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Abstract

A necessity for the fifth generation of mobile communications to be deployed is the
infrastructure of base stations to support the network. There are several reasons why
a base station may fail to provide internet to a connected user, like a power outage
or something is in the way of the connection. To assure that a base station will not
experience any power outage, an additional power generator may be added. In this
paper, we model the internet network with the usage of a Poisson Point Process. Fur-
thermore, we model the reasons why a base station may fail to provide internet with
the usage of the STIRG model. Then we use linear optimisation to find the optimal
solution as to which base stations should get additional power generators. The gen-
eral result is that it is more advantageous to add a power generator to a base station
that has a higher probability to provide internet to a connected user. Moreover, no
significant relation between the amount of protected base stations and the probability
that an internet connection is interrupted has been noted.
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I INTRODUCTION

Since the first phones were used, mobile communication has changed a lot. The internet in
the first generation (1G) had a speed of 2.4 kbps, poor voice quality and it was easy for a
third party to eavesdrop. Then the second (2G), the third (3G) and the fourth generation
(4G) followed. With every generation, significant improvements were made. Currently the
4G network is widely used. The internet in this generation is able to provide speed between
10 Mbps and 1 Gbps, it is possible to stream videos with high quality and the 4G network
is much more secure than its predecessors. However, the fifth generation (5G) begins to be
deployed. The 5G network offers improved functions from the previous generations as well
as some new ones. It has much higher speed and capacity, the audio as well as video are in
high resolution, also when calling, and it supports interactive multimedia, voice, streaming
video, internet and many others. However, there are still some challenges facing the 5G
network. One of them is the lack of infrastructure supporting the 5G network [8]. Some
new antennas need to be built as the 5G network relies on higher-frequency bands. The
development of the fifth generation can be advantageous for virtual reality, autonomous
vehicles, healthcare equipment and many more, once all the challenges are addressed.

To create an infrastructure for the 5G network, we need base stations to which users
can connect wirelessly. The connections between base stations and users can be viewed as
a graph where base stations and users are nodes and the connections between them are
edges. In order for a base station to work, it needs power supply. Moreover, to operate
continuously, even when the power supply fails, the base station needs an external power
source, a power generator for example. Such a base station with an additional power gen-
erator is called protected. Since it can be costly to protect a base station, we do not want
to add a power generator to every one, but to the only ones whose protection cause the
event of losing a connection between a user and a base station to be the most unlikely.
Therefore we need to find a decision making process that chooses which base stations to
protect.

In this paper the following research question will be addressed.

How to decide which base stations to protect to maximise the probability that an
uninterrupted connection exists ?

This research question tackles a few aspects, like modelling of an internet network, and
a decision process to decide which base stations should get power generators. Therefore,
this research question can be viewed in terms of the following sub-questions.

How can the connections between internet users and base stations be mathematically
modelled ?

How to decide which and how many base stations to protect ?

What is the relation between the amount of protected base stations and the probability that
a internet connection is interrupted ?

The outline of this paper is such that first necessary theory is explained in Section II.
Having that the detailed model can be introduced in Section III. In the same section
relevant assumptions are explained, so that in Section IV simulations can be described as
well as their results. In Section IV. A we perform one single simulation and we discuss and
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analyse the results. In Section IV. B we perform 500 different simulations and we discuss
the average and extreme results, and we compare these results with the results from the
single simulation. In the remainder of the paper, we discuss the model and the results,
and formulate conclusions.

II THEORY

We model wireless networks by creating a graph where base stations and users are nodes
and connections between them are edges. In the following sections, we will discuss the
necessary theory to model a wireless networks. First, random and bipartite graphs will
be discussed, then the Poisson Point Process (PPP) will be shortly explained, and lastly
Signal-to-Interference Graph Ratio (STIRG) model will be introduced. All these terms
will contribute to the mathematical model of the problem.

A RANDOM BIPARTITE GRAPHS

The concept of random graphs is rather new. There are several concepts that are referred
to as random graphs. One of them considers that every possible edge in a graph appears
independently of other edges with a probability p. It has been introduced in 1959 by Paul
Erdös and Alfred Rényi to address the probability of a random graph being connected
and the probability of other graph properties [6]. The concept of random graphs has since
evolved and we can see random graphs often used to model random-like networks, such as
internet networks, spread of human population, and neural networks [7].

A bipartite graph is a graph in which the set of vertices V can be split into two sets,
V1 and V2, such that none of the vertices in V1 is connected to any vertex in V1. Simi-
larly, none of the vertices in V2 in connected to any vertex in V2, but any vertex in V2 is
connected to some vertices in V1, and any vertex in V1 is connected to some vertices in V2.

Figure 1: A simple example of a random bipartite
graph.

A random bipartite graph is a
combination of both, random and
bipartite graphs. In Figure 1 an
example of such graph can be
found. Consider V1 = [v1, v2, v3]
and V2 = [v4, v5, v6, v7, v8]. Then
one can see that this is indeed a
bipartite graph. Moreover, each
vertex in V1 is connected to ver-
tices in V2. Each of these edges
exists independently of the other
edges with probability p. Because
of that the graph is called random.
Since the graph is both bipartite
and random, it is called a random
bipartite graph. The probabilities
for each edge to be present may
differ, this is dependent on the assumptions one takes.

In this paper, we assume that out of a set of points V , we choose a set of points B that
represents base stations and another set, set U = V \B, that represents users. Moreover,
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we assume that the users connect to at most one base station that is the closest. That
is, neither base stations are connected to another base stations nor users are connected to
other users. Furthermore, for each connection between a base station and a user, there
exists a certain probability that indeed such connection exists. These are discussed in
Section III. A. Therefore, the union of the sets of base stations and users, set V and the
edges between them create a random bipartite graph.

B POISSON POINT PROCESS

In probability theory, the Poisson Point Process with density λ is a collection of random
points distributed according to a Poisson process with density λ. The expected value and
the variance of the amount of points within a given area in such process is λ · area. Condi-
tionally on the number of points within an area, these points are uniformly distributed over
the area. The Poisson Point Process is often used when describing random-like networks
[1]. The combination of two Poisson Point Processes is also a Poisson Point Process.

In this problem, we assume that the location of points representing the base stations
and users comes from a Poisson Point Process. First, we create a set of points from a
Poisson Point Process with density λ on a grid 10× 10 m. Then out of all created points,
a uniformly random number between 0.5 and 1.5 % is chosen which represents the amount
of points from all created points that we take to create a set of points representing the
locations of the base stations. The remaining points represent the locations of users.

C SIGNAL TO INTERFERENCE RATIO GRAPH

The Signal to Interference Ratio Graph model is often used in the context of wireless
networks. This model is based on signal-to-interference-plus noise-ratio (SINR) and a link
existence is dependent not only on the location of the user and the base station that we
consider, but also on the location of all the other users and base stations in the network
[5]. Furthermore, the STIRG model assumes that the location of the points is based on a
Poisson Point Process and that the transmitted power of nodes representing base stations
is independent of other base stations. The model considers that two nodes, i and j, are
connected only if the ratio of the power from i to j to the total power received from all the
other nodes and thermal noise is above a threshold [2]. Let Pi denote the transmitted power
from base station i, L(xi−xj) is an attenuation function, and let W be the thermal noise.
Furthermore, let the interference of all other nodes be denoted as

∑
k 6=i,j PkL(xk−xj) and

let γ ∈ (0, 1) be the weight of the interference term. Then the condition that needs to be
satisfied for the two nodes to be connected can be written as

f(xi,xj) =
PiL(xi − xj)

W + γ
∑

k 6=i,j PkL(xk − xj)
> T, (1)

where T is a threshold.

For this problem, the attenuation function is chosen such that the larger the distance
between a base station i and a user j, the smaller the probability that the connection ij
exists. Let xi = (xix , xiy), then the following attenuation function is considered.

L(xi − xj) = ||xi − xj||−2 =
1

(xix − xjx)2 + (xiy − xjy)2
. (2)
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III MODEL

It is desired to know the relation between the amount of protected base stations and the
probability that users lose internet connection, that is, lose the connection with a base
station to which they were connected. We will do this by first mathematically modelling
the problem using random bipartite graphs, Poisson Point Process and the Signal to In-
terference Ratio Graph model explained in Section II. C, and then finding an efficient
decision-making process that decides which base stations to protect. In the remainder of
this section, the model is compared to 0/1 knapsack problem.

A DETAILED PROBLEM DEFINITION

In this paper, we assume that whether there is a connection between a base station i and a
user j, such that the base station i is the closest base station, depends on the three events
described as follows:

Aij - user j in reach of base station i;
Bi - the base station i is working;
Cij - the connection between a base station i and a user j is interrupted.

The probabilities of the events Aij , Bi and Cij as well as any other necessary assump-
tion that are relevant to the probabilities of these events are described as follows.

The probability that a connection exists

The probability of the event Aij , that user j is in reach of base station i can be modelled
with the usage of STIRG model, and therefore, from Section II. C we have that condition
as in (1) needs to be satisfied. Considering f(xi,xj) from (1) and the attenuation function
as in (2), we let the probability that user j is in reach of base station i to be

pAij =
PiL(xi − xj)

W + γ
∑

k 6=i,j PkL(xk − xj)
.

For appropriate values of Pi, W and γ, it can be assured that pAij is smaller or equal to
1. In this problem we take thermal noise (W ) to be 1, and the weight of the interference
term (γ) to be 0.001.

Transmitted power

We assume that the power of base station i can be described in two ways. The first setting
assumes the transmitted power to be the same for all base stations while the second setting
assumes that the transmitted power is dependent on the amount of users connected to a
base station. In the first setting, we take Pi = 10 ∀i. In the second setting, we assume
that the power a base station transmits depends on the amount of connected users, such
that the more users are connected to the base station, the lower the transmitted power.
A base station needs to support all of the connected users which usually means that the
transmitted power to each user decreases with every new joining user.

Letm be the amount of base stations in a Poisson Point Process, n the amount of users and
ai the amount of users connected to a base station i. Furthermore, let P denote the value
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of the transmitted power if it is described as in the first setting. Then the transmitted
power of a base station i can be described as

Pi =
n− ai
n
· (P +

P

m
).

This way, the transmitted power differs per base station but the difference between trans-
mitted powers among base stations is small. Furthermore, by adding the term P

m , we assure
that the transmitted power is close to the value of P . Without this term, the value of Pi

is smaller than P for all i.

The probability that a base station is working

The probability of the event Bi, that base station i is working can, again, be described
in two ways. In the first setting, we assume pBi to be the same among all base stations
while in the second setting, we assume pBi to be dependent on the amount of connected
users to a base station i. In the first setting, we take the probability that a base station i
is working to be pBi = 0.9 ∀i. In the second setting, we assume that pBi is dependent on
the amount of users connected. Since a base station needs to support all connected users
which usually implies that the more connected users, the more likely the base station is to
fail, i.e. the smaller the probability that a base station is working. In principle, the pBi is
defined in the similar way as the transmitted power, and hence, letting pB be the value of
the probability that the base station is working if it is described as in the first setting, we
have

pBi =
n− ai
n
· (pB +

pB

m
).

Again, the difference per base station is small and the value of each pBi is not much bigger
or smaller than the value of pB.

The interruption probability

Figure 2: The assumed layout with the associated
region colors.

The probability of the event Cij ,
that the connection between base
station i and user j is interrupted
can also be described in two ways.
In the first setting we assume pCij
to be the same for each base sta-
tion and we take pCij = 0.15 ∀i.
In the second setting, we assume
that the interruption probability
depends on the location of the
base station and connected user.
We consider a grid 10 x 10, and
we introduce some regions in it.
One can see it as a representation
of a large area with dense city and
rural areas surrounding the city.
A dense city is busier, has higher
buildings and more trucks drives
there, in comparison to the rural areas. Therefore the interruption probability of a busier
region is higher. The rural areas are less busy, they do not have many high buildings or
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trucks coming in, and therefore the interruption probability is lower. This assumption is
represented in Figure 2. Each, out of the five regions has an interruption probability as-
sociated with them which is relevant for connections between base stations and users. If a
user and a base station happen to be in two different regions their interruption probability
is the average of the two. The magenta region is assumed to be the busiest region, and
green to be the least busy region. With that in mind, the interruptions probabilities are
assumed to be as represented in Table 1.

pCij red green magenta cyan black
red 0.15 0.10 0.20 0.125 0.15
green 0.10 0.05 0.15 0.075 0.1

magenta 0.20 0.15 0.25 0.175 0.2
cyan 0.125 0.075 0.175 0.10 0.125
black 0.15 0.10 0.20 0.125 0.

Table 1: The interruption probability for each region for the assumed layout.

If one wants to find out what is the interruption probability if a base station is in the red
region and the connected user is in the magenta region, one looks for the value represented
in row 1 (red) and column 3 (magenta).

The probability that an uninterrupted connection exists

The probability that the connection from base station i, that is working, to a user j exists
and is uninterrupted is defined as pij . Since we assume the described events Aij , Bi and
Cij independent, we have

pij = pAij · pBi · (1− pCij).

B IMPLICATIONS OF ADDING A POWER GENERATOR

Adding a power generator to a base station i can be done at cost ci and it causes that
the probability that the base station i is working is 1, i.e. pBi = 1. We assume that the
cost can also be described in two ways. It may be the same for each base station or it
may vary depending on the amount of connected users to the base station. In the first
setting, we take ci = 10 000 ∀i. In the second setting, we assume that the cost depends on
the amount of users connected to a base station. The more users are connected to a base
station, the more expensive power generator is needed. One can think of it in the sense
that the more users is connected, a generator with more power is needed to support all of
these users. Let m be the amount of the base stations in a Poisson Point Process, n the
amount of users and ai is the amount of users connected to a base station i. Furthermore,
let c denote the value of cost as in the first setting. Then the cost for a power generator
for a base station i is

ci =
ai

1
m

∑m
i=1 ai

· c.

This way, the cost differs per base station, but not significantly and are not much bigger
than c. Furthermore, it is assumed that there is a budget C that can be spend on power
generators to protect base stations.
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Budget

The assumptions for budget can, in general, be done in several ways. Either amount of
money can be given that one is willing to spend or one can decide how much money they
are willing to spend depending on the amount of base stations, so at most how many base
stations does one wish to protect. For this problem, it is assumed that the budget depends
on the amount of base stations in a relevant Poisson Point Process. Let m be the amount
of base stations in a Poisson Point Process and let c denote the value of cost for power
generator if it is assumed to be the same for each base station. Then the budget for the
power generators for the base stations, denoted as C, can be described as

C = bm
2
c · c.

The budget is always an integer, which makes computations a bit easier.

C LINEAR MODEL

In this section, we maximise the probabilities that there exist uninterrupted connections
between base stations and users. The problem is constraint with the budget for the total
cost for the additional power generators. This can be written as

max
∑
i

∑
j

pij s.t.
∑
i

ci ≤ C.

The problem written in this form is difficult to solve as the constraint impacts the objective
function indirectly. To be more specific, the constraint changes pBi to be 1 for some base
stations that are protected which changes pij = pAijp

B
i (1 − pCij) to be pij = pAij(1 − pCij).

Therefore, we rewrite the model such that the constraints of the model impact the objec-
tive function directly.

Let αi = {0, 1} be a decision variable that describes whether a base station i is pro-
tected. The value αi = 0 describes that base station is not protected and αi = 1 describes
that base station is protected. The only thing that changes when a power generator is
added to base station i is pBi . When base station i is not protected, so when αi = 0,
pij = pAijp

B
i (1 − pCij). When base station i is protected, so when αi = 1, pij changes to

pAij(1− pCij). This implies that the objective function can be written as∑
i

∑
j

(pBi (1− αi) + αi) p
A
ij(1− pCij) =∑

i

∑
j

[αi · (1− pBi )pAij(1− pCij) + pAijp
B
i (1− pCij)].

Therefore, the linear program becomes

max
∑
i

∑
j

[αi · (1− pBi )
pij

pBi
+ pij ]

s.t.
∑
i

ciαi ≤ C. (3)

Having the program in its linear form, we can solve it using a linear solver in MATLAB.

9



D THE PROBLEM VS THE 0/1 KNAPSACK PROBLEM

The knapsack problem is a programming problem with one constraint. Consider a set of
items i = 1, 2, ..., n, each with a weight wi and value vi. The goal is to determine the
amount xi each item can be included in a collection such that the total weight is under
certain limit W and the value is as large as possible. The 0/1 knapsack problem restrict
that the amount each item in the collection is either 0 or 1 [4]. Then this can be written
as

max

n∑
i=1

vixi s.t.
n∑

i=1

wixi ≤W and xi ∈ {0, 1}.

The 0/1 knapsack problem has many applications in decision-making problem and several
algorithms have been created to solve it.

If one takes a closer look at the introduced model, (3), and the definition of 0/1 knapsack
problem, one can note some similarities. The αi in the model corresponds to xi in the
knapsack problem, (1 − pBi )

pij
pBi

+ pij in the model corresponds to vi, the costs ci in the
model correspond to wi and the budget C in the model corresponds to W .

Since the 0/1 knapsack problem is a NP-hard problem, no efficient algorithm exists [3].

IV SIMULATION AND RESULTS

As explained in Section III, we have that cost of power generators, transmitted power, pBi
and pCij can be described in two ways each. Therefore, there are 16 different assumptions
that can be made. We consider the variables in that order: cost, power, pBi and pCij , and
we let 1 denote that a variable is as described in the first setting (the same among base
stations and connections), and 0 to denote that a variable is as described in the second
setting (differs among base stations and connections). One of the assumptions that can be
made is that costs differ among base stations, the transmitted power is different for each
base station, the probability that a base station is working, pBi , is the same for all base
stations and that the interruption probability, pCij , is different for all the connections. Such
an assumption can be abbreviated to 0010.

In this section, we first consider one Poisson Point Process and we analyse what is the
impact of the different assumptions on the amount of protected base stations and what
do the protected base stations have in common. Then, we perform a simulation of 500
different Poisson Point Processes for all 16 different assumptions and we analyse the results
as well.

A ONE POISSON POINT PROCESS

In this part, we introduce a Poisson Point Process for which a simulation has been per-
formed for all 16 cases. Afterwards, the results of these simulations are analysed and
compared.

Poisson Point Process

Consider a set of base stations and users formed from a Poisson Point Process with λ = 50
in a grid 10×10m as in Figure 3. This process has created 4875 points, out of which 43 are
chosen to be base stations (0.88%). All of the points are spread in the grid and therefore
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have associated interruption probabilities, if applicable. The location of all points, specif-
ically the base stations can be seen in Figure 3a. The base stations are also colored with
the color corresponding to the region of the interruption probability for better visibility.
In this Poisson Point Process, we have 15 base stations in the red region, 8 in the green
region, 5 in the magenta region, 3 in the cyan and 12 in the black region.

In Figure 3b, it is represented which users connect to which base stations. As one can
see, in the regions where the locations of the base stations are more dense, the amount
of users to each base station is small while in the regions where there is not many base
stations, more users are connected to each base station.

(a) The placement of users and
base stations with the city layout.

(b) Links between users and base
stations with the city layout.

Figure 3: The Poisson Point Process representation of the network with density
λ = 50 with the city layout.

Amount of connected users

Figure 4: A histogram representing the amount of
base stations that have amount of connected users

within the intervals of length 10.

In Figure 4 one can see the his-
togram representing the amount
of base stations in the Pois-
son Point Process that have
the amount of connected users
within specific intervals. Each
bar has width 10, meaning that
first bar represents the amount
of base stations to which be-
tween 30 and 40 users connected.
We note that this histogram is
right-skewed, which makes sense
as the amount of base stations
that have certain amount of con-
nected users must be at least 0
and at most the total amount
of base stations created in the
PPP.
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Most of the base stations have between 50 and 150 connected users (74.42%). The smallest
amount of connected users was 37 while the largest was 282. The base station with the
smallest amount of connected users is the base station which is located in the lower part
of the black region. There are two base stations that are located closely to it that have
59 and 88 users connected to it. The base station that has the most users connected to it
is the base station that is located in the upper part of the black region. Out of the base
stations in the upper part of the grid, this one is located to the most right and therefore
all the users that are located in the top right corner are connected to this base station,
which explains the large amount of connected users.

Summary of results for all 16 cases

Considering the set of base stations and users as in Figure 3, 16 different runs have been
made to see what happens if some of the variables are the same for base stations while
other differ. In Figure 5 the comparison of the results of the 16 cases is shown. In Figure 5a
the optimal values for each case is shown. Furthermore, the highest optimal value has been
marked in red. This value has been achieved in the case 0110 when costs and pCij differ per
base station, and power and pBi stay the same. In Figure 5b the amount of protected base
stations for each case is shown and the case for which the highest optimal value has been
achieved is colored.

(a) The optimal value for∑
i

∑
j pij for each case.

(b) The amount of protected
base stations for each case.

Figure 5: The comparison of results for all 16 cases.

Overall, the optimal values are not much different for all cases. The smallest optimal
value is achieved for case 1001 (transmitted power and pBi differ among base stations while
costs and pCij are the same for all base stations and connections), and is 740.5127 while
the highest value is achieved for case 0110 (cost and pCij differ among base stations and
connections while transmitted power and pBi are the same), and is 749.0134. The amount of
protected base stations differs a bit more. The cases with the least protected base stations
are all that have the same cost for power generators for all base stations. In these cases 21
base stations are protected, which is around 50% of all base stations, which makes sense
as the budget in these cases only allows to protect half of the created base stations and it
is advantageous to protect as much base stations as possible. The cases that protect the
most base stations are 0010, 0011, 0110 and 0111, when 28 base stations are protected.
The optimal values of these cases are 745.93, 743.85, 749.01 and 746.95, respectively. All
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of these values are within ten highest optimal values but three of them are one of the five
highest optimal values.

0010 vs 0011 vs 0110 vs 0111

One might find it strange that the cases with the highest amount of protected base stations
have different optimal values. Therefore, we compare the four cases: 0010, 0011, 0110 and
0111. All of them have 28 protected base stations while their optimal values vary from
743.8493 (for 0011) to 749.0134 (for 0110). All of these cases have the same values of the
cost of power generators and probabilities that base stations are working. This can be seen
as both, the costs and pBi are described in only two ways for every base station and for
these four, these two variables are described in the same way. In this part, we will compare
these four cases. Specifically the three cases, 0010, 0011 and 0111, are compared to 0110,
as 0110 has the highest optimal value. In Table 2 one can see the differences between the
cases.

variable 0010 0011 0110 0111
cost differs differs differs differs
power differs differs same same
pBi same same same same
pCij differs same differs same

Table 2: Comparison for cases 0010, 0011, 0110 and 0111

Case 0010 considers different transmitted power for all base stations while 0110 considers
that transmitted power is the same. The case 0011 also considers that the transmitted
power differs among base stations, but also that the interruption probability is the same
for all connections while the case 0110 considers that transmitted power is the same for
all base stations and the interruption probability differs among connections. Lastly, the
case 0111 is different from the case 0110 in the sense that it considers the interruption
probability to be the same for all connections while, as already mentioned, the case 0110
considers it to differ. In Table 3 it is summarised how the variables that are impacted by
the transmitted power behave for the four cases.

variables 0010 0011 0110 0111
optimal value 745.9291 743.8493 749.0134 746.9531

mini Pi 9.6354 9.6354 10 10
average power 9.9946 9.9946 10 10

maxi Pi 10.1542 10.1542 10 10
mini

∑
j pij 3.7434 3.5658 3.7317 3.5546

mean
∑

j pij 15.8527 15.8135 15.9213 15.8825
maxi

∑
j pij 93.9319 93.7448 93.9936 93.8057

Table 3: Comparison of several variables for cases 0010, 0011, 0110 and 0111.

On average, the case 0110 tends to achieve higher values for the transmitted power and for∑
j pij . Furthermore, since the optimal values for cases with the same transmitted power

among base stations, 0110 and 0111, are higher than in cases 0010 and 0011, it can be
concluded that for this Poisson Point Process, if costs are different for all power generators
and the probability that a base station is working is the same for all base stations, then
the cases that consider the same value for transmitted power for all base stations perform
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better than the cases that consider different transmitted powers among base stations. Fur-
thermore, since the optimal value for 0010 is higher than for 0011, and the optimal value
for 0110 is higher than for 0111, it can also be concluded that cases that consider the
interruption probability that differs among connections perform better.

One may wonder whether this behaviour also occurs for other cases that only differ by
one of the variables. That is, whether cases that consider different costs among base sta-
tions, and whether cases that consider the interruption probability that differs among base
station get higher optimal values. Moreover, if these variables impact the optimal value,
maybe the other two variable can have an impact as well. Therefore cases that differ by
only one of the variables are going to be compared and analysed.

Impact of the cost

In Table 4, such cases are compared that differ only by the variable of the cost. On top
of the table, the optimal values of the cases that consider cost to be different for all power
generators is shown and on the bottom the optimal values for cases that consider the costs
to be the same. The higher values are marked for each comparison.

cases
0000
vs

1000

0001
vs

1001

0010
vs

1010

0011
vs

1011

0100
vs

1100

0101
vs

1101

0110
vs

1110

0111
vs

1111

differs 742.96 740.95 745.93 743.85 746.04 744.06 749.01 746.95

same 742.29 740.51 743.48 741.70 745.54 743.80 746.71 744.96

Table 4: Comparison of cases when the costs differ

As one can see, cases that consider different costs for power generators tend to have higher
optimal values.

Impact of the transmitted power

The impact of the variable of the transmitted power is represented in Table 5. The higher
optimal values are marked again and one can note that cases that consider same values for
transmitted power of all base stations tend to have higher optimal values.

cases
0000
vs

0100

0001
vs

0101

0010
vs

0110

0011
vs

0111

1000
vs

1100

1001
vs

1101

1010
vs

1110

1011
vs

1111

differs 742.96 740.95 745.93 743.85 742.29 740.51 743.48 741.70

same 746.04 744.06 749.01 746.95 745.54 743.80 746.71 744.96

Table 5: Comparison of cases when the transmitted power differs

14



Impact of the probability that a base station is working

Now, the probability that a base station is working is considered. In Table 6, the optimal
values of all cases that only differ by the variable pBi are compared and the higher optimal
values are marked. Similarly, as in case of the transmitted powers, the cases which consider
that the probability that a base station is working is the same have higher optimal values.

cases
0000
vs

0010

0001
vs

0011

0100
vs

0110

0101
vs

0111

1000
vs

1010

1001
vs

1011

1100
vs

1110

1101
vs

1111

differs 742.96 740.95 746.04 744.06 742.29 740.51 745.54 743.80

same 745.93 743.85 749.01 746.95 743.48 741.70 746.71 744.96

Table 6: Comparison of cases when pBi differs

Impact of the interruption probability

Lastly, the cases that differ by the variable of the interruption probability are compared
in Table 7. The higher optimal values, which occur for cases with different interruption
probabilities among connections are marked.

cases
0000
vs

0001

0010
vs

0011

0100
vs

0101

0110
vs

0111

1000
vs

1001

1010
vs

1011

1100
vs

1101

1110
vs

1111

differs 742.96 745.93 746.04 749.01 742.29 743.48 745.54 746.71

same 740.95 743.85 744.06 746.95 740.51 741.70 743.80 744.96

Table 7: Comparison of cases when pCij differs

To summarise, for this Poisson Point Process cases that have different values of costs
among base stations, same values for transmitted power and pBi for all base stations and
that have values of interruption probability that differ among base station tend to have
higher optimal values. As one can see, the case 0110 is the only case that considers the
values in this way and is the case for which the highest optimal value has been achieved.

Cases with the 32 protected base stations

Considering again Figure 5b, one can note that the last 8 cases have the same amount of
protected base stations. What these cases have in common is that the cost for a power
generator is the same for each base station. Since the budget depends on the amount of
base stations and the cost for the power generator for a base station, and in these cases
the cost is the same for each base station, therefore the maximal amount of base stations
that can be protected is the same for these 8 cases. Therefore, these last 8 cases all protect
the maximal amount of base stations they can, which is 21.
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Most often protected base stations

In Figure 6 three graphs are presented. The first one represents the average
∑

j pij through-
out all 16 cases for all base stations in a decreasing order while the second one shows how
many times respective base stations were protected. The third graph represents the amount
of users connected to each base station and 10 base stations that have largest amount of
connected users are marked in orange. The first value of the first graph corresponds the
highest mean

∑
j pij among all base stations, the second graph concludes that the base

station with the highest average
∑

j pij was protected in all 16 cases, and from the third
graph it follows that there were around 100 users connected to this base station.

Figure 6: Average of
∑

j pij for all base stations in a decreasing order, the amount
of times the base stations were protected and amount of users of each base station.

From the first of these graphs one can note how big is the difference between the smallest
and the largest

∑
j pij . The maximum value is 93.87 while the minimum value is 3.66.

From the second graph, it follows that the 11 base stations with the largest mean
∑

j pij
were protected in all 16 cases and most of the base stations that were protected at all,
were protected in at least 8 cases. The last graph indicates that while 7 out of 10 base
stations with the largest amount of connected users were protected in at least half of the
cases, only 2 were protected in all of the cases.

In this Poisson Point Process, base stations with higher
∑

j pij tend to be protected more
often while a similar rule has not been observed for base stations with larger amount of
users. Therefore, it can be concluded that for this Poisson Point Process,

∑
j pij is more

important than the amount of connected users when deciding whether a base station should
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be protected.

B COLLECTION OF POISSON POINT PROCESSES

In this part, we present and analyse results of 500 simulations, each performed on a dif-
ferent Poisson Point Process. These simulations have been performed for all 16 cases,
resulting in total in 8000 different cases.

In general, we consider the same assumptions as explained in Section III, with the differ-
ence that the budget is set to 200 000. First, the overview of the Poisson Point Processes is
presented. The amount of all created base stations and the location as well as the amount
of connected users is discussed. Then the

∑
j pij for all the base stations are discussed

and some extreme values are shown and discussed. Finally, we present the results and
we compare some of them to find out whether the impact of the variables as observed in
Section IV. A can be supported.

Poisson Point Processes

Figure 7: A box-plot representing the amount of
base stations in each region throughout all PPP’s.

There were 500 different Poisson
Point Processes created for which
the simulation for all 16 cases has
been performed. Among these
processes, the smallest amount of
base stations that was created was
24, and the largest was 77. In to-
tal, there were 24 746 base sta-
tions created. In Figure 7 a box-
plot of the amount of base stations
in each region is shown. As one
may note, the most base stations
were placed in red and black re-
gions. This make sense, as these
regions have the largest areas. In
the red region, there were at least
2 and at most 30 base stations
while in the black region there
were at least 3 and at most 31 base stations. The regions green and cyan had median
of 6 base stations in these regions and there were at most 17 base stations in the green
region and at most 15 base stations in the cyan region. The magenta region had a median
of 7 base stations in this region, slightly higher than regions green and cyan. And its
highest outlier amount of base stations was 19. The little amounts of base stations in each
region correspond to runs with small amounts of base stations.

Amount of connected users

In Figure 8a one can see the box-plot representing the amount of users connected to
base stations that is within interval of length 5. For example, the first created box-plot
represents the amount of base stations to which 0 to 5 users are connected. There were
200 different intervals, each of length 5, considered from 0 to 1000 connected users, but
the intervals in the figure vary from [0, 5] to [195, 200]. This is because the amount of base
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stations that have the amount of connected users within intervals larger than the interval
[195, 200] is considered in very little cases, at most 0.48% of all base stations are considered
to have the amount of connected users to be in one of the intervals larger than [195, 200].
The largest amount of connected users is 910 which happened only for one base station
throughout all the runs. To be specific, it happened for a run that had 30 base stations,
most of which were in the bottom-right corner while this base station was the only one in
the top-left corner. Therefore all users in the top-left corner connected to this base station.
In the Figure 8a the average amount of base stations that have amount of connected users
in respective intervals is shown as well, as the orange line. The largest average amount of
connected users is in the interval [55, 60] and is 2.132. That is, on average 2 base stations
in a run had between 55 and 60 users connected. This interval is also the one with the
largest value of the outlier. This outlier has value 14, that is, at most 14 base stations in
one run had amount of connected users between 55 and 60.

(a) A box-plot representing the
amount base stations to which
amount of connected users is
within intervals of length 5.

(b) A box-plot representing
amount of base stations that have∑

j pij within intervals of length
10.

Figure 8: Summary of amount of base stations that have amount of connected
users and

∑
j pij within specific intervals.

Overview of
∑

j pij

In Figure 8b, one can see a box-plot representing the amount of base stations that have∑
j pij within intervals of length 10. For example, the first box-plot represents the amount

of base stations that have their
∑

j pij between 0 and 10. The median of the amount of
base stations for this interval is 18. The largest amount of base stations that had

∑
j pij

within that interval in one run was 67. In this run, there were in total 75 base stations.
Three of them had their

∑
j pij between 10 and 20, one of them between 30 and 40, two of

them between 40 and 50 and the last two base stations had their
∑

j pij between 70 and
80, and 180 and 190. From the figure, one can conclude that the larger the value of

∑
j pij ,

the smaller the amount of base stations and only 0.43% of all the considered base stations
have their

∑
j pij larger than 80.

Summary of results for all 16 cases

For each of the 500 different Poisson Point Processes that were created, we consider 16
different cases, similarly as in Section IV. A, when one network created from one Poisson
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Point Process was discussed. Recall that the order in which we consider variables is cost
of additional power generator, transmitted power of base station, the probability that a
base station is working, pBi , and the interruption probability, pCij . Furthermore, 1 denotes
that a variable is the same among base stations and connections while 0 denotes that the
variable differs. In Figure 9 the comparison of the results for all 16 cases is shown. In
Figure 9a, a box-plot representing the optimal values for the cases is created as well as the
mean value of the optimal values for each case is marked in orange. This value is always
a bit lower than the median but the difference is not significant. In Figure 9b, a box-plot
representing the amount of protected base stations for each case is shown and the average
amount of protected base station for each case is marked in orange. This value tends to
be the same or a bit smaller than the median.

(a) A box-plot representing the
optimal value for

∑
i

∑
j pij for

each case.

(b) A box-plot representing the
amount of protected base stations

for each case.

Figure 9: The comparison of results for all 16 cases for 500 different runs.

The optimal values vary a lot throughout the runs, but do not vary much throughout
the cases. If the outliers are included in the consideration, the smallest optimal value is
164.2071 while the largest one is 1467.71. The maximum optimal value has occurred in
the run 450 for the case 1101, that is all the variables, except pBi , are the same for all
base stations and connections. In this run, there were only 24 base stations, out of which
20 were protected. The amount of protected base stations varies a bit less among all the
runs and cases. The smallest amount of protected base stations was 18 while the largest
one was 32. Furthermore, the box-plot in Figure 9b suggests that the cases 0010, 0011,
0110 and 0111 tend to protect more base stations than all the other cases. Interestingly,
these are the same cases as in Section IV. A which also protected the most base stations.
Moreover, the cases that had the smallest amount of protected base stations also had costs
of power generators to differ among base stations. These cases also were the ones which, on
average, performed worse compared to other cases that had the cost for power generators
set to differ among base stations. Therefore it cannot be concluded that the varying costs
of power generators yields more protected base stations.

0010 vs 0011 vs 0110 vs 0111

We again compare these four results as they all protect the largest amount of base stations.
The goal of this comparison is to find out whether 1) the results from the single Poisson
Point Process support the average results drawn from the several runs and 2) whether it

19



can be concluded which variables impact the optimal value and amount of protected base
stations.

variables 0010 0011 0110 0111
min optimal

value 168.4 167.6 165.6 164.8

median
optimal value 1042.3 1039.2 1044.7 1040.6

max optimal
value 1446 1452 1446 1452

mean
∑

j pij 12.1766 12.1656 12.1967 12.1856
max

∑
j pij 343.7298 343.9614 349.0883 349.3302

Table 8: Comparison of several variables for cases 0010, 0011, 0110 and 0111
resulting from several runs.

In the single Poisson Point Process, we had that the optimal values for cases with the
same transmitted power among base stations, 0110 and 0111, are higher than in the two
other cases, as can be seen in Table 3 in Section IV. A. However, the average results from
several Poisson Point Processes suggest that the optimal values for cases which consider
the interruption probability that differs among connections is highest among the four cases
and the impact of the variable for transmitted power cannot be concluded. Considering
the average

∑
j pij , the results of the single Poisson Point Process support the average

results. In both, the highest average
∑

j pij was achieved for case 0110, then for the case
0010, then for 0111 and the smallest

∑
j pij was achieved for case 0011.

Despite that the results for optimal values for these four cases for the single run do not
support the average results for these four cases, we can note that the impact of the in-
terruption probability is the same, at least for these four cases. Therefore, to find out
whether such conclusion can be made among all cases, the median optimal values for all
cases that only differ by one variable will be compared. Since such comparison was also
made for a single Poisson Point Process, we will see whether the results from Section IV.
A are supported by the average results.

Impact of the cost

In Table 9, such cases are compared that differ only by the variable of the cost. The table
has three rows. The first rows explains which cases are compared in each column while
the second and third row represent median optimal values and amount of protected base
stations. The second row represents these values for the case on top, so the case in which
the costs are different among base stations. The third row represents the values for the
cases on the bottom, so the cases in which the costs are the same for all base station. The
higher values are marked for each comparison.

In the single Poisson Point Process, it was clear that the cases that consider different costs
for power generators tend to have higher optimal values, see Table 4. From the average
such conclusion cannot be drawn. Moreover, the cases that consider different costs for
power generators have higher median optimal value in only three out of eight comparisons.
What these three comparisons have in common is that pBi is the same for all base stations.
However, no specific conclusion can be drawn about the impact of pBi here as in the cases
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cases
0000
vs

1000

0001
vs

1001

0010
vs

1010

0011
vs

1011

0100
vs

1100

0101
vs

1101

0110
vs

1110

0111
vs

1111

differs 1040.7 1038.0 1042.3 1039.2 1041.4 1039.3 1044.7 1040.6
24 24 25 25 24 24 25 25

same 1042.2 1040.1 1040.1 1039.0 1043.0 1041.6 1042.3 1041.1
20 20 20 20 20 20 20 20

Table 9: Comparison of median optimal values and median amount of protected
base stations for cases when the variable of the cost differs.

0111 and 1111, which also have set the probability that a base station is working to be the
same among base stations, the median optimal value is higher for the case which has the
cost of power generators set to differ.

The amount of protected base stations, on the other hand is clearly always higher for
the cases which consider that costs of the additional power generators differ among base
stations. This makes sense as the budget only allows to have at most 20 base stations
protected, if the costs are the same, but if they differ, they often can be smaller than the
cost if they are the same.

Impact of the transmitted power

The impact of the variable of the transmitted power is represented in Table 10. The table
has three rows again. The first rows explains which cases are compared in each column
while the second and third row represent median optimal values and amount of protected
base stations. The second row represents these values for the case on top, so the case in
which the transmitted powers differ among base stations, and the third row represents the
values for the cases on the bottom, so the cases in which the transmitted powers are the
same for all base station. The higher values are marked for each comparison.

cases
0000
vs

0100

0001
vs

0101

0010
vs

0110

0011
vs

0111

1000
vs

1100

1001
vs

1101

1010
vs

1110

1011
vs

1111

differs 1040.7 1038.0 1042.3 1039.2 1042.2 1040.1 1041.4 1039.0
24 24 25 25 20 20 20 20

same 1041.4 1039.3 1044.7 1040.6 1043.0 1041.6 1042.3 1041.1
24 24 25 25 20 20 20 20

Table 10: Comparison of median optimal values and median amount of protected
base stations for cases when the variable of the transmitted power differs.

In the single Poisson Point Process, see Table 5, as well as in the average results, it is clear
that the cases that have the same transmitted power among all base stations achieve higher
optimal values. Moreover, the amount of protected base stations in cases that only differ
by the variable of the transmitted power, is the same. Therefore it can be concluded that
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the variable of the transmitted power impact the behaviour of the median optimal values,
it performs better for the same transmitted powers, and has no impact on the median
amount of protected base stations.

Impact of the probability that a base station is working

Now, the probability that a base station is working is considered. In Table 11, the median
optimal values of all cases that only differ by the variable pBi are compared and the higher
optimal values are marked. Moreover, the median amount of protected base stations is
compared for such cases.

cases
0000
vs

0010

0001
vs

0011

0100
vs

0110

0101
vs

0111

1000
vs

1010

1001
vs

1011

1100
vs

1110

1101
vs

1111

differs 1040.7 1038.0 1041.4 1039.3 1042.2 1040.1 1043.0 1041.6
24 24 24 24 20 20 20 20

same 1042.3 1039.2 1044.7 1040.6 1041.4 1039.0 1042.3 1041.1
25 25 25 25 20 20 20 20

Table 11: Comparison of median optimal values and median amount of protected
base stations for cases when the variable of the probability that a base station is
working differs.

In the single Poisson Point Process, we concluded that the impact of the variable of the
probability that the base station is working is similar as the one of the variable of the trans-
mitted power, see Table 6. However, Table 11 indicates that if the cost of additional power
generator differs among base stations, then the cases with same pBi among base stations
perform better considering median optimal value. These cases also have higher median of
the amount of protected base stations. On the other hand, if the cost of additional power
generator is the same among base stations, then the cases with different pBi perform better
considering median optimal value. Since the costs are the same, the median of the amount
of protected base stations is 20 for all such cases.

Impact of the interruption probability

Lastly, the cases that differ by the variable of the interruption probability are compared
in Table 12. The higher median optimal values as well as the larger median amount of
protected base stations are marked.

The results of the comparison of the cases when only the variable of the interruption differs
for the single Poisson Point Process, see Table 7, are consistent with the median results
for the several Poisson Point Processes. The median optimal values tend to be higher for
the cases that consider that the interruption probability depends on the location of the
base stations and users. Moreover, the median amount of protected base stations for the
cases is exactly the same. Also, it can be seen that the box-plots in Figure 8a behave in
the same way for the compared cases that differ only by the variable of the interruption
probability. Therefore, it can be concluded that considering the interruption probability
that is dependent on the location of the base stations and users tends to achieve higher
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cases
0000
vs

0001

0010
vs

0011

0100
vs

0101

0110
vs

0111

1000
vs

1001

1010
vs

1011

1100
vs

1101

1110
vs

1111

differs 1040.7 1042.3 1041.4 1044.7 1042.2 1041.4 1043.0 1042.3
24 25 24 25 20 20 20 20

same 1038.0 1039.2 1039.3 1040.6 1040.1 1039.0 1041.6 1041.1
24 25 24 25 20 20 20 20

Table 12: Comparison of median optimal values and median amount of protected
base stations for cases when the variable of the interruption probability differs.

optimal values but does not impact the amount of protected base stations.

For the single Poisson Point Process, it was clear that cases that have different values
of costs, same values of transmitted powers and of pBi as well as different values of pCij
tend to have higher optimal values. After considering many more Poisson Point Processes
it can be concluded that it is not clear how the cost of power generators impact the me-
dian optimal value, but the cases with costs of power generators that differ among base
stations allow to protect more base stations. The cases which consider the same trans-
mitted power among base stations have higher median optimal values, but no impact on
the amount of protected base stations have been noted. Furthermore, it seems that the
impact of the probability that a base station is working is linked to the impact of the cost
of power generators. The cases which consider different costs for power generators have
higher median optimal values when the pBi was the same among base stations while the
cases which considered the costs for power generators to be the same have higher median
optimal values when the pBi differs among base stations. Lastly, the impact of the inter-
ruption probability for the single Poisson Point Process supports the impacts of the pCij on
the median optimal values, the cases which consider the interruption probability to be de-
pendent on the location of the base stations and users to have higher median optimal values.

Considering impacts of the variables on the median optimal values, two cases, 0110 and
1100, are the ones that have their variables considered in this way and these cases were
also the ones that achieved higher median optimal values. Out of these two values, 0110
had higher median optimal value and higher median amount of protected base stations but
the case 1100 has achieved the highest optimal value in all the runs and cases.

Comparison of runs that had 24 base stations

There were 26 runs that had created 24 base stations. For one of these runs the highest
optimal value has been reached. We’ve seen that the smallest amount of protected base
stations among all runs was 18. That is 75% of the base stations in this run. Therefore,
one may wonder whether it is a rule that the smaller the amount of base stations in a
Poisson Point Process, the higher the optimal value. We compare the optimal values and∑

j pij in the 26 runs that had 24 base stations.

The run that had reached the highest optimal value was the run 450. The highest op-
timal value was reached only in one case, 1101. This case considers the same cost for all
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power generators, therefore it was possible to protect at most 20, out of 24, base stations
in this run. That is 83% of all base stations created in this Poisson Point Process. Since
it is advantageous to protect base stations, the maximum amount of base stations that
can be protected is indeed protected. The smallest optimal value has been obtained in
case 0000 for run 30. In Figure 10a the median optimal value for all the runs with 24
base stations is represented while in Figure 10b a box-plot representation of the average∑

j pij for all base stations in each run that had 24 base stations. This average is taken
over the 16 different cases. The values of the median optimal values are presented in the
decreasing order and the values of the average

∑
j pij are plot respectively. For example,

the first value in Figure 10a represents the highest median optimal value and the box-plot
in Figure 10b represent the average

∑
j pij among 16 different cases for all base stations.

(a) A box-plot representing the
optimal values for runs that have

24 base stations.

(b) A box-plot representing the
mean

∑
j pij for all base stations

in each run that have 24 base
stations.

Figure 10: Optimal values and mean sumjpij in each run that have 24 base
stations.

Consider the runs 450, the run with the highest, and the run 30 with the smallest optimal
value among runs with 24 created base stations. The

∑
j pij of these two runs differ a lot.

The average for the run 450 is 54.1486 while for the run 30 it is 8.3248 and overall, the
optimal values among all 16 cases for these two runs are not far different from each other.
Therefore, this implies that the set-up of the Poisson Point Process causes the difference
in the optimal value.

Consider the base stations that have the largest amount of users connected in both runs.
Such base station in run 450 has 513 connected users and its average

∑
j pij over the 16

cases is 209.36 while the base stations with the largest amount of connected users in run
30 has 462 connected users and its average

∑
j pij is 6.79. Since the median of amount of

connected users are in general larger for run 30, which indicates that this run has more
base stations with larger amount of connected users, we also consider the average

∑
j pij

for the base stations with the smallest amount of connected users in each run. For the run
450, it is 5.79, for a base station with 6 connected users, and for the run 30, 7.67 for a base
station with 19 connected users. This result indicates that the amount of connected users
to a base station does not have to impact the value of

∑
j pij for a base station. Moreover,

the results for the runs with 24 base stations indicate that the location of points from a
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Poisson Point Process that are chosen to be base stations, impact the
∑

j pij .

If the amount of connected users had a clear impact on
∑

j pij , we would expect the
average

∑
j pij over the 16 case for a base station with the smallest amount of connected

users to be smaller or larger than the average
∑

j pij over the 16 case for a base station
with the largest amount of connected users. However, for the run 450, the base station
with the largest amount of connected users had larger

∑
j pij and for the run 30, the base

station with the smallest amount of connected users had larger
∑

j pij .

Most often protected base stations

In Section IV. A, we have found that in the single Poisson Point Process, the base stations
with highest

∑
j pij tend to be protected. In Figure 11 the amount of times the base stations

with largest and smallest
∑

j pij were protected out of 8000 cases possible. Furthermore,
a box-plot representing amount of connected users to such base stations is represented. In
Figure 11a, these values for 12 largest

∑
j pij are presented while Figure 11b shows these

values for the 12 smallest
∑

j pij . These are plot in such a way that on the most left, one
can see the values for the largest, and to the most right the values for the smallest

∑
j pij .

(a) Amount of times base
stations with 12 largest

∑
j pij

were protected and box-plot of
amount of connected users to

respective base stations.

(b) Amount of times base
stations with 12 smallest

∑
j pij

were protected and box-plot of
amount of connected users to

respective base stations.

Figure 11: Summary of amount of times base stations with largest and smallest∑
j pij were protected and amount of connected users to the respective base

stations.

As one may notice, the base stations with the largest
∑

j pij are protected much more often.
The base stations that had the largest

∑
j pij in each run and each case, were protected

in 7997 out of 8000 times (99.96%) while the base stations that had the smallest
∑

j pij in
each run and each case, were protected 1155 out of 8000 times (14.44%). Furthermore, it
has been noted that the base stations with larger

∑
j pij tend to have more users connected

to it. The median of connected users of base stations with 12 largest
∑

j pij varies between
97 and 144.5 while for base stations with 12 smallest

∑
j pij it varies between 36 and 83.

Also the outlier values tend to be higher for the base stations with larger
∑

j pij . Therefore
we can conclude that base stations with larger

∑
j pij tend to be protected more often,
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which is in line with the results from the single Poisson Point Process. Moreover, the base
stations with larger

∑
j pij tend to have more connected users, on average.

V CONCLUSION

An infrastructure of the 5G network can be advantageous to our world. It can revolutionise,
among other, the virtual reality, autonomous vehicle but also the healthcare equipment.
The development of these fields can have impact on the improvement of life but also on
the environment, or poverty. But to create such infrastructure, base stations are needed
to which users can connect wirelessly. Moreover, the creation of an infrastructure and
optimal placement of the base stations are not the only issues that need to be addressed.
There are many challenges when it comes to assuring that a wireless connection is stable
and uninterrupted. In this paper we have focused on increasing the probability that a
wireless connection from a base station that is working to a user within the range of the
base station exists and is uninterrupted.

Assumptions
To model the internet network, we have made use of Poisson Point Process. In this paper,
we have set it up in such a way that from all created points from a Poisson Point Process,
we choose 0.5 − 1.5% points to represent base stations which support users represented
by the remaining points. We have assumed that a user connects to only one base station
that is the closest and we have introduced three events that impact the existence of such
connection, events Aij , Bi and Cij . The probability of the event Aij , that a user j is
within range of the base station i has been described with the usage of the STIRG model
while the probabilities of the events Bi and Cij has been described in two ways. In the
first setting we assume Bi and Cij to be the same among base stations and connections.
In the second setting, we assume the probability of the event Bi, that base station i is
working, to differ among base stations, and we described it in such a way that the more
users connected to the base station, the less likely is the base station to be working. Still in
the second setting, we assume the probability of the event Cij , that a connection between
base station i and user j is interrupted, to also differ among connections, and we assume
it to be dependent on the location of the base station and of the connected user.

Linear Model
Having that, we have introduced a linear model which maximises the probability that an
uninterrupted connections between base stations and connected users exist. At first, it was
done in such a way that the constraint impacted the objective function indirectly, therefore,
it has been rewritten. We introduced a decision variable αi that describes whether base
station i is protected, and in the new linear model, the constraint impacts the objective
function directly.

One Poisson Point Process
Once the linear model has been introduced and solved using the linear optimisation, we
have presented a single Poisson Point Process which has been analysed. We have seen
that base stations that are located far from other base stations tend to have more users
connected to it while base stations that are located more closely tend to have less users
connected. Furthermore, for this PPP, the difference between the smallest and largest
amount of connected users is very big. Later, the optimal values and amount of protected
base stations have been compared for all 16 cases for the Poisson Point Process. It turns
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out that the optimal values do not differ much between the cases but the amount of pro-
tected base stations does. We have compared four cases, one of them had the highest
optimal value while all of them had the largest amount of protected base stations, among
all 16 cases. Since we were considering four cases, the impact of the variables which made
them different has been analysed. We have noted that for this Poisson Point Process, cases
that consider the same values of transmitted power and probability that a base station is
working for all base stations achieve higher optimal values. Lastly we checked what do the
cases with the same amount of protected base stations have in common as well as what
do protected base stations have in common. We concluded that the cases with the same
amount of protected base stations can at most protect 21 base stations as the cost for each
base station in all of these cases is the same. It has also been checked that the base stations
with the higher mean total probability of existence of uninterrupted connections,

∑
j pij ,

are protected more often than the other base stations. We have also seen that the amount
of users connected to base stations does not impact the mean

∑
j pij or the amount of

times the base station was protected.

Collection of Poisson Point Processes
After the simulation for a single Poisson Point Process has been performed, we have cre-
ated a collection of 500 different Poisson Point Processes. For this collection, a simulation
has been performed and the results have been collected and analyses. In this collection
of Poisson Point Processes, we have seen that most of the base stations had between 5
and 190 connected users but that there was a base station which had 910 connected users.
Therefore, the amount of connected users varies a lot, which has also been observed in the
single Poisson Point Process. Later, we have observed that most of the base stations had
their

∑
j pij to be at most 80. Furthermore, we concluded that the median optimal values

did not differ much between all 16 cases, and that the highest optimal value occurred for
the case 0110 which considered transmitted power and pBi to differ among base stations and
costs and pCij to be the same among base stations and connections. A similar conclusion
has been made for the single Poisson Point Processes. The highest recorded optimal value
throughout all runs and cases was for the case 1101 which considers all variables except
pBi to be the same among base stations and connections. The median optimal value for
this case is only the fifth largest one, and yet for this case the highest optimal value has
been recorded.

Impact of the four variables
After the simulations were discussed, we have focused on the impact of the four variables,
costs of power generators, transmitted power, pBi and pCij . In this paper we have described
the assumptions for these four variables in two ways each. We have found out that for the
simulation of the single Poisson Point Process, the cases with the same values for transmit-
ted power and pBi among base stations and different values for costs and pCij among base
stations and connections tend to have higher optimal values. As we saw, the only case that
fit exactly in all of these four descriptions is the case 0110, for which we have recorded
the highest optimal value in the single Poisson Point Process, performed in this paper. A
similar analysis was performed for the median optimal values of 500 different Poisson Point
Processes. Each of these assumptions did not have a very significant impact on the results
but we have seen that the cases with the same transmitted power among base stations and
the interruption probability dependent on the location of a base station and a user tend
to result in higher optimal values. Moreover, we have seen that the assumptions whether
costs are the same or differ among power generators are linked to the assumptions whether
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the probability that a base station is working is the same or differs among base stations.
We have seen that the cases with the same costs among base stations tend to have higher
optimal values if the probability that a base station is working differs among base stations
while the cases with the costs that differ among base stations tend to have higher opti-
mal values if the probability that a base station is working is the same among base stations.

Final conclusions
In this paper, we have seen that the connections between users and base stations can be
modelled with the use of STIRG model and to decide which base stations to protect, we use
linear optimisation. We have concluded that the total probability of existence of uninter-
rupted connections,

∑
j pij , for a base station i is a very important factor when deciding

whether to protect the base station. We have seen that the base stations with highest∑
j pij have been protected the most often. Moreover, from the results for the runs with

24 base stations, it follows that the
∑

j pij is impacted by the location of base stations and
users, but not so much by the amount of connected users to base stations.

VI DISCUSSION

In this paper we have been working towards a conclusion which base stations to protect
such that the probability that a connection from a working base station to a user exists and
is uninterrupted is maximised. We have done that by modelling the connection between
base stations and users, and by finding a decision process about which base stations to
protect. Lastly, we have been looking into whether the amount of connected users to a
base station had impact on the amount of times base stations that was protected and their∑

j pij , and overall, how these three are correlated.

In the single Poisson Point Process created in this paper, it was clear that overall, the
higher the

∑
j pij , the more likely is the base station to be chosen to be protected. In the

same simulation, it could not have been concluded that the amount of connected users
impacts the value of

∑
j pij of a base station, or the amount of times the base station is

protected. When performing a similar analysis for the collection of the Poisson Point Pro-
cesses, we could see that, again, the most often the base stations with higher

∑
j pij tend to

be given a power generator to support them and that these base station had, overall, more
connected users. We have seen, when discussing the runs with 24 base stations, that the
amount of connected users does not impact

∑
j pij . What has not been analysed in detail

is whether the base stations with the largest amounts of connected users are protected
more often. This has been analysed for the single Poisson Point Process, but not for the
collection. From the single simulation it actually follows that the base stations with largest
amount of connected users are not always protected. In fact, only 2 out of base stations
with 10 largest amounts of connected users have been protected in all 16 cases but there
was also a base station that had the amount of connected users in the top 10 that was not
protected at all.

In this paper we have focused a lot on the four introduced variables for cost for power
generator, transmitted power of base stations, the probability that a base station is work-
ing and the interruption probability. The way in which these variables were described was
rather symbolic and was not meant to have a severe impact on the results. Despite that, we
could have noted several repeated behaviours regarding these variables, like that the cases
with the same transmitted power among base stations and the interruption probability
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dependent on the location of the base station and connected user were resulting in higher
optimal values. However, to make the impact of these variables more visible, the variable
of which impact one would be interested, should be changed significantly. Moreover, the
introduced variables give a lot of freedom to redefine them.

For example, one could make the transmitted power or the probability that a base station
is working very small when large amount of users is connected. Furthermore, a limitation
of a power base station could be added, that is, that a base station is not able to support
more than x amount of connected users, and that its transmitted power (or the probability
that a base station is working) is 0 for all connected users when the amount of connected
users is larger than x.

Considering the interruption probability, one could introduce much more complicated or
much larger regions for which the interruption probability is described. In general, the
Poisson Point Processes from which we take the locations of base stations and users can be
made much larger, either in the sense of the area or the amount of points. This can be done
by manipulating the grid on which a Poisson Point Process is defined and by enlarging the
density λ. Since there is a lot of freedom in redefining the variables, one could describe
the interruption probability in a totally different way. One could also introduce different
interruption probabilities for a different situation that interrupts the connection. In this
paper, we considered the interruption as a high building or a truck being in a way of a
connection. These two events could be separated and each could get their own defined
interruption probability. Moreover, more interruptions could be added.

To summarise, there are still several factors that can be analysed from the simulations.
The impact of the amount of connected users, or perhaps the location of the base stations
could be analysed in more detail. Furthermore, the way the problem is modelled makes
it easy to redefine the assumptions, which gives a lot of flexibility if one was interested
in maximising the probability that an internet connection is uninterrupted in a specific
region.
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