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Abstract—The traditional testing of a frequency response using
continuous waves has proven to be insufficient for characterizing
current sensors. A new method is being developed that uses
square waves and the Fourier transform to obtain a frequency
response that more accurately represents the behaviour of the
current transducer. In this paper, an example is given on how
to obtain spread out measurement points by choosing the base
frequency of the square waves. It is found that distributing
the base frequencies of these square waves equally over the
bandwidth of interest on the logarithmic scale gives a fairly good
distribution.

Index Terms—Frequency response, Square wave, Fourier
transform

I. INTRODUCTION

Energy meters are used to measure the power consumption
of individual households. Cases in which these energy
meters prove to be interfered by conducted electromagnetic
interference generated by (non-linear) household equipment
are described in [1] and [2]. The measured value can either
be higher or lower than the actual used energy, resulting in
under or over-billing of consumers. These issues occur when
high power consuming or producing non-linear systems are
connected to the energy meter. These systems produce pulsed
currents, which is a superposition of several sine waves
with different frequencies. However, this superposition only
holds, when the system is linear and time-invariant. Because
these energy meters are validated using frequency sweeps of
continuous wave signals and deal with non-linear systems,
they are not properly characterized for their task, which
includes the measurement of these realistic pulsed currents.
This is why a method is being developed to characterize
current meters based on realistic pulsed signals instead of
continuous waves. A proper frequency response was made
in [3] by measuring a square wave with a certain current
sensor and a reference. It was also shown in [3] that using
pulsed signals instead of continuous waves can be a fast
and cost-effective approach because fewer test signals are
needed and square waves can be made with relatively cheap
components. One drawback of that research is that only 2
frequencies of 50 Hz and 10 kHz were used. This gave a
rather cluttered spread of measured frequencies. The purpose
of this paper is to find a way to get the distribution of
measurement points to look more like the spread of frequency

points in a continuous wave test, where all measurement
points are equally distributed on the logarithmic scale over
the bandwidth of interest. This is done by simulating square
waves with no distortion and finding how the harmonic
frequencies relate to the base frequency of the square wave
using the Discrete Fourier Transform (DFT). Based on these
simulations, a set of square waves with different frequencies
is selected to cover the bandwidth of interest. Measuring
these square waves will verify the simulations.

The paper is structured as follows. In Section II, the theory
about square waves and their frequency domain properties is
discussed. The criteria of the measurement setup will be stated,
and the simulations will be shown and elaborated upon. In
Section III, the measurement setup will be shown and the
measurement procedure will be described. Section IV shows
the measurement results. The implications and meaning of the
results will then be discussed in Section V and from this
discussion a conclusion is made in Section VI. Finally, in
Section VII, potential follow up research is discussed.

II. ANALYSIS

A. Theoretical background

To mimic the real-life situation where consumers experience
incorrect readings of their energy meters, square waves will
be used to characterize the current transducers (CTs). These
signals are easy to generate and resemble impulses created
by household appliances well.

The Discrete Fourier transform (DFT) of a theoretical
square wave looks like a series of peaks with exponentially
decreasing magnitude as can be seen in Fig. 1. The frequencies
of these peaks fP are related to the base frequency fb
according to (1).

fp = fb ∗ (2n+ 1), n ∈ Z (1)

This is a linear equation. The objective is to get these peaks
to be spread out over a logarithmic scale because frequency
analysis is often done on the logarithmic scale. In theory, n
goes to infinity. But real-world limitations prevent the use
of those high-frequency components because the amplitude



gets too low to be measurable by the CT. The peak in the
frequency response must have a magnitude above a certain
threshold which is determined by the noise of the CT and
the required signal to noise ratio (SNR). If the peak can
not be distinguished from noise, it can not be used. Since
the magnitude of the frequency components is exponentially
decreasing, there is a point at which the magnitude of the peaks
will barely decrease. If at this point the SNR is high enough,
a single square wave will cover a large range of frequencies
with high peak density. Even if this point cannot be reached, an
effort should be made to make the highest possible harmonics
usable. Because the magnitude of the frequency components
is exponentially decreasing, each small increase in SNR will
exponentially give more high frequency components. To obtain
the best SNR, the amplitude of the square wave could be
increased, and the parasitic inductance decreased, to name a
few examples.

B. Setup Criteria

To obtain a good spread of measurement points, the points
of several square waves have to be combined into one set.
This set can be judged by the following parameters.

• Bandwidth
• Average measurement point density
• Largest difference between two consecutive measurement

points
• Number of base frequencies
The bandwidth is the range of frequencies that can be tested

with the chosen set of square waves. The average peak density
is the logarithm of the bandwidth divided by the number
of peaks in the bandwidth. This calculation results in how
many peaks are present per decade on average. The largest
difference between two consecutive peaks is calculated by
taking the logarithm of the frequencies of all peaks and then
find the largest difference between two consecutive peaks.
This tells us how well the weakest part of the set of square
wave frequencies works. The number of base frequencies is
simply how many square waves are required to obtain the
other properties. Obviously, lower is better. However, this is
the least important property because having fewer frequencies
only decreases the computing time and the time it takes to
create the plot. But since this method will not be used in real-
time data processing, this is not too important. Especially if a
setup is made that measures a set of frequencies one after
another automatically instead of manually measuring every
square wave.

C. Simulations

To obtain a spread out distribution of peaks, not just the
frequency but also the duty cycle of the square wave could
be useful. In Fig. 1 the DFT of a 1 Hz, 50% duty cycle
is shown. When comparing this to the DFT a 1 Hz, 35%
duty cycle in Fig. 2 it can be seen that the lower duty cycle
decreases the height of the peaks, and does not introduce
new ones. This means that decreasing the duty cycle has no
added value. Increasing the duty cycle will therefore not be

beneficial either. Decreasing the duty cycle and multiplying
the wave with -1 will give an increase in duty cycle, and
multiplying a wave with -1 does not change its frequency
domain properties. The magnitude responses of a 35% duty
cycle or a 65% duty cycle square wave are therefore the
same. Because of this, only 50% duty cycle square waves
will be used from now on.

Fig. 1. Absolute value of the DFT of a 1 Hz, 50% duty cycle square wave

Fig. 2. Absolute value of the DFT of a 1 Hz, 35% duty cycle square wave

Before any measurements, a simulation is done. In this
simulation, a near-perfect square wave is created and its
DFT is computed. This gives a signal like in Fig. 1. Now,
all peaks higher than a certain threshold can be used as
measurement points for the characterization of CTs. This
threshold is based on the noise of the CT and a chosen
SNR. An SNR of 10 and noise with an RMS of 3 mA is
assumed, which is found to be true based on the measurement
results. Because different CTs have different noise values, a
rough estimate is enough for the simulation to be useful. Once
these computations are completed and only the peak locations
are plotted on a logarithmic scale, Fig. 3 is obtained. What
can be seen here is that the higher the harmonics go, the
closer they appear on the logarithmic scale. This makes sense
because the logarithmic scale increases exponentially while
the frequency of the harmonics increases linearly. Important
to note is that even though the highest usable peak of the
simulated 1 Hz square wave in this simulation is around 40
Hz, this does not represent what the highest usable peak will



be in measurements. This depends on several variables like the
noise of the CT and the amplitude of the square wave. This
is just a proof of concept.

Fig. 3. Usable simulated measurement points of a 1 Hz square wave

To obtain the required bandwidth, more frequencies can
be added. The result of this can be seen in Fig. 4. The
colour of the marker represents the base frequency that specific
harmonic belongs to. In this figure, it can be seen that the
bandwidth is around 400 kHz. There are also some larger gaps
when transitioning from a lower to a higher base frequency.
This is not a problem because the highest usable harmonic of
each base frequency does not necessarily correspond to what
harmonics will be usable in the actual measurement, as stated
before.

Fig. 4. Usable simulated measurement points of a 1, 10, 100, 1.000 and
10.000 Hz square wave

In Fig. 5. it can be seen that the largest gaps are about
0.15 decades, which is quite a lot. Something else that can
be concluded from this figure is that the largest differences
between measurement points do not occur where a new
frequency base frequency is added but after a highest harmonic
of a base frequency. This makes sense because the highest
harmonics are very close together on the logarithmic scale.
But at a certain frequency, these dense harmonics are no
longer higher than the threshold and cannot be used. Now
harmonics of a higher base frequency have to take over. And
since the base frequency is higher, the harmonics are further
apart. This effect can be reduced by choosing base frequencies
that are closer together. In Fig. 5 it can also be seen that the

Fig. 5. Difference between consecutive peaks in decades when all peaks of
the simulation are combined.

differences between the first few points are extremely large.
This is because these points belong to the lowest frequency.
That means there are no high harmonics of a lower frequency
to reduce the difference between consecutive points.

III. METHOD

A. Measurement setup

To generate the square wave, a gallium-nitride half-bridge
is used. It consists of a GS665EVBMB motherboard and a
GSS66508/16T daughterboard. The half-bridge is controlled
by the 3314A function generator by HP set to 3V square
waves. The frequency of the function generator determines
the frequency of the half-bridge. The motherboard is powered
by a voltage of 12V which is supplied by a TENMA 72-2720
programmable DC power supply. The half-bridge is connected
to an EA-PS 3080-20 C dc power supply which determines
the amplitude of the square wave. The output of the half-
bridge is connected to a 2,4 ohm power resistor. Parallel to
this resistor is a TA043 differential voltage probe to measure
the signal the half-bridge generates. In Fig. 6 a schematic of
the measurement setup can be found. To create a clean square
wave, parasitic inductances should be reduced as much as
possible, as these will create distortion in the high-frequency
components. For this research, the frequency set will be judged
based on the properties of the TA-189 CT. According to the
manufacturer, this CT has a bandwidth of 100 kHz. The noise
was measured to be 3 mA RMS. Since the drop-off of the
bandwidth is of interest, the bandwidth of the setup must be
at least a decade higher than the bandwidth of the system it is
trying to characterize. That is why the bandwidth of the setup
must be at least 1 MHz.

B. Measurement procedure

First, a set of 5 base frequencies will be measured, starting
at 1 Hz and increasing 10 fold up to 10 Khz, so 1, 10, 100,
1.000 and 10.000 Hz. This set will from now on be referred to
as the 10x measurement set. Then, the DFT of all individual
measurements will be calculated. After this, the peak values
of the DFTs will be compared to a threshold. If the peaks are
higher, they are deemed useful. If the peaks are lower they
are not usable. This is similar to the calculation described in



Fig. 6. Schematic of the measurement setup, based on the schematic in [3]

Section II-C. Based on these results of the 10x measurement
set, an increment value other than 10 will be selected and
measured. This value was chosen to be 8. The second set of
measurements will use 6 base frequencies to still be able to
cover the bandwidth of interest, starting at 1 Hz and increasing
8 fold up to 32.8 Khz. So 1, 8, 64, 512 4.960 and 32.800 Hz.
This set will from now on be referred to as the 8x measurement
set. The same signal processing will be done to this set as to
the 10x measurement set. The threshold used to compare the
peaks to will be determined based on the noise of the TA
189 and an SNR of 4. The SNR value is an estimated guess
as figuring out what SNR is required for a good frequency
response is not the main focus of this research. Furthermore,
additional measurements are done to investigate the amplitude
of the used square wave. Therefore the 32,8 kHz signal will
also be measured with an input of 12V. This can then be
compared to the 32,8 kHz signal with a 4V input to see if
a higher voltage creates more distortion.

IV. RESULTS

The measurements described in Section III-B have been
executed. In Fig. 7 the measurement points provided by the
10x measurement set can be seen. In Fig. 8 the differences
between the points of Fig. 7 are plotted to give a better
overview of where the largest gaps in measurement points are.
Note that the plot starts at 10 Hz. This is because the 1 to 10
Hz range looks the same as the simulation in Fig. 5. This
means that the values between 1 and 10 Hz are much higher
than the values after 10 Hz. Changing the scope to frequencies
above 10 Hz makes sure the important part of the figure is in
the full scope. In Fig. 9 the measurement points provided by
the 8x measurement set can be seen. In Fig. 10 the differences
between the points of Fig. 9 are plotted. This plot misses the
first few hertz for the same reasons stated above. In Fig. 11,
12, 13 and 14 the measurement of a 10 Hz, 10 kHz and two
32,8 kHz square waves with different amplitude are plotted.
In Fig. 15 the DFT of the square wave in Fig. 13 can be
found. Finally, in Table I and Table II, some properties of the

individual square wave measurements of both the 10x and 8x
measurement set can be found.

Fig. 7. Spread of all peaks of the 10x measurement set on logarithmic scale

Fig. 8. Difference between consecutive peaks in decades when all peaks of
the 10x measurement set are combined.

Fig. 9. Spread of all peaks of the 8x measurement set on logarithmic scale

V. DISCUSSION

A. 10x measurement set

The 10x measurement set shows a pretty good distribution
of peaks for an estimated guess of base frequencies. However,
as you can see in Fig. 8, the gap to the next peak increases
significantly around 70, 700, 7.000 and 70.000 Hz. This is
because these are the upper limits of the usable frequencies
of a specific square wave, as can be seen in Table I. So in the
70 Hz gap case, the 1 Hz square wave has a difference of 2



Fig. 10. Difference between consecutive peaks in decades when all peaks of
the 8x measurement set are combined.

Fig. 11. Measured 10 Hz square wave with 4V input

Fig. 12. Measured 10 kHz square wave with 4V input

Fig. 13. Measured 32,8 kHz square wave with 4V input

Fig. 14. Measured 32,8 kHz square wave with 12V input

Fig. 15. Zoomed in frequency response of 32,8 kHz square wave

TABLE I
STATISTICS OF INDIVIDUAL BASE FREQUENCIES OF THE 10X

MEASUREMENT SET

Base frequency Highest frequency Number of frequencies
1 Hz 71 Hz 34
10 Hz 732 Hz 34

100 Hz 6,5 kHz 33
1 kHz 67 kHz 34

10 kHz 410 kHz 23
Total: 158

TABLE II
STATISTICS OF INDIVIDUAL BASE FREQUENCIES OF THE 8X

MEASUREMENT SET

Base frequency Highest frequency Number of frequencies
1 Hz 71 Hz 34
8 Hz 538 Hz 33
64 Hz 4,7 kHz 35

512 Hz 38 kHz 38
4,1 kHz 258 kHz 36

32,8 kHz 1,21 MHz 33
Total: 209



Hz between each peak. Once these peaks are no longer strong
enough, the 10 Hz signal has to provide all the measurement
points. This means that the peaks are 20 Hz apart instead of
2 Hz. Fig. 7 and Table I also show that the 10x measurement
set does not reach the required bandwidth of 1 MHz as the
highest usable frequency component is 410 kHz.

B. 8x measurement set

Fig. 10 shows that if the increase of frequency is lowered
from a factor of 10 to a factor of 8, sudden increases in
peak difference after a highest harmonic still exist, but the
peak values are lower. Fig. 10 is basically a downscaled
version of fig. 8. the average peak density is also higher for
the 8x set compared to the 10x set. Since the 10x set did
not have enough bandwidth, the 8x measurement set has 6
frequencies instead of 5. Now the bandwidth is 1,2 MHz,
which is perfectly fine for measuring the TA 189.

What is interesting about the 32,8 kHz signal, is that it
also has some peaks at even multiples of the base frequency
as can be seen in Fig. 15, instead of only uneven multiples.
This is because the square wave is distorted by the parasitic
inductance introduced by the measurement setup which can
be seen in Fig. 13. Fig. 11 shows an undistorted 10 Hz
square wave for comparison. The distortion also causes the
higher harmonics to have less magnitude, which means the
bandwidth of this specific square wave is lower than that of
lower frequency ones. In this case, this is beneficial since the
bandwidth of 1 MHz is reached either way, and the peaks
created by the distortion make sure that there are more peaks
in the “transition range” from the 4 kHz to 32 kHz harmonics.
This effect can be seen in Fig. 10. The last peak at around
100 kHz is significantly lower than the peaks before it, while
the last peak in Fig. 8 has the same height as the others.
This means that the 8x measurement set has a higher average
measurement point density, and one of the largest differences
between two measurement points has been reduced, meaning
that distortion in this specific case is beneficial.

In Table I can be seen that the square wave of 10 kHz only
provided 23 usable frequencies, which is significantly lower
than all other measurements, including the 32,8 kHz square
wave in Table II, which has a higher frequency and thus a
higher distortion as can be seen in Fig. 12 and 13. The reason
why the 32,8 kHz square wave has 33 points, is because
its distortion is high enough such that the even harmonics
that are introduced by the distortion are also usable. The
32,8 kHz square wave has 14 even harmonics, while the 10
kHz signal only has 2. The highest usable frequency of the
10 kHz square wave is 41 times its base frequency, while
the highest usable frequency of the 32,8 kHz signal is 37
times its base frequency. Both of these values are lower than
those of the lower frequencies, which can use harmonics of
up 60 to 70 times their base frequency. The 10 kHz signal
has enough distortion to decrease its highest frequency to
41 times the base frequency, but not enough distortion to

introduce a relatively large number of new usable frequencies.

From the measurement results, it was found that distortion
can be desirable in specific cases, but when trying to create a
CT characterization setup, it is undesirable because it lowers
the bandwidth of the higher frequency square waves. The
magnitudes of the even harmonics introduced by the distortion
are also unpredictable, which makes it even more difficult
to implement in a standardized way. Finally, recreating the
exact amount of parasitic inductance in different setups may
also be somewhat troublesome. For these reasons, it is best
to reduce the parasitic inductance as much as possible.

In Fig. 13 it can be seen that higher frequency components
have a lot of distortion. However, when comparing Fig. 13 to
Fig. 14 it can be seen that the shape of the wave does not
change when increasing the voltage. The 4V signal decreases
to 3V which is a 25% decrease. The 12V signal decreases to
approximately 9V, which is also a 25% decrease. This means
that an easy way to improve all properties of the setup without
adding new square waves is to increase the supply voltage to
the maximum the half-bridge can handle.

VI. CONCLUSION

In this paper, it is shown that for the characterization of
CTs using square wave signals, a fairly good distribution of
measurement points can be achieved by having each next
base frequency be multiplied by a certain value. The lower
this value is, the denser the measurement points. However,
lowering this value also means more square waves are required
to obtain the same bandwidth. Furthermore, it was found that
increasing the amplitude of a square wave does not introduce
more distortion, which means that increasing the input voltage
will result in more measurement points per square wave. This
paper also shows that some distortion can be beneficial in
specific cases, but to have the most consistent results it should
be avoided.

VII. FUTURE RESEARCH

This method of generating a frequency response has lots
of room for improvement. Most importantly, the distortion of
the high-frequency components of the square waves should
be removed as much as possible. Finding out if the large dif-
ference in magnitude between individual measurement points
could distort the measurements is also valuable. Another
interesting topic is which frequency distribution type is best.
The frequency distribution chosen in this research is linearly
increasing on the logarithmic scale. However, it is also possible
to add handpicked square waves to “patch” the transition range
between two frequencies. The square waves are chosen such
that their highest harmonics are located where the largest gaps
in measurement points are. It could be interesting to find out
if it is more effective to add these “patch frequencies” or if
simply lowering the factor with which you increase the fre-
quency works better. This likely depends on the requirements
of the user. Finally, to optimize the system, the limit of how



many accurate measurement points can be generated from a
single square wave frequency can be found. This can be done
by finding what SNR is required, increasing the voltage to
the limit of the half-bridge and lowering the distortion in the
square waves as much as possible.
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