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Abstract

Mixed-signal integrated circuits are widely used in electronic designs. When devel-
oping mixed-signal integrated circuits, high-level models of analog systems are often
used to validate the digital part of the design. This is mostly done using simulation
software on a CPU-based machine. However, since digital system designs can be
easily verified on FPGA, it might be beneficial to use the advantages of FPGA by
emulating the analog part and make it synthesizable for this architecture. This way,
the digital design can be verified on the same platform.

In this thesis, the concept of analog emulation on FPGA has been explored.
This is done using a case-study of a DC-DC boost converter, that included a digital
controller to keep the output voltage stable under varying input-voltage and output-
load conditions.

An important part of this thesis is about the method: It takes multiple steps to go
from an analog design to a digitally emulated circuit. These steps are explained and
applied on a DC-DC boost converter. A selection of MATLAB/Simulink toolboxes
that are used to simplify this process are explained as well.

The result of this thesis is a hardware design that approximates the dynamic be-
haviour of an analog circuit. The design was connected to a digital control system
to validate its performance. For the case study, experiments showed that the emu-
lated output voltage had an average relative error of 0.56% with a maximum error of
1.89%, compared to analog simulation in Simulink. This is considered sufficient for
the purpose of digital-subsystem validation.
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Chapter 1

Introduction

1.1 Motivation

While a lot of today’s electronic processing is done in the digital domain, analog sub-
systems are still a fundamental part of integrated circuits (ICs). One big advantage
of the digital domain is the fast prototyping. An example of a commonly used tool
for digital hardware design verification is the field-programmable gate array (FPGA).
On FPGA, digital ICs can be verified in a cost and time-efficient matter, since no test
silicons have to be produced in the early stages of the development process.

Mixed-signal ICs (MSICs) contain not only digital, but also analog systems. For
these systems, it becomes harder to test the digital hardware design since it will be
connected to analog subsystems. A solution for this is analog simulation on CPU-
based machines. Disadvantages of this are that interfaces might be required be-
tween the machine that runs that analog simulation and the FPGA. This can cause
problems, for example when real-time simulation is needed. To overcome this prob-
lem, it might be interesting to emulate the analog part of mixed-signal chips on the
same chip as the digital part.

In the context of this research, it is important to differentiate between the con-
cepts of simulation and emulation. When a circuit is simulated, the dynamics are
modeled to get insight in the behaviour. The goal of emulation is to realize a system
on another system with identical behaviour. This is useful when the functional be-
haviour of a system is wanted in the other system. A simple example of emulation
is a game emulators, for example a Nintendo 64 emulator. Using this, video games
that only work on the Nintendo 64 game computer can be played on PC: you get the
same behaviour, on a different system.
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1.2 Goal of the assignment

The goal of this thesis it to find a method to simplify digital design validation on
FPGA for mixed signal chips. This will be done by emulating the analog subsystem
on FPGA.

In this thesis I will try to answer the following research question:

”How can FPGA emulation of the analog subsystems of mixed-signal ICs
contribute to the design validation of the digital subsystems?”

To answer this question, multiple sub-questions have been defined:

• ”How can the continuous behaviour of an analog circuit be discretized”
The behaviour of analog circuits can be described by continuous ordinary dif-
ferential equations. In order to emulate this on a digital system, the continuous
definitions have to be numerically approximated.

• ”How can a discrete model be synthesized on FPGA”
If a discrete model is to be synthesized for FPGA, it should be described in a
hardware description language (HDL). Data types also need to be optimized
for the hardware.

• ”How does performance of analog simulation on FPGA compare to CPU-based
simulation”
In order to validate the emulated circuit, performance will need to be compared
to a traditional simulation on a CPU-based machine.

1.3 Report organization

In Chapter 2, the method for emulation of analog systems on digital hardware is pre-
sented. Chapter 3 shows the working principle of DC-DC converters. This chapter
also presents the DC-DC converter design that will be used as case-study. After all
the theory is given, Chapter 4 applies the emulation method that was given Chapter
2 on the circuit from Chapter 3. The result is a hardware design, that will be com-
pared to a continuous DC-DC converter model. Results of this are shown in Chapter
5. Finally, in Chapter 6, the research questions that were given in Section 1.2 will be
answered, followed by recommendations for improvements and future research.
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Chapter 2

Analog hardware emulation

This chapter presents the different steps that are needed to convert a continuous
analog system to a digitally emulated system with the same dynamic behaviour at
the ports. The process can be divided into 4 different steps [1]:

1. First, the dynamics of the circuit are analysed, resulting in differential equa-
tions.

2. Discrete-time is required for an implementation on FPGA. Difference equa-
tions of the circuit are defined using a discretization method. A discrete block
diagram can be made from this.

3. Next, the continuous model has to be converted to fixed-point.

4. Finally, the model is exported to HDL language and is synthesized for the
FPGA platform.

Step 1 will be done in chapter 3. Step 2-4 will be analysed in this chapter and
applied in chapter 4.

2.1 Discretization methods

The dynamic behaviour of analog circuits can be described by differential equations.
A simple first-order differential equation is shown in Equation 2.1.

dy

dt
= f(t, y) (2.1)

Continuous functions have infinitely small time steps. However, digital systems
have a system clock that has finite time steps. Therefore, in order to emulate a
continuous system on a digital system, the differential equations need to be numeri-
cally approximated using a discretization method. The resulting difference equations
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have finite time steps. Simple solutions have fixed time steps, however solutions that
have variable time steps also exist [2]. In this work, only fixed time step methods are
considered.

The dynamics of the system evaluated at the fixed time steps are called samples,
where with the number of samples per second is called the sampling frequency. If
the current time step is tn, the next will be tn+1 = tn + T with T being the time be-
tween the two samples (sampling period).

Many different discretization methods exist, all with their own advantages and
disadvantages. The simplest discretization method is the forward Euler method [3].
It is an explicit method, which means that it uses the previous values to calculate
the current value. The forward Euler method is shown in Equation 2.2. ∆t is the
sampling period. The big advantage of this explicit method is that calculating the
next value only takes one calculation cycle. This is a big advantage when a high
simulating frequency is needed. For FPGA, clock frequencies are usually quite low,
making the forward Euler method well suited. The approximation error is related to
the sampling time ∆t.

The implicit Euler method, also called the backward Euler method, uses all pa-
rameters at the same time level, as can be seen in Equation 2.3. This method is
very stable and can be a good solution when simpler methods like the forward Euler
method fail. The disadvantage of this method is the fact that it requires solving an
algebraic equation for each time step, which is computationally more expensive.

y (tn+1) = y (tn) + ∆t · y′(tn) (2.2)

y (tn+1) = y (tn) + ∆t · y′ (tn+1) (2.3)

The midpoint method is shown in Equation 2.4. It can be seen as a combination
of the forward Euler method and backward Euler method: it takes the average of
these two methods. This method gives more accurate results. However, it has the
same disadvantage as the backward Euler method. The In [4], an optimization of the
midpoint method is presented: ”By exploiting the time-scale separation properties of
typical power electronics circuits and properly selecting the discretizing time step,
the response of the signal-flow diagram can be made to converge to the original
discretized circuit model response within a few iterations”.

y (tn+1) = y (tn) +
∆t

2
[y′ (tn+1) + y′ (tn)] (2.4)
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A discrete block diagram can be made in Simulink from the obtained difference
equations. The equations can be represented in the Z-domain. The Z-domain rep-
resentation of Equation 2.2 is shown in Equation 2.5. Using Unit Delay blocks, the
sample delay z−1 can be realized.

y (z) = y(z)z−1 + ∆t · y′(z)z−1 (2.5)

2.2 Fixed-point modeling

In the previous section, the problem of the infinitely small time steps of a continuous
system was solved by converting to a finite time resolution. However, the values
of the analog signals also have to converted from an infinite resolution and infinite
range to digitally representable values.

Fixed-point numbers consist of two parts: an integer and a fractional part. Fixed-
point numbers can represent fractional numbers, while algorithmic operations stay
simple. The biggest challenge of using fixed-point numbers in a design is to se-
lect the length of the two parts in a way that no under- or overflow occurs. At the
same time, the representable number has to have enough resolution to keep the
quantization error low.

In Simulink, a unsigned fixed-point data type with a integer length of 6 and a frac-
tional part of length 24 would be defined as following: fixdt(0,32,24). The arguments,
respectively, are: signed, total word length, position of the point.

An analysis and discussion between fixed-point and floating-point numbers for
FPGA is given in [5]. Fixed-point make the hardware design less complicated. The
architecture is simpler and the overall design takes in less space on the chip. This
is why the design in this thesis will have fixed-point numbers.

In Simulink, the double precision floating-point data type is used in models by
default. The resulting block diagram model from Section 2.1 also uses this data
type. In order to convert this to fixed-point values, the range and needed precision
of all the signals in the model have to be analysed. Based on this, a minimal value
for the word-length and the fraction length.

The Fixed-Point Designer Toolbox [6] plays an important roll in this process. The
tool can automatically collect the ranges of all signals in the model, and can propose
word and fraction lengths for fixed-point conversion.

When the tool is started, it will first prepare the model for conversion. Tolerances
can be set for selected signals, both relative and absolute. After this, the ranges can
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be collected by running a simulation. It is important here that this simulation gives a
complete overview of the signal values of the system. The input signals should have
at least the minimal and maximal values that they will get further on in the design
process. The system should also have enough time to get into a steady state before
the input changes to a different value.

When the ranges are collected, the signal ranges can be viewed in histograms.
The Fixed-Point Designer cannot optimize word-length and fraction-length at the
same time. This means that one should be selected manually beforehand. A way
to approach this is by setting the word length to for example 32. The tool can then
automatically propose the fraction length. Based on the result, the word-length can
be adjusted until the model has the needed performance. It is possible to manually
change data types in the tool after this. For example, a certain constant sources or
gain values only use a few of the standard selected word-length.

The proposed and manually changed data types can then be applied to the
model. After running another simulation with the new data types, the results can
be compared to the double precision run.

2.3 Hardware implementation

In order to run the discrete model on FPGA, it should be implemented using a hard-
ware description language (HDL). Verilog and VHDL are the two commonly used
languages for digital hardware design. In this thesis, VHDL is used.

The HDL Coder [7] can convert Simulink models to VHDL or Verilog language.
More than 300 so-called ’HDL-ready’ Simulink blocks can be used to design mod-
els. Since the discretized model is already realized and converted to fixed-point in
Simulink, using this tool is an efficient method for getting a VHDL implementation
of the model. The model should be placed in a submodel, so that the correct ports
can be configured. The HDL coder automatically detects the sampling frequencies
that are used in the model. If all synchronous blocks in the Simulink model have
the same sampling time, the exported code will only have one clock signal input.
A reset, clock enable and clock enable out port will also be added with the default
settings.

Block parameters that have an expression that consists of MATLAB work space
variables will be exported to a constant value. If one of these parameters has to be
configurable during run-time, the expression should be split up using adder, multi-
plier and division blocks before exporting the HDL.

The HDL coder will work without extensive setting up. The error messages that
are generated when the tool cannot generate HDL are clear, making debugging
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easy. The exported code is human readable. If needed, naming settings can be
changed before exporting.

Simulating VHDL designs can be done using ModelSim. A testbench (TB) is
required in order to efficiently evaluate the design. The TB provides input signals.
Using this testbench, input data can be read from files, which is useful in the case
where the input data is generated using other software, for example in MATLAB.
During simulation the test bench can also write data to files. This way the data can
be analysed in other software.

The final step to run the complete design on FPGA is to synthesize the VHDL
design: the high level description is converted to a gate-level representation.
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Chapter 3

DC-DC Boost Converter

3.1 Working principle

A DC-DC converter is a simple circuit that takes a voltage as input, and converts
this to a lower (buck) or higher (boost) voltage at the output. The circuit can be
designed to very specific input and output voltages, or it can be designed to operate
on a wide range of voltages. If the voltage is only lower or only higher than the input
signal, the circuit can be designed more specifically. In this thesis, a DC-DC boost
converter is used. The analog part of the DC-DC boost converter can be seen in
Figure 3.1. This can be referred to as the power plant [8]. The second part of the
DC-DC boost converter is a control circuit. Both parts will be analysed and designed
in this chapter.

Figure 3.1: DC-DC boost converter

The switch changes the dynamics of the circuit. The analysis for this is given
in Section 3.2. The switch is controlled using a PWM signal. The duty cycle of
the signal can be adjusted, to control the output voltage [8]. A controller is needed
to control the PWM generator block. There are many different control methods for
DC-DC converters. A general setup is shown in the block diagram that is shown in
Figure 3.2.
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Figure 3.2: DC-DC boost converter

In this thesis, an ideal DC-DC converter circuit is used at all times. This means
that the inductor, capacitor and resistor have no parasitic resistance and impedance.
The semiconductor components are also ideal. Both the switch and the diode have
two states. They behave either as an ideal wire or as an infinite resistance, depen-
dent on the control input signal (switch) or voltage (diode).

With a non-ideal DC-DC converter, there would be a dead-time when the switch
turns on or off. [8]. This is not the case for this ideal circuit, which makes analysis
easier.

3.2 Power plant

3.2.1 Analysis

The DC-DC boost converter has components that have a state: The inductor and
the capacitor. Normally, this would mean that the circuit can be described with two
differential equations. However, since the circuit contains a switch that changes the
dynamic behaviour of the circuit, it is easier to model it with four difference equation:
two for the CLOSED state of the switch and two for the OPEN state. This method is
also used in [4]. The effective circuit layouts for the two switch states are shown in
Figure 3.3 (CLOSED state) and Figure 3.4 (OPEN state).
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Figure 3.3: Effective circuit layout with switch closed (CLOSED state)

For the ON state, the inductor charges at a constant rate and the capacitor dis-
charges at a constant rate:

diL (t)

dt
=
Vin
L

(3.1)

dvc(t)

dt
= −vC(t)

RC
(3.2)

Figure 3.4: Effective circuit layout with switch open (OPEN state)

For the OPEN state, the differential equations are:

diL (t)

dt
=
vin (t) − vc (t)

L
(3.3)

dvc(t)

dt
=
iL (t)

C
− vC(t)

RC
(3.4)

Since there is an ideal diode in series with the inductor, the inductor current will
never be negative:

iL (t) ≥ 0 (3.5)
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3.2.2 Component selection

It has been mentioned before that a DC-DC boost converter will be used as a case
study for this thesis. No specifications were given for the system. The starting point
for the boost converter specifications is that it designed to be on an integrated circuit.
The input and output voltage levels are standard logic level voltages. Component
sizes will be as small as possible to minimize the size of the circuit.

The switching frequency is chosen to be 1MHZ. This relatively high switching
frequency will also be a good validation factor for the emulated circuit, since the clock
of the FPGA board that will be used for validation is 50MHz. For every switching
period the analog emulation hardware only has 50 cycles.

Table 3.1: DC-DC converter specifications
Parameter Value
Input voltage (Vin) 2.5V ± 0.2V
Output voltage (Vout) 3.3V
Output load (Rout, min) 330Ω

Switching frequency (fsw) 1MHz

Now that the input and output signal specifications have been defined, the size
of the inductor and the capacitor can be determined. The same method that is used
in [8] is used to find the minimal values for the components.

For the inductor, the value can be determined based on the average input current.
This can be found by looking at the output power, with which we can determine the
input power and thus the input current (the input voltage is known). The output
power is shown in Equation 3.6.

Pout = Vout·Iout = 3.3V · 10mA = 33mW (3.6)

For an ideal converter with a power efficiency of 100%, the input power would
equal the output power. In this thesis, an ideal converter is used at all times. How-
ever, for the determination of component values, it is not bad to take power loss into
account. The same design could for example be used in further research where par-
asitics would be added to the circuit. Therefore, I will assume this controller would
have a 95% power efficiency. The input power is:

Pin =
Pout

η
=

33mW

0.95
= 34.74mW (3.7)
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iL, ave =
Pin

Vin
=

34.74mW

2.5V
= 13.90mA (3.8)

The waveform of the inductor current at the maximal output current is a triangle
wave, as can be seen in Figure 3.5. Since the minimal value of the inductor current
is 0 and the waveform is a triangle, the average current is exactly half the peak
current, as can be seen in Equation 3.9. Rewriting the formula gives us Formula
3.10 for the peak current.

Figure 3.5: Waveform of the inductor current at the max load current [8]

iL,ave =

∫ T

0

iL(t)dt =
1

2
IL,peak (3.9)

IL,peak = 2 · iL,ave = 27.8mA (3.10)

Now that the maximum inductor current is known, the inductor size can be deter-
mined. According to [8], the inductor size is related to the switching frequency. The
element equation for the inductor, as shown in Equation 3.11, can be used to get
Equation 3.12, that is valid when the switch is closed (ON state).
ton is the time that the switch is closed in one switching period when the input voltage
and output load have the exact values that are defined in 3.1. This would mean that
the switch can be controlled by a PWM source with a constant duty cycle.

VL = L · diL
dt

(3.11)

Vin = L · IL,peak
ton

(3.12)

Rewriting 3.12 gives the equation for the inductance. However, ton is still un-
known. For this we can use Equation 3.13 [8], which gives the ratio between ton and
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toff . From this ratio the expressions of the timing values can be described in the
switch period T, as is done in Equation 3.14.

ton
toff

=
Vout − Vin

Vin
=

3.3V − 2.5V

2.5V
= 0.32 (3.13)

ton = 0.24T toff = 0.76T (3.14)

By combining Equation 3.12 and Equation 3.14, we can get the expression for
the relation between the inductance and the switching frequency in Equation 3.15.

L · 1

T
= L · fsw = 0.24 · Vin

IL,peak
= 0.24 · 2.5V

27.8mA
= 21.58µH/MHz (3.15)

With Equation 3.15, the maximum inductance value for a certain switching fre-
quency can be determined. As has been explained in the beginning of this section,
fsw = 1MHz. This means that the maximum inductance is 21.58µH. A rounded off
value of 20 µH will be a good choice for the DC-DC boost converter design.

The choice of the capacitor value is based on the wanted maximum value output
ripple [8]. Like has been mentioned before, good performance of the DC-DC boost
converter is not the goal of this thesis: a ripple of 20mV will be a good value, since
the ripple will be a good signal property for the validation of the hardware emulation.
In Equation 3.16 the relation between the output ripple and capacitor value is shown.
tdead equals 0 since an ideal switch is used.

Vo,ripple =
iload (ton + tdead)

Cload

(3.16)

By rewriting Equation 3.16, a expression for the minimal capacitor value can be
found. Equation 3.17 shows that the minimal capacitor value is 222nF. Like the
inductor value, this value is also rounded off to guarantee good performance for the
DC-DC boost converter: a capacitor of 300nF is used.

Cload >
toniload
Vo,ripple

=
320ns · .90mA

20mV
= 222nF (3.17)

The selected values for the DC-DC boost converter can be seen in Table 3.2.
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Table 3.2: DC-DC converter component and timing values
Parameter Value
Switching frequency (fsw) 1MHz

Duty cycle 24%
Inductor (L) 25µH
Load capacitor (C) 300nF

3.3 Control

In Section 3.2, it was assumed that the input voltage and the load of the DC-DC
boost converter are constant values. When this is the case, a PWM source with
constant duty cycle can be used to control the switch of the power plant. Many
different control techniques exist. A good overview of all the different types of con-
trollers is given in [9].

A discrete PI controller selected for the case-study design in this thesis, using
the current output voltage as negative feedback. The controller can be designed
using MATLAB Simulink toolboxes. This was done because of time restrictions. An
analytical design approach for the controller would have cost more time, and the
resulting design might still need tuning in Simulink as well.

The controller is designed using Control System Toolbox [10]. The power plant of
the DC-DC boost converter first has to be linearized, including the PWM generator
in the loop. This cannot be done directly by the Control System Toolbox: it cannot
linearize the PWM generator, which has a duty cycle value with range 0-1 as input.

The System Identification Toolbox [11] can be used to get a linearization of the
DC-DC boost converter. Using a step input, a linear step response curve can be
automatically fitted to match the step response of the DC-DC boost converter as ac-
curate as possible. The expected duty cycle that was calculated in Subsection 3.2.2
is used as step amplitude to get as close as possible to the operating point. A good
approximation of a DC-DC converter can be made using a linear system with two
poles and one zero [12]. The plot from the System Identification Toolbox can be
seen in Figure 3.6

Now that the locations of the poles and the zero are defined in a linear system,
the controller can be designed. This is easily done by tuning the response time and
transient behaviour parameters in the in the Control System Toolbox. With a P gain
of 0.04 and an I gain of 3275, the output voltage is stable and has good performance.
The controller behaviour can be seen in Chapter 5.
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Figure 3.6: Linear approximation in the System Identification Toolbox

The controller has to be discretized, since it will be designed to run on an FPGA
board. Parts from method that is used for the discretization of the analog plant can
also be used for the controller. Therefore, the discretization and hardware imple-
mentation of the controller will be discussed in Section 4.2.
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Chapter 4

Design

This chapter will apply the methods of Chapter 2 on the circuit that was presented in
Chapter 3. The differential equations of the DC-DC boost converter that were found
in Chapter 3 will be converted to difference equations. These difference equations
are expressed in Z-domain, so that a block diagram can be made in Simulink. The
block diagram will be converted to fixed-point, after which the model is ready to be
exported to HDL.

4.1 Discretization of the power plant

The forward Euler method of discretization will be used for the design. The forward
Euler method only takes one clock cycle per iteration. This is a great advantage
since the switching frequency of the digital controller is only 50 times slower than
the simulation clock frequency. Equation 4.1 and Equation 4.2 show the numerical
approximation for the current of the inductor and the voltage of the capacitor of the
DC-DC converter.

iL (tn+1) = iL (tn) + ∆t · i′L(tn) (4.1)

vC (tn+1) = vC (tn) + ∆t · v′C(tn) (4.2)

In Chapter 3, the solution for the analog plant was split up into an OPEN and
an CLOSED part, each containing two differential equations. Filling in Equation 3.1
until Equation 3.4 in Equation 4.1 and Equation 4.2, Equation 4.3 until Equation 4.6
can be obtained. Note that the first two equations are the OPEN state equations
and the latter two the CLOSED state equations. For Vin, there is no need to delay
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the signal, since it is an input signal.

iL (tn+1) = iL (tn) +
∆t

L
· vin(tn+1) (4.3)

vC(tn+1) = (1 − ∆t

RC
)vC(tn) (4.4)

iL (tn+1) = iL (tn) +
∆t

L
· vin(tn+1) −

∆t

L
vC (tn) (4.5)

vC (tn+1) =

(
1 − ∆t

RC

)
vC(tn) +

∆t

C
iL (tn) (4.6)

When comparing the two OPEN and CLOSED equations, it can be seen that the
OPEN equations have all the terms on the right side that are also in the CLOSED
equations, with one additional term. The whole system can be described in two dif-
ference equations by introducing the variable S(tn) that represents the switch state.
S(tn) is defined in Equation 4.7.

S(tn) =

1, if the switch is closed at tn

0, if the switch is open at tn
(4.7)

The two difference equations with S(tn) that describe the complete dynamic be-
haviour of the system are shown in Equation 4.8 and Equation 4.9. Like with Vin,
S(tn) is also a system input. Thus, there is no need to delay the signal.

iL (tn+1) = iL (tn) +
∆t

L
· vin(tn+1) − S(tn+1)

∆t

L
vC (tn) (4.8)

vC (tn+1) =

(
1 − ∆t

RC

)
vC(tn) + S(tn+1)

∆t

C
iL (tn) (4.9)

The final step before the model can be realized is to transform the difference
equations to Z-domain, so that the Simulink model can be realized. Equation 4.10
and Equation 4.11 show the result of the numerical approximation of the power plant.

iL (z) = iL (z) z−1 +
∆t

L
· vin (z) − S(z)

∆t

L
vC (z) z−1 (4.10)

vC (z) =

(
1 − ∆t

RC

)
vC (z) z−1 + S(z)

∆t

C
iL (z) z−1 (4.11)
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Block diagram

Using Equation 4.10 and Equation 4.11, a block diagram can be realized in Simulink.
The complete model can be seen in Figure 4.1. Both the capacitor voltage and the
inductor current signal are labeled, as V C and I L. The constant T is the sampling
time that was defined as ∆T in the previous calculations. The output of the inductor
adder is saturated at 0 lower bound, since it was shown in Equation 3.5 that the
inductor current cannot be negative.

For most gain blocks, a constant gain expression that contains the constants
T,C and L. However, the ’variload’ subsystem (abbr. variable load) was designed
so that the load value R can be changed during run-time. The subsystem can be
seen in Figure 4.2, together with a single gain block that can only be used for a
constant R for reference. The variload uses a division and an adder block to get
the correct gain value, using the load value from the input port. A final multiplication
block multiplies the input value on port 1 with the gain value.

S(tn) is realized using two switch blocks, with the OPEN state connected to a
constant source of 0. The CLOSED state is connected to the signal that S(tn) is
multiplied with in Equation 4.10 and Equation 4.11.

Figure 4.1: Discrete block diagram of the analog plant
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Figure 4.2: Block diagram of the variable load subsystem

4.2 Controller

In Section 3.3, a continuous PI controller was designed that takes a reference volt-
age and the current output voltage of the analog plant, and outputs a PWM control
signal to the switch of the analog plant. This controller is the DUV, and will need to
be implemented on FPGA using VHDL.

A PI controller can be realized by having a P-term and an I-term in parallel. For
the P-term, nothing changes when the controller is discretized. However, the I-term
contains an integral that has needs to be numerically approximated. Simulink has a
Z-domain integrator that can be used for this. The gain has to be multiplied by the
clock period, which happens in the block.

Since the switching period of the PWM generator is 1MHz, a full switching period
is 50 clock cycles. Therefore, it is straightforward to have a controller output range
of [0,50]. The original designed controller in Section 3.3 was designed to drive a
PWM generator that has a duty cycle input range of [0,1]. Therefore, the P and I
gain value have to be multiplied by 50 to get the wanted output range. The discrete
controller can be seen in Figure 4.3. Note that a saturation block has been added
to limit the output to the correct range. The controller has been converted to 32 bit
word-length fixed-point using the Fixed-Point Tool.

Using the HDL coder, the controller has been exported to VHDL language. How-
ever, the PWM generator block that was used in Simulink cannot be exported by
the tool. Therefore, a simple PWM generator was implemented by hand-writing the
code. The implementation is straightforward: a counter has to be implemented that
counts to 50 and then resets. The output of the generator should be 1 if the duty
cycle value from the controller is higher than the current counter value and 0 other-
wise.
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Figure 4.3: Block diagram of the digital controller

4.3 Hardware design

Fixed-point conversion

Now that the discrete model is realized in Simulink, it is time to optimize the model
for hardware. When the model is placed in a subsystem, the Fixed-Point Designer
can be started. The relative tolerance is set to 1% for the output voltage. Like has
been explained in Section 2.2, it is important that the tool can collect the complete
range that the internal signals will have during run-time. Using step source blocks in
MATLAB that are added, and the sum is connected to the input ports of the model.
This is done for both Vin (initial value 2.5V, range [2.3, 2.7]) and R (initial value 330Ω,
range [280,430]). The load value exceeds the maximal rated value that was chosen
in Subsection 3.2.2, which is done deliberately to be more certain that all ranges
collecting the ranges.

After the tool collected information about all the ranges of the signals, the word-
length was set to 32 bits for a first embedded run. However, under flows caused
unstable behaviour. After multiple iterations it was found that a word-length of 38 is
sufficient for the most demanding signals. No optimization was done to reduce word-
length for signals that need less precision, for example constants. The comparison
of the output voltage between the double data-type run (BaselineRun) and the fixed-
point run (EmbeddedRun) can be seen in Figure 4.4, together with the 1% tolerance
interval. The fixed-point model stays within the 1% tolerance. This means that this
model it suitable for the continuation of the design method, which will be converting
the model to VHDL and synthesizing for FPGA.
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Figure 4.4: Output voltage of fixed-point model and floating-point model

VHDL implementation

The input and output ports of the analog plant were converted to 32 bit, which gives
no noticeable difference on system performance. As has been explained before,
the default 38 bit word-length is not necessary for all system parameters. The 32
bit ports makes connecting with the 32 bit controller possible without the need for
additional conversion blocks outside the analog and digital blocks. The duty cycle
value was converted to a 6 bit word-length, since the value is unsigned and never
exceeds 50.

The HDL coder was used to export the VHDL code of the model that was shown
in Figure 4.1. The variload subsystem is exported as a separate entity in a separate
VHDL file, but this requires no special attention. The generated VHDL file is shown
in Appendix A, and gives an impression of what code generated by the HDL coder
looks like.

One block in the model required some attention: the model contains a division
block. No extensive research was done on division on FPGA. The HDL coder gave
an error for this block: ”Product block with divide input (/) supports fixed point division
only when the fraction length of output is equal to the fraction length of the dividend
minus the fraction length of the divisor.” This was solved by increasing the fraction
length of the dividend, using a data conversion block. If the division would require
multiple clock cycles per calculation, it would still be possible to have it in the design:
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the gain parameter would not be able to change during these calculations, but the
last calculated value can be used for multiplication with the current input value for
the number of cycles that a division takes.

A block diagram of the structural design of the hardware in the VHDL test bench
is shown in Figure 4.5. As has been explained in the previous section, the controller
exists of a VHDL generated PI controller and a manually implemented PWM gen-
erator. The VHDL code of the PWM generator can be found in Appendix B. The
test-vector controller (TVC) provides the clock and reset signals. Note that there is
only one main clock of 50MHz.

Figure 4.5: Structural hardware design of the DC-DC boost converter

Following the above steps in this chapter result in a VHDL implementation of the
emulated DC-DC boost converter can be realized that can compile and run using
ModelSim. Because of time restrictions, it was not possible to synthesize the design
for FPGA.

The VHDL entity contains 46 internal signals. These signals are all 38 bits wide.
This shows that even for a simple circuit with a few components, already quite a lot
of resources are needed.
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Chapter 5

Results

This chapter shows the performance of the hardware-emulated analog power plant
of the DC-DC converter. Before the complete system will be tested, the behaviour
of the emulated analog plant without feedback controller is compared to an analog
simulation on a CPU-based machine. After this, the controller is connected to the
analog plant and performance is compared to the reference simulation.

All results come from ModelSim simulations. The model that was used is shown
in Appendix C. The reference data is generated using Simulink simulation. The
Simscape Toolbox [13] is used for this. It provides physical system modeling and
simulation, which includes electrical circuits.

Since the goal of the emulation is to get similar behaviour at the ports of the
system, only the behaviour of the output voltage is evaluated.

5.1 Analog subsystem performance

This first section will validate the stand-alone performance of the emulated analog
circuit. A control signal is still needed in order to simulate the circuit. This will be
done with a constant duty cycle control signal. By not having a feedback controller
in the simulation, the error between reference data and results of the hardware em-
ulation has no external causes. A constant PWM source with a duty cycle of 24%
is used to drive the analog plant. The output load is initially 330Ω, and is changed
at t = 0.5ms to 430Ω. Since no feedback control is present, the output voltage will
change when the load changes.

The comparison of the voltage output of the ModelSim hardware simulation and
Simulink simulation for the above described test can be seen in Figure 5.1. The
RMSE is 0.025V (average relative error 0.69%) and the maximum error is 0.058V
(relative error 1.39%).
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Figure 5.1: Constant duty cycle control signal, changing load at t = 0.5ms

5.2 Controller validation performance

In Section 5.1, it was shown that the digitally emulated analog plant of the DC-DC
boost converter has similar dynamic behaviour compared to analog simulation. This
means that it should be usable for validating a controller design. In the following
simulation, performance of the emulated analog circuit that is controlled using the
PI controller that was designed in Section 4.2 is evaluated. This is again done by
looking at the output voltage of the DC-DC boost converter. In addition to this, the
output of the controller is also compared to the controller output in the Simulink
simulation. The output of the controller is a duty cycle value that goes to the PWM
generator.

The input voltage will be the deviating parameter in this test, to see how the
controller responds to changing circuit parameters. The initial value is 2.5V and is
changed to 2.7V , 2.3V and back to 2.5V . The resulting output voltages with the
absolute error can be seen in Figure 5.2. The controller duty cycle outputs can be
seen in Figure 5.3.

In this test, the RMSE is 0.0128V , (average relative error of 0.56%), and the
maximum error is 0.056V (relative error 1.89%). The RMSE is lower than in the
previous test. The likely reason behind this is that the controller also compensates
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the error that was found in Section 5.1. For the controller, it can be seen that the
output of the hardware controller has some differences compared to the simulation
controller, especially for the steady state.

Figure 5.2: Performance with controller, changing Vin at t = 1ms, 1.5ms, 2ms

Figure 5.3: Controller duty cycle, changing Vin at t = 1ms, 1.5ms, 2ms
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In Figure 5.4, the output voltage together with the switch state are plotted over
an interval of 200 clock cycles. The data comes from ModelSim simulation. In Ap-
pendix D, the ModelSim simulation interface shown as well. The DC-DC converter
is in the steady state. The individual time steps are visible. Every switching period,
50 values are calculated for every parameter in the analog plant.

The behaviour of the DC-DC boost converter can be seen nicely seen in Fig-
ure 5.4 as well. The capacitor is discharging at a constant rate. When the switch
is closed, the current in the inductor is increasing (this cannot be observed in the
plot). This current is then transferred into to capacitor when the switch opens again,
resulting in a increasing voltage again.

Figure 5.4: Output voltage and switch state during 4 switching periods
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Chapter 6

Conclusions and recommendations

This chapter will evaluate the method and corresponding results of this thesis. The
research questions will be answered. After this my view on the continuation of the
research on the concept that has been presented in this thesis is given.

6.1 Conclusion

The first subquestion that was defined in this thesis was: ”How can the continuous
behaviour of an analog circuit be discretized” These first steps were based on man-
ual calculations. The dynamic behaviour of the circuit must be analysed to obtain
the differential equations. These dynamics were converted to difference equations
by numerically approximating them using the forward Euler method.

The second subquestion that was defined as following: ”How can a discrete
model be synthesized on FPGA”. Once the discrete model was made in Simulink,
the method changed its approach to mainly using software tools. The model was op-
timized for FPGA using the fixed-point and HDL coder toolboxes, together with other
built-in MATLAB/Simulink features. However, no word-length optimization was done,
resulting in a word-length of 38 bits for all signals. Once the HDL was exported, the
last step was to synthesize the design for FPGA. This step was not applied on the
case-study because of time restrictions. The real-time advantage of running the sys-
tem on FPGA has thus not been tested yet. Also, the impact of word-length on the
resources needed on FPGA could not be evaluated. For this simple circuit, already
46 internal signals were needed. This fact, in combination with the fact that the cur-
rent word-length is 38 bits, shows that quite a lot of resources would be needed for
emulation, even for a small circuit.

The third subquestion was defined for performance validation: ”How does per-
formance of analog simulation on FPGA compare to CPU-based simulation”. To
answer this question, the method has been applied on an ideal DC-DC boost con-
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verter circuit. The resulting hardware design has been compared to analog Simulink
simulations. An average relative error of 0.56% was achieved, which shows that the
hardware design gives accurate results.

With the subquestions answered, this research can be concluded by answering
the main research question: ”How can FPGA emulation of the analog subsystems of
mixed-signal ICs contribute to the design validation of the digital subsystems?”. The
simplest question one would want to answer when validating a digital subsystem
is ’does it work’. For the DC-DC boost converter, the outcome of this question is
similar for the Simulink simulation and hardware design: in both cases the controller
worked as intended.

Of course, validating controller designs goes much further than that simple ques-
tion. While no advanced validation of the digital controller of the DC-DC controller
has been done in this thesis, it is proven that the used method results in hardware
that accurately approximates the behaviour of the analog system. It is therefore
expected that the resulting design can be used to do more advanced validation of
digital subsystems, if FPGA synthesis is possible.

Parallel processing on FPGA can give time advantages over CPU-based simu-
lation. The digital subsystem can be validated on FPGA without the need for inter-
facing with a CPU-based machine, making real-time validation possible. However,
the word-length and number of the internal signals of the emulation hardware will
be a determining factor. Optimization of fixed-point word length is important to keep
the needed resources on FPGA achievable. However, large circuits and circuits that
contain lots of parasitics will result in hardware designs that are not synthesizable
because of the needed resources.

For high-frequency circuits (e.g. radio receivers that operate at frequencies
higher than 1GHz), FPGA emulation could also be a great solution for digital sub-
system validation. However, the emulated circuit will not be able to run real-time,
since the clock speed of FPGA is limited. The time scale would need to be moved
down, so that there will be enough iterations for the analog emulated hardware for
every digital subsystem clock cycle.

6.2 Recommendations

The results of this thesis show that it is possible to emulate analog subsystems
on hardware with the goal of validating digital subsystem performance. While the
overall idea of the steps in the presented method will work in most cases, they have
not been optimized to be used in real development applications yet.

There are many steps in the presented method. Since time was limited, there
was no time to research the accuracy and optimization in these steps. The first
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step that could be further researched is the discretization: using the parallelism of
FPGA, more accurate discretization methods might be possible. Or, in the case of
a discretization method that needs multiple clock cycles per calculation, the clock
speed can be a factor that also can be researched further: Using phase-locked
loops, higher clock speeds might be possible, possibly improving accuracy.

The fixed-point conversion has also not been optimized in this research. The
word-length was chosen based on the highest-demanding parameters, and not opti-
mized per individual parameter. Doing this can greatly reduce the resources needed
on FPGA, making it possible to emulate larger circuits.

In addition to these steps, the current design has not been synthesised for a
FPGA yet. It was originally planned to do this in this thesis, but this was not achieved
because of time restrictions. Synthesis would give insight in the resources that are
needed for emulating hardware.

In the conclusion it was emphasized that the first steps in the used method have
to be done manually. While this is possible for simple circuits like the DC-DC boost
converter that was used as a case-study, it becomes harder or even impossible to
do for more complex circuits.

When all of the above steps are further researched, a method with more efficient
and more accurate results can be achieved. This could even be the fundamental
theory behind an all-in-one software solution that can automatically export HDL of
analog circuit layouts. This would make the concept interesting for mixed-signal IC
design in the industry.
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Appendix A

VHDL code of the variload subsystem

1 -- -------------------------------------------------------------

2 --

3 -- File Name: hdlsrc\DCDC_discrete_fixed_variload_control_simpified\variload.vhd

4 -- Created: 2021-06-14 19:43:40

5 --

6 -- Generated by MATLAB 9.10 and HDL Coder 3.18

7 --

8 -- -------------------------------------------------------------

9

10

11 -- -------------------------------------------------------------

12 --

13 -- Module: variload

14 -- Source Path: DCDC_discrete_fixed_variload_control_simpified/dcdc_analog_variload/variload

15 -- Hierarchy Level: 1

16 --

17 -- -------------------------------------------------------------

18 LIBRARY IEEE;

19 USE IEEE.std_logic_1164.ALL;

20 USE IEEE.numeric_std.ALL;

21

22 ENTITY variload IS

23 PORT( LOAD : IN std_logic_vector(37 DOWNTO 0); -- ufix38_En29

24 In2 : IN std_logic_vector(37 DOWNTO 0); -- ufix38_En35

25 Out1 : OUT std_logic_vector(37 DOWNTO 0) -- ufix38_En35

26 );

27 END variload;

28

29

30 ARCHITECTURE rtl OF variload IS

31

32 -- Signals

33 SIGNAL In2_unsigned : unsigned(37 DOWNTO 0); -- ufix38_En35

34 SIGNAL Constant1_out1 : unsigned(37 DOWNTO 0); -- ufix38_En37
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35 SIGNAL Constant_out1 : unsigned(37 DOWNTO 0); -- ufix38_En63

36 SIGNAL Data_Type_Conversion_out1 : unsigned(74 DOWNTO 0); -- ufix75_En100

37 SIGNAL LOAD_unsigned : unsigned(37 DOWNTO 0); -- ufix38_En29

38 SIGNAL Gain1_mul_temp : unsigned(75 DOWNTO 0); -- ufix76_En88

39 SIGNAL Gain1_out1 : unsigned(37 DOWNTO 0); -- ufix38_En50

40 SIGNAL Divide1_out1 : unsigned(37 DOWNTO 0); -- ufix38_En50

41 SIGNAL Add1_sub_cast : unsigned(37 DOWNTO 0); -- ufix38_En37

42 SIGNAL Add1_out1 : unsigned(37 DOWNTO 0); -- ufix38_En37

43 SIGNAL Product_mul_temp : unsigned(75 DOWNTO 0); -- ufix76_En72

44 SIGNAL Product_out1 : unsigned(37 DOWNTO 0); -- ufix38_En35

45

46 BEGIN

47 In2_unsigned <= unsigned(In2);

48

49 Constant1_out1 <= unsigned'("10000000000000000000000000000000000000");

50

51 Constant_out1 <= unsigned'("10101011110011000111011100010001100001");

52

53 Data_Type_Conversion_out1 <= Constant_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0'

54 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0'

55 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0';

56

57 LOAD_unsigned <= unsigned(LOAD);

58

59 Gain1_mul_temp <= unsigned'("10100001000011111010111110100000011011") * LOAD_unsigned;

60 Gain1_out1 <= Gain1_mul_temp(75 DOWNTO 38);

61

62 Divide1_output : PROCESS (Data_Type_Conversion_out1, Gain1_out1)

63 VARIABLE c : unsigned(74 DOWNTO 0);

64 VARIABLE div_temp : unsigned(74 DOWNTO 0);

65 BEGIN

66 div_temp := to_unsigned(0, 75);

67 IF Gain1_out1 = to_unsigned(0, 38) THEN

68 c := unsigned'("111111111111111111111111111111111111111111111111111111111111111111111111111");

69 ELSE

70 div_temp := Data_Type_Conversion_out1 / Gain1_out1;

71 c := div_temp;

72 END IF;

73 IF c(74 DOWNTO 38) /= "0000000000000000000000000000000000000" THEN

74 Divide1_out1 <= "11111111111111111111111111111111111111";

75 ELSE

76 Divide1_out1 <= c(37 DOWNTO 0);

77 END IF;

78 END PROCESS Divide1_output;

79

80

81 Add1_sub_cast <= resize(Divide1_out1(37 DOWNTO 13), 38);
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82 Add1_out1 <= Constant1_out1 - Add1_sub_cast;

83

84 Product_mul_temp <= In2_unsigned * Add1_out1;

85 Product_out1 <= Product_mul_temp(74 DOWNTO 37);

86

87 Out1 <= std_logic_vector(Product_out1);

88

89 END rtl;

34



Appendix B

VHDL code of the PWM generator

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

4 use work.all;

5

6 entity dcdc_pwmgen is

7 PORT( clk : IN std_logic;

8 clk_enable : IN std_logic;

9 reset : IN std_logic;

10 duty : IN std_logic_vector(5 DOWNTO 0);

11 switch_control : OUT std_logic

12 );

13 end dcdc_pwmgen;

14

15

16 architecture behaviour of dcdc_pwmgen is

17 constant sw_period : integer := 50;

18 signal counter : integer range 0 to sw_period-1;

19 signal duty_int : integer range 0 to sw_period-1;

20 begin

21

22 process(clk, reset)

23 begin

24 if reset = '1' then

25 counter <= 0;

26 elsif rising_edge(clk) then

27 if(clk_enable = '1') then

28 if counter = 49 then

29 counter <= 0;

30 else

31 counter <= counter + 1;

32 end if;

33 duty_int <= to_integer(unsigned(duty)); -- Use controller value

34 -- duty_int <= 15; -- Use constant value

35



35 end if;

36 end if;

37 end process;

38

39 switch_control <= '1' when counter < duty_int else '0';

40

41 end behaviour;

42
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Appendix C

Simulink analog model
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Appendix D

ModelSim simulation

38


	Abstract
	Introduction
	Motivation
	Goal of the assignment
	Report organization

	Analog hardware emulation
	Discretization methods
	Fixed-point modeling
	Hardware implementation

	DC-DC Boost Converter
	Working principle
	Power plant
	Analysis
	Component selection

	Control

	Design
	Discretization of the power plant
	Controller
	Hardware design

	Results
	Analog subsystem performance
	Controller validation performance

	Conclusions and recommendations
	Conclusion
	Recommendations

	References
	Appendices
	VHDL code of the variload subsystem
	VHDL code of the PWM generator
	Simulink analog model
	ModelSim simulation

