([1]). In this article ([1]),

there are more examples where OR is of importance of problem solving for airlines.

For the meal provisioning problem, we used three different methods that are used in

Operations Research. We used Monte Carlo Simulation (Section 2.1), which gives the same

results as using the Newsboy Problem (Section 2.2). Finally, we used Stochastic Dynamic

Programming to solve the problem (Section 3.2), which has its own advantages.

When just ordering at one moment, it is advised to use the optimal orders of the Monte

Carlo simulation and the Newsboy problem. These methods are used when there is one

decision moment and they calculate the best number of meals very accurately. Since both

methods find the same results, they are very strong. The results can be found in Table

4. Unfortunately, when there are multiple decision moments, these methods become too

complicated.

When there are multiple decision moments as is specified in the original problem de-

scription (section 1.2), the SDP works best. It takes into account what might happen in

the future, and based on that, it will calculate the optimal decision at each moment and

in each possible situation. Furthermore, the SDP system can be extended to even more

decision moments with arbitrary distributions, provided the distribution is discrete. The

optimal decisions can be found in Table 5.

14

References

[1] Cynthia Barnhart, Peter Belobaba, and Amedeo R Odoni. Applications of Operations

Research in the Air Transport Industry. Transportation Science, 37(4), 2003.

[2] Jason H. Goto, Mark E. Lewis, and Martin L. Puterman. Coffee, Tea, or...?: A

Markov Decision Process Model for Airline Meal Provisioning. Transportation Science,

38(1):107–118, 2004.

[3] Moutaz Khouja. The single-period (news-vendor) problem: Literature review and sug-

gestions for future research. Omega, 27(5):537–553, 10 1999.

[4] Mihaela Mitici. MDP for Query-Based Wireless Sensor Networks. In R. J. Boucherie

and N.M. van Dijk, editors, Markov Decision Processes in Practice, chapter 20, pages

505–519. Sprinter International Publishing, Cham, 2017.

[5] Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic pro-

gramming. In Markov Decision Processes: Discrete Stochastic Dynamic Programming,

pages 1–649. wiley, 1 2008.

[6] Marvin Rothstein. OR AND THE AIRLINE OVERBOOKING PROBLEM. Operations

Research, 33(2):237–248, 1985.

15

Appendices

A Monte Carlo Simulation Code

1 import numpy as np
2 import scipy.stats as st
3 import pandas as pd
4 import matplotlib.pyplot as plt
5
6 k = 10000000
7 l = 201
8 fine = 200
9 unit1 = 25

10 unit2 = 40
11 unit3 = 100
12
13 mu = 150
14 sd = 30
15 data = pd.ExcelFile(r’data.xlsx ’)
16
17
18 def get_probability(index , number):
19 sheets = data.sheet_names
20 temp = data.parse(sheets[index - 1]). Demand
21 for i in range(len(temp)):
22 if temp[i] == number:
23 return data.parse(sheets[index - 1]). Probability[i]
24
25
26 def total_prob(number):
27 if number < 0 or number > 240:
28 return 0
29 else:
30 week2 = (number // 40) * 40
31 week3 = ((number - week2) // 10) * 10
32 week4 = number - week2 - week3
33 return get_probability (1, week2) * get_probability (2,
34 week3) * get_probability (3, week4)
35
36
37 def costs(demand , order):
38 demand = min(200, demand)
39 if order > demand: # too many ordered
40 result = unit1 * order
41 elif demand >= order: # too few ordered
42 result = unit1 * order + (demand - order) * unit3 + fine
43 return result
44
45
46 def determine_costs(index):
47 test_costs = np.empty((l, k))
48 values = np.array(range (240))
49 probabilities = np.empty (240)
50 for i in range (240):

16

51 probabilities[i] = total_prob(i)
52
53 for i in range(0, l):
54 if index == 1: # standard normal with 150, 30
55 test = np.random.normal(mu, sd, k)
56 elif index == 2: # according to all combined distributions
57 test = np.random.choice(a=values , size=k,
58 p=probabilities)
59 for j in range(0, k):
60 test_costs[i][j] = costs(test[j], i)
61 return test_costs
62
63
64 def get_ci(test_costs):
65 conf_interval = np.empty((l, 2))
66 for i in range(0, l):
67 stdev = st.tstd(test_costs[i, :])
68 conf_interval[i, 0] = np.mean(test_costs[i, :]) - \
69 st.norm.ppf (.975) * stdev / k
70 conf_interval[i, 1] = np.mean(test_costs[i, :]) + \
71 st.norm.ppf (.975) * stdev / k
72 return conf_interval
73
74
75 def get_optimum(test_costs):
76 mean = np.mean(test_costs , axis =1)
77 optimum = np.argmin(mean)
78 return optimum
79
80
81 def to_string(test_costs):
82 optimum = get_optimum(test_costs)
83 CI = get_ci(test_costs)[optimum]
84
85 print("At this point , it is best to order a total of",
86 optimum , "meals .")
87 print("The 95% interval of the costs when ordering this "
88 "many meals is", CI)
89
90
91 def graph(test_costs):
92 optimum = get_optimum(test_costs)
93 y = np.mean(test_costs , axis =1)[optimum -5: optimum +6]
94 x = list(range(optimum -5, optimum +6))
95
96 plt.plot(x, y, label=" costs CI")
97 plt.xticks(x)
98 plt.legend ()
99 plt.show()

100
101
102 costs = determine_costs (2)
103 to_string(costs)
104 graph(costs)

17

B Newsboy Code

1 import numpy as np
2 import scipy.stats as st
3 import pandas as pd
4
5
6 def get_demand(index):
7 if index == 1:
8 return [0]
9 elif index == 2:

10 return range(0, 201, 40)
11 elif index == 3:
12 return range(0, 201, 10)
13 return 0
14
15
16 class Newsboy:
17
18 def __init__(self):
19 self.data = pd.ExcelFile(r’data.xlsx ’)
20
21 def get_probability(self , index , number):
22 sheets = self.data.sheet_names
23 temp = self.data.parse(sheets[index - 1]). Demand
24 for i in range(len(temp)):
25 if temp[i] == number:
26 return self.data.parse(sheets[index -
27 1]). Probability[i]
28
29 def total_prob1(self , number):
30 if number < 0 or number > 240:
31 return 0
32 else:
33 week2 = (number // 40) * 40
34 week3 = ((number - week2) // 10) * 10
35 week4 = number - week2 - week3
36 return self.get_probability (1, week2) * \
37 self.get_probability (2, week3) * \
38 self.get_probability (3, week4)
39
40 def total_prob2(self , number , current):
41 if number < current or number > current + 39:
42 return 0
43 else:
44 extra = number - current
45 week3 = (extra // 10) * 10
46 week4 = extra - week3
47 return self.get_probability (2, week3) * \
48 self.get_probability (3, week4)
49
50 def total_prob3(self , number , current):
51 if number < current or number > current + 9:
52 return 0
53 else:
54 extra = number - current

18

55 return self.get_probability (3, extra)
56
57 def total_prob(self , number , index , current =0):
58 if index == 1:
59 return self.total_prob1(number)
60 elif index == 2:
61 return self.total_prob2(number , current)
62 elif index == 3:
63 return self.total_prob3(number , current)
64
65 def pdf(self , index , current =0):
66 result = np.empty (240)
67 for i in range (240):
68 result[i] = self.total_prob(i, index , current)
69 return result
70
71 def cdf_recursive(self , index , current =0):
72 result = np.empty (240)
73 result [0] = self.total_prob (0, index , current)
74 for i in range(1, 240):
75 result[i] = result[i - 1] + \
76 self.total_prob(i, index , current)
77
78 return result
79
80 def cost(self , index):
81 if index == 4:
82 index = 1
83 temp = self.data.parse(’Costs ’). Costs
84 return temp[index - 1]
85
86 def f(self , order , index , costs , cdf=None , pdf=None):
87 if index == 4:
88 return costs + 100 * (st.norm.cdf(order , 150, 30) -
89 2 * st.norm.pdf(order , 150, 30) - 1)
90 else:
91 return costs * (1 - cdf [0]) + \
92 100 * (cdf[order] - 2 * pdf[order] - 1)
93
94 def find_optimum(self , index , current =0):
95 costs = self.cost(index)
96 temp = np.empty (201 - current)
97 if index == 4:
98 for j in range(current , 201):
99 temp[j - current] = self.f(j, index , costs)

100 optimum = np.argmin(abs(temp))
101 return optimum + current
102 else:
103 cdf = self.cdf_recursive(index , current)
104 cdf [200] = cdf [239]
105 cdf = cdf [0:201]
106 pdf = self.pdf(index , current)
107 for i in range (201, 240):
108 pdf [200] = pdf [200] + pdf[i]
109 pdf = pdf [0:201]
110

19

111 for j in range(current , 201):
112 temp[j - current] = self.f(j, index , costs ,
113 cdf , pdf)
114 optimum = np.argmin(abs(temp))
115 return optimum + current
116
117 def expected_costs(self , index , order , current):
118 pdf = self.pdf(index , current)
119 costs = self.cost(index)
120
121 extra_costs = np.zeros (240)
122 for i in range (240):
123 if i > order and order < 200:
124 extra_costs[i] = pdf[i] * \
125 (200 + (min(i, 200) - order)
126 * 100)
127 return sum(extra_costs) + costs * order
128
129 def all_choices(self , index):
130 data = get_demand(index)
131 result = np.vstack ([data , np.empty([2, len(data)])])
132
133 for i in range(len(data)):
134 choice = self.find_optimum(index , data[i])
135 result[1, i] = choice
136 result[2, i] = self.expected_costs(index ,
137 choice , data[i])
138 df = pd.DataFrame(data=result , index =[" current demand",
139 "optimal order",
140 "expected costs"],
141 columns =[""] * len(data))
142 return df
143
144 def to_string(self):
145 with pd.option_context(’display.max_rows ’, None ,
146 ’display.max_columns ’, None):
147 for i in range (3):
148 print(" Stage {}:". format(i + 1),
149 self.all_choices(i + 1), "\n")
150
151
152 newsboy = Newsboy ()
153 newsboy.to_string ()

20

C Stochastic Dynamic Programming Code

1 import numpy as np
2 import pandas as pd
3
4
5 def get_boolean(string):
6 while True:
7 answer = input(string)
8 if answer == ’y’:
9 return True

10 elif answer == ’n’:
11 return False
12 else:
13 print("Oops! You need to enter y or n. ")
14
15
16 class SDP:
17
18 def __init__(self , costs , stage=None , current_order=None ,
19 current_demand=None):
20 self.data = pd.ExcelFile(r’data.xlsx ’)
21 self.total_seats = 200
22 self.order_step = 20
23 self.total_moments = len(self.data.sheet_names)
24 self.results = np.full(self.total_moments , -1,
25 dtype=object)
26
27 if stage is None:
28 self.get_stage ()
29 else:
30 self.stage = stage
31
32 if current_order is None:
33 self.get_ordered ()
34 else:
35 self.current_order = current_order
36
37 if current_demand is None:
38 self.get_demand ()
39 else:
40 self.current_demand = current_demand
41
42 self.costs = 0
43 if costs:
44 self.get_costs ()
45 else:
46 self.get_price ()
47
48 def get_price(self):
49 temp1 = get_boolean ("Do you want to use the default "
50 "values for the costs? (y/n) ")
51 if temp1:
52 self.get_costs ()
53 if not temp1:
54 self.costs = np.empty(self.total_moments + 1)

21

55 for i in range(4 - self.stage + 2):
56 if self.stage > 1:
57 self.costs [0:(self.stage - 1)] = 0
58 while True:
59 try:
60 if i == 4 - self.stage + 1:
61 result = input("Cost of the fine for "
62 "having too few "
63 "meals: ")
64 self.costs[i + self.stage - 1] \
65 = result
66 break
67 result = input("Cost of one meal at stage"
68 " {}: ". format(i +
69 self.stage))
70 result = int(result)
71 self.costs[i + self.stage - 1] = result
72 break
73 except ValueError:
74 print("Oops! You need to enter an "
75 "integer !")
76
77 def get_costs(self):
78 temp = self.data.parse(’Costs ’). Costs
79 costs = np.empty(len(temp))
80 for i in range(len(costs)):
81 costs[i] = temp[i]
82 self.costs = costs
83
84 def get_stage(self):
85 while True:
86 try:
87 stage = input ("1: 3 months before flight \n"
88 "2: 2 weeks before flight \n"
89 "3: 1 day before flight \n"
90 "At which stage are you? ")
91 stage = int(stage)
92 if stage < 1 or stage > 3:
93 raise ValueError
94 else:
95 self.stage = stage
96 break
97 except ValueError:
98 print("Oops! You need to enter an integer between"
99 " 1 and 3! Let ’s try again. \n")

100 return stage
101
102 def get_ordered(self):
103 while True:
104 try:
105 if self.stage == 1:
106 self.current_order = 0
107 break
108 current_order = input("How many meals are ordered"
109 " at this point? ")
110 self.current_order = int(current_order)

22

111 if self.current_order % 20 != 0 or \
112 self.current_order < 0 or \
113 self.current_order > self.total_seats:
114 raise ValueError
115 break
116 except ValueError:
117 print("Oops! You need to enter an integer between"
118 " 0 and" + str(self.total_seats) +
119 ", which is a multiple of 20! Let ’s "
120 "try again. \n")
121
122 def get_demand(self):
123 while True:
124 try:
125 if self.stage == 1:
126 self.current_demand = 0
127 break
128 current_demand = input ("How many tickets are sold"
129 " at this moment? ")
130 self.current_demand = int(current_demand)
131 if self.current_demand % 40 != 0 or \
132 self.current_demand < 0 or \
133 self.current_demand > self.total_seats:
134 if self.stage == 2:
135 raise ValueError
136 elif self.stage == 3:
137 if self.current_demand % 10 == 0:
138 if self.current_demand > \
139 self.current_order \
140 and self.current_demand - \
141 self.current_order != \
142 (0 or 10 or 20 or 30):
143 raise ValueError
144 else:
145 raise ValueError
146 if self.stage != 2 and \
147 self.current_demand % 10 == 0:
148 break
149 break
150 break
151 except ValueError:
152 if self.stage == 2:
153 print("Oops! You need to enter an integer"
154 " between 0 and 200, which is a "
155 "multiple of 40! Let ’s try again. ")
156 if self.stage == 3:
157 print("Oops! You need to enter an integer "
158 "between 0 and 200, which is a "
159 "multiple of 10! The demand should "
160 "be smaller than the number of meals "
161 "ordered , or it should be",
162 self.current_order , "+ 0, + 10, + 20 "
163 "or + 30. Let ’s "
164 "try again. ")
165 else:
166 print("Oops! You need to enter an integer "

23

167 "between 0 and 200, which is a "
168 "multiple of 10! Let ’s try again. ")
169
170 def expected_costs(self , index , ordered , next_order):
171 if index != self.total_moments:
172 return max(0, (next_order - ordered)
173 * self.costs[index - 1])
174 elif index == self.total_moments:
175 if next_order > ordered:
176 return self.costs[index] + (next_order - ordered)\
177 * self.costs[index - 1]
178 else:
179 return 0
180
181 def sdp(self , index , ordered , demand):
182 if demand > 200:
183 demand = 200
184 if index != self.total_moments:
185 next_order = np.arange(0, self.total_seats + 1, 20)
186 next_order = next_order[next_order >= ordered]
187 reward = np.empty(len(next_order))
188
189 next_demand = self.get_next_demand(index , demand)
190 prob = self.get_probability(index)
191 fnext = np.empty((len(next_order), len(next_demand)))
192
193 for i in range(len(next_order)):
194 if next_order[i] >= ordered:
195 reward[i] = self.expected_costs(index ,
196 ordered ,
197 next_order[i])
198 for j in range(len(next_demand)):
199 fnext[i, j] = min(self.sdp(index + 1,
200 next_order[i],
201 next_demand[j]))
202 else:
203 reward[i] = np.inf
204 fnext[i, :] = np.inf
205
206 product = prob * fnext
207 result = np.empty(len(next_order))
208 for i in range(len(next_order)):
209 temp = sum(product[i, :])
210 result[i] = reward[i] + temp
211 else:
212 result = [self.expected_costs(index , ordered , demand)]
213 return result
214
215 def get_probability(self , index):
216 sheets = self.data.sheet_names
217 temp = self.data.parse(sheets[index - 1]). Probability
218 result = np.empty(len(temp))
219 for i in range(len(temp)):
220 result[i] = temp[i]
221 return result
222

24

223 def get_next_demand(self , index , demand):
224 sheets = self.data.sheet_names
225 temp = self.data.parse(sheets[index - 1]). Demand
226 result = np.empty(len(temp))
227 for i in range(len(temp)):
228 result[i] = temp[i]
229 return result + demand
230
231 def best_choice(self , index , ordered , demand):
232 temp = self.sdp(index , ordered , demand)
233 best_order = np.argmin(temp)
234 next_order = np.arange(0, self.total_seats + 1, 20)
235 next_order = next_order[next_order >= ordered]
236 result = next_order[best_order]
237 return [result , temp[best_order]]
238
239 def all_choices(self , index):
240 data = self.get_data(index , np.zeros (1))
241 result = np.vstack ([data , np.empty([2, len(data)])])
242
243 for i in range(len(data)):
244 choice = self.best_choice(index , 0, data[i])
245 result[1, i] = choice [0]
246 result[2, i] = choice [1]
247 df = pd.DataFrame(data=result , index =[" current demand",
248 "optimal order",
249 "expected costs"],
250 columns =[""] * len(data))
251 return df
252
253 def get_data(self , index , demand):
254 if index > 1:
255 sheets = self.data.sheet_names
256 data = self.data.parse(sheets[index - 2]). Demand
257 new_demand = np.zeros(len(demand) * len(data))
258 k = 0
259 for i in range(len(data)):
260 for j in range(len(demand)):
261 new_demand[k] = demand[j] + data[i]
262 k += 1
263 result = self.get_data(index - 1, new_demand)
264 return result
265 else:
266 result = demand
267 return result[result <= self.total_seats]
268
269 def to_string(self):
270 with pd.option_context(’display.max_rows ’, None ,
271 ’display.max_columns ’, None):
272 for i in range(self.total_moments - 1):
273 print(" Stage {}: ". format(i + 1) +
274 self.all_choices(i + 1). __str__ () + "\n\n")
275
276 def main(self):
277 optimum = self.best_choice(self.stage , self.current_order ,
278 self.current_demand)

25

279 print("The best choice is to order a total of",
280 optimum [0], "meals at this point. \n This will "
281 "approximately cost", optimum [1],
282 "Euro including this order until the flight ")
283
284
285 stage = 1
286 sdp = SDP(True , stage)
287 sdp.to_string ()

26

D Probability Distribution

Function
Table 6: Complete distribution
of the final number of tickets sold
when having no information at three
months before the flight.

Demand Probability

0 0.00025

1 0.0005

2 0.00075

3 0.00075

4 0.00075

5 0.0005

6 0.0005

7 0.0005

8 0.00025

9 0.00025

10 0.001

11 0.002

12 0.003

13 0.003

14 0.003

15 0.002

16 0.002

17 0.002

18 0.001

19 0.001

20 0.00075

21 0.0015

22 0.00225

23 0.00225

24 0.00225

25 0.0015

26 0.0015

27 0.0015

28 0.00075

Demand Probability

29 0.00075

30 0.0005

31 0.001

32 0.0015

33 0.0015

34 0.0015

35 0.001

36 0.001

37 0.001

38 0.0005

39 0.0005

40 0.001

41 0.002

42 0.003

43 0.003

44 0.003

45 0.002

46 0.002

47 0.002

48 0.001

49 0.001

50 0.004

51 0.008

52 0.012

53 0.012

54 0.012

55 0.008

56 0.008

57 0.008

58 0.004

59 0.004

60 0.003

61 0.006

62 0.009

63 0.009

27

Demand Probability

64 0.009

65 0.006

66 0.006

67 0.006

68 0.003

69 0.003

70 0.002

71 0.004

72 0.006

73 0.006

74 0.006

75 0.004

76 0.004

77 0.004

78 0.002

79 0.002

80 0.00125

81 0.0025

82 0.00375

83 0.00375

84 0.00375

85 0.0025

86 0.0025

87 0.0025

88 0.00125

89 0.00125

90 0.005

91 0.01

92 0.015

93 0.015

94 0.015

95 0.01

96 0.01

97 0.01

98 0.005

Demand Probability

99 0.005

100 0.00375

101 0.0075

102 0.01125

103 0.01125

104 0.01125

105 0.0075

106 0.0075

107 0.0075

108 0.00375

109 0.00375

110 0.0025

111 0.005

112 0.0075

113 0.0075

114 0.0075

115 0.005

116 0.005

117 0.005

118 0.0025

119 0.0025

120 0.0015

121 0.003

122 0.0045

123 0.0045

124 0.0045

125 0.003

126 0.003

127 0.003

128 0.0015

129 0.0015

130 0.006

131 0.012

132 0.018

133 0.018

28

Demand Probability

134 0.018

135 0.012

136 0.012

137 0.012

138 0.006

139 0.006

140 0.0045

141 0.009

142 0.0135

143 0.0135

144 0.0135

145 0.009

146 0.009

147 0.009

148 0.0045

149 0.0045

150 0.003

151 0.006

152 0.009

153 0.009

154 0.009

155 0.006

156 0.006

157 0.006

158 0.003

159 0.003

160 0.00075

161 0.0015

162 0.00225

163 0.00225

164 0.00225

165 0.0015

166 0.0015

167 0.0015

168 0.00075

Demand Probability

169 0.00075

170 0.003

171 0.006

172 0.009

173 0.009

174 0.009

175 0.006

176 0.006

177 0.006

178 0.003

179 0.003

180 0.00225

181 0.0045

182 0.00675

183 0.00675

184 0.00675

185 0.0045

186 0.0045

187 0.0045

188 0.00225

189 0.00225

190 0.0015

191 0.003

192 0.0045

193 0.0045

194 0.0045

195 0.003

196 0.003

197 0.003

198 0.0015

199 0.0015

200 0.00025

201 0.0005

202 0.00075

203 0.00075

29

Demand Probability

204 0.00075

205 0.0005

206 0.0005

207 0.0005

208 0.00025

209 0.00025

210 0.001

211 0.002

212 0.003

213 0.003

214 0.003

215 0.002

216 0.002

217 0.002

218 0.001

219 0.001

220 0.00075

221 0.0015

222 0.00225

223 0.00225

224 0.00225

225 0.0015

226 0.0015

227 0.0015

228 0.00075

229 0.00075

230 0.0005

231 0.001

232 0.0015

233 0.0015

234 0.0015

235 0.001

236 0.001

237 0.001

238 0.0005

Demand Probability

239 0.0005

30

Table 7: Distribution two weeks be-
fore the flight when the current de-
mand is 0.

Demand Probability
0 0.005
1 0.01
2 0.015
3 0.015
4 0.015
5 0.01
6 0.01
7 0.01
8 0.005
9 0.005
10 0.02
11 0.04
12 0.06
13 0.06
14 0.06
15 0.04
16 0.04
17 0.04
18 0.02
19 0.02
20 0.015
21 0.03
22 0.045
23 0.045
24 0.045
25 0.03
26 0.03
27 0.03
28 0.015
29 0.015
30 0.01
31 0.02
32 0.03
33 0.03
34 0.03
35 0.02
36 0.02
37 0.02
38 0.01
39 0.01

Table 8: Distribution two weeks be-
fore the flight when the current de-
mand is 40.

Demand Probability
40 0.005
41 0.01
42 0.015
43 0.015
44 0.015
45 0.01
46 0.01
47 0.01
48 0.005
49 0.005
50 0.02
51 0.04
52 0.06
53 0.06
54 0.06
55 0.04
56 0.04
57 0.04
58 0.02
59 0.02
60 0.015
61 0.03
62 0.045
63 0.045
64 0.045
65 0.03
66 0.03
67 0.03
68 0.015
69 0.015
70 0.01
71 0.02
72 0.03
73 0.03
74 0.03
75 0.02
76 0.02
77 0.02
78 0.01
79 0.01

31

Table 9: Distribution two weeks be-
fore the flight when the current de-
mand is 80.

Demand Probability
80 0.005
81 0.01
82 0.015
83 0.015
84 0.015
85 0.01
86 0.01
87 0.01
88 0.005
89 0.005
90 0.02
91 0.04
92 0.06
93 0.06
94 0.06
95 0.04
96 0.04
97 0.04
98 0.02
99 0.02
100 0.015
101 0.03
102 0.045
103 0.045
104 0.045
105 0.03
106 0.03
107 0.03
108 0.015
109 0.015
110 0.01
111 0.02
112 0.03
113 0.03
114 0.03
115 0.02
116 0.02
117 0.02
118 0.01
119 0.01

Table 10: Distribution two weeks
before the flight when the current de-
mand is 120.

Demand Probability
120 0.005
121 0.01
122 0.015
123 0.015
124 0.015
125 0.01
126 0.01
127 0.01
128 0.005
129 0.005
130 0.02
131 0.04
132 0.06
133 0.06
134 0.06
135 0.04
136 0.04
137 0.04
138 0.02
139 0.02
140 0.015
141 0.03
142 0.045
143 0.045
144 0.045
145 0.03
146 0.03
147 0.03
148 0.015
149 0.015
150 0.01
151 0.02
152 0.03
153 0.03
154 0.03
155 0.02
156 0.02
157 0.02
158 0.01
159 0.01

32

Table 11: Distribution two weeks
before the flight when the current de-
mand is 160.

Demand Probability
160 0.005
161 0.01
162 0.015
163 0.015
164 0.015
165 0.01
166 0.01
167 0.01
168 0.005
169 0.005
170 0.02
171 0.04
172 0.06
173 0.06
174 0.06
175 0.04
176 0.04
177 0.04
178 0.02
179 0.02
180 0.015
181 0.03
182 0.045
183 0.045
184 0.045
185 0.03
186 0.03
187 0.03
188 0.015
189 0.015
190 0.01
191 0.02
192 0.03
193 0.03
194 0.03
195 0.02
196 0.02
197 0.02
198 0.01
199 0.01

Table 12: Distribution two weeks
before the flight when the current de-
mand is 200.

Demand Probability
200 1

33

	Introduction
	Problem Description
	Pilot data
	Methods

	Single decision moment
	Monte Carlo Simulation
	Results

	Newsboy Problem: Analytic Approach
	Results

	Multiple decision moments
	Markov Decision Tree
	Stochastic Dynamic Programming
	Results

	Results
	References
	Appendices
	Monte Carlo Simulation Code
	Newsboy Code
	Stochastic Dynamic Programming Code
	Probability Distribution Function

