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Abstract

Differential equations play an important role in modelling all kinds of phenom-
ena in many disciplines. An example is the prey-predator model, also known as the
Lotka-Volterra equations. However, sometimes it is the case that there is not enough
information known to construct an explicit model for a problem. This study focuses
on approximating differential equations using neural ordinary differential equations
(neural ODEs), such that data can still be used in models without having to construct
an explicit system of ODEs. Neural ODEs are a recent development that combine deep
learning with the structure of differential equations. We train our network for various
different sets of initial conditions, after which we see how well our network performs
during testing on other initial conditions. We do this for the Lotka-Volterra equations
and the Van der Pol oscillator. The presented results focus on the performance of the
model dependent on the amount of training points and the amount of epochs used
during training. We conclude that a neural ODE can make for an accurate approxi-
mation of the differential equations, but there are some uncertainties of the influence
of the training set and the kind of differential equations that are used for the data set.

Keywords: ordinary differential equations (ODEs), deep learning, neural ODEs
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1 Introduction

Differential equations are of importance in many fields of science. They came into play
when Isaac Newton and Gottfried Wilhelm Leibniz became involved in the invention of
calculus. Since then, many disciplines have adopted differential equations as a part of
their mathematical toolbox. An example is the predator–prey model, also known as the
Lotka-Volterra equations. This system of differential equations describes the dynamics
within a biological system and can be used by biologists to understand the changes in
populations for different species [1]. Another example is the van der Pol oscillator, a
common differential equation used in many fields of science, amongst which physics [2],
electrical engineering [3] and biology [4]. It is clear that differential equations are part
of several fields of science, and therefore it is beneficial to study their behaviour within
neural networks. However, there is not always enough information to construct an explicit
model for a problem at hand. Without a model, it is not possible to do any extrapolation
or interpolation of the data available. This thesis focuses on tackling this problem with
the help of deep learning. There are already some methods that try to approach this
problem from different angles. An example is SINDY [5], an algorithm that is developed
to investigate nonlinear dynamical systems using regression methods. Another recently
published method takes a look at stochastic differential equations, and uses the Euler-
Lagrange equation to estimate the diffusion coefficient of these equations [6].

We introduce a method that makes use of an artificial neural network. An artificial
neural network is inspired by the biological neural networks. Deep learning is a part of
machine learning that depends on this structure of a neural network, using layers and
neurons. A technical difficulty in training these neural networks is performing backprop-
agation. Backpropagation is an important part of the process of training the network.
It computes the gradient of an objective function with respect to the parameters of the
network. It is effective, but costs a lot of memory and can introduce additional numerical
error. A recently developed method is the neural ordinary differential equation (neural
ODE), which can train a model with fewer parameters, and which is a lot more memory-
efficient and less complex than residual neural networks are [7]. This thesis will focus
on neural differential equations and how they can be used to make an approximation of
differential equations. We will look into the effect of training the neural ODE and testing
it with different initial conditions.

First, some theory related to this thesis is discussed. This includes material concerning
ODEs, deep learning, and their connection to neural ODEs. Next, a description of our
method that approximates differential equations will follow, with analysis of the perfor-
mance of the model when it is tested with other initial conditions. Finally, the results are
presented and discussed.

2 Ordinary Differential Equations

ODEs can be used to describe many different phenomena, appearing in many fields of
science, as we saw in the introduction. An ODE is an equation containing both one or
more functions of a variable and its derivative [8]. We will look at numerical solutions, not
analytical, since these are of bigger use for our study. An ODE can be of any order; an
nth order differential equation will include the nth derivative of a variable. For now we will
stick to first-order, nonlinear, autonomous differential equations, which are of the form

∂x(t)

∂t
= f(x(t)). (1)
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We will use the Euler method [8], an explicit method for numerical integration of an ODE,
to make a numerical approximation of (1). Let’s say we have initial value x(t0) = x0. The
idea behind the Euler method is that starting from the initial condition, we can find the
tangent line at t0 ∈ R. By taking a very small step along the tangent line, we can find
take a next point, and define a new tangent line along which we will take another small
step. Continuing this process, we will get a polygonal curve that will not diverge too far
from the actual curve. A key element of this method is taking the step sizes small enough.
Now, one step of the Euler method is defined by

xn+1 = xn + hf (tn, xn) . (2)

Here h defines the step size and tn = t0 + nh, and (2) shows us how to get from tn to
tn + 1 = tn + h. The value of yn is approximately the solution of our ODE (1) at time tn.

3 Deep learning

Deep learning is a method that makes use of artificial neural networks. Artificial neural
networks are computational systems consisting of many different layers, and they are in-
spired by biological neural networks. A artificial neural network tries to mimic a biological
neural network through inputs, weights, and biases. In this section we will discuss how
these matters play a role in deep learning. The rest of this section is for a large part based
on [9]. We will represent a neural network in the following form:

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 1: Neural network.

The neural network in Figure 1 has four layers: an input layer and an output layer
(which are always present in a neural net) and two hidden layers. The hidden layers exist
of five neurons, which is taken randomly. A neural network mostly has many more layers
and many more neurons per layer. The amount of neurons does not have to be equal in
all hidden layers.

3.1 Forward pass

As input one takes the data that we want our neural network to train, let us call this data
x ∈ Rn1 , where n1 denotes the amount of neurons in the input layer. Dependent on this
input, each neuron in every layer l will output a real number. We then put these numbers
together in a vector, which we call a[l], of dimension nl, where nl is the amount of neurons
of layer l. We let a[l]j denote the output, or activation, from neuron j at layer l. At the
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next layer, l + 1, a will be multiplied by a weight matrix W and a bias vector b, which
will be put into an activation function. The weight matrix has dimensions nl+1 × nl, so
the number of rows in W matches the number of neurons at the current layer, whereas
the number of columns matches the number of neurons at the previous layer which output
the vector a. The bias vector b has dimension nl + 1, and together this gives us Wa + b.
After the bias is added, we use this as an input for a non-linear activation function. An
activation function mimics what a neuron would behave like in the brain: it either fires if
the input is large enough, or it remains inactive if the output is too small. For now we will
use a sigmoid function as our activation function:

σ(x) =
1

1 + e−x
, (3)

which will give an output of one if the input is large enough, and an output of zero
otherwise. There are several choices possible as activation functions, but for now we will
stick to the sigmoid function. If the reader is interested in more background about different
activation functions and their performances, see [10] or [11] for example. Now, we define

z[l] = W [l]a[l−1] + b[l] ∈ Rnl for l = 2, 3, . . . , L, (4)

to be called the weighted input at layer l for neuron j, such that in general the output of
layer l becomes

a[1] = x,

a[l] = σ(z[l]), for l = 2, 3, ..., L.
(5)

Let us look at how this unfolds in the example presented in Figure 1. The input data for
layer one is of the form x ∈ R, since layer one has one neuron. The weights for layer two
are presented by W [2] ∈ R4×1 and the bias for layer two is presented by b[2] ∈ R4, since
layer two has four neurons. Then the output of layer two has the form

σ(W [2]x+ b[2]) ∈ R4. (6)

Layer three has four neurons and an input in R4, so its weights and biases are presented
by W [3] ∈ R4×4 and b[3] ∈ R4, respectively. Then the output of layer three has the form

σ(W [3](σ(W [2]x+ b[2])) + b[3]) ∈ R4. (7)

Since the output layer has one neuron and an input in R4, its weight and bias are presented
by W [4] ∈ R1×4 and b[4] ∈ R, respectively, and the output of this layer becomes

σ(W [4](σ(W [3](σ(W [2]x+ b[2])) + b[3])) + b[4]) ∈ R. (8)

This is also the overall output of the neural network depicted in Figure 1. We will call (8)
F (x), which is the learning function of this specific neural network with input x.
Now in order to train our network, we will need a loss function which will adjust the pa-
rameters in our network, which are the weights and biases. This loss function is dependent
on the amount of training points. Say we have N training points in our data, {x{i}}Ni=1 in
Rn1 , for which we have target outputs {y(x{i})}Ni=1 in RnL . This gives us the following loss
function

L(w, b) =
1

N

N∑
1

1

2

∥∥∥y(x{i})− a[L](x{i})
∥∥∥2
2
, (9)
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and this is a function of the weights and biases. Training the network now means that
every iteration this loss function is evaluated, with the goal to minimize it, and then
the parameters are updated accordingly. One iteration exists out of one forward pass -
traversing through all neurons - , calculating the loss, to be followed by a backward pass,
which is counting the changes in all parameters, starting at the last layer.

3.2 Backward pass

The second part of a complete iteration of the network is the backward pass, also called
backpropagation. As mentioned before, the goal is to minimize our loss as a function of
the weights and biases. This is done with a method called gradient descent, which is an
optimization method that has an iterative process. For this section we will see our weights
and biases as one single vector, called p ∈ Rs, where s is the total amount of weights and
biases. The loss function is L(p). The aim of gradient descent is to find the parameters
that minimize L(p). We will let ∂L(p)

∂pr
denote the partial derivative of the loss function with

regard to the rth parameter. ∇L(p) is the vector of partial derivatives, or the gradient,
and

(∇L(p))r =
∂L(p)

∂pr
. (10)

If we start with our current vector p, and want our next vector, p + δp, improve our loss
function, we use the Taylor series expansion to give us

L(p+ ∆p) ≈ L(p) +
∑
r

∂L(p)

∂pr
∆pr. (11)

Combined with (10) this gives us

L(p+ ∆p) ≈ L(p) +∇L(p)T∆p. (12)

Since our goal is to minimize the loss function, (12) tells us we have to choose ∆p such that
∇L(p)T∆p is as negative as possible. That will give us a derivative as close as possible
to zero, which indicates a minimum. The Cauchy-Schwarz inequality states that for any
f, g ∈ Rs we have

∣∣fT g∣∣ ≤ ‖f‖2‖g‖2. In order to get
∣∣fT g∣∣ as negative as possible, we aim

for f = −g. In order words, we choose ∆p in the opposite direction of ∇L(p). This gives
us the update

p→ p− η∇L(p), (13)

where η is a small stepsize that is known as the learning rate within machine learning.
A random initial vector p is chosen, and by iterating (13) the loss function is minimized.
Now, if we let

Lx{i} =
1

2

∥∥∥y (x{i})− a[L] (x{i})∥∥∥2
2
, (14)

then from the loss function it follows that the gradient vector is

∇L(p) =
1

N

N∑
i=1

∇Lx{i}(p). (15)

Computing the gradient vector at every iteration of the steepest descent method (13)
can be costly if p or N is very large. It can be beneficial if the gradient of a random training
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point is chosen instead of the mean of the gradients of all training points. The benefit of
this is that, by the law of large numbers, by picking points at random the average value
of these numbers will converge to the mean of the numbers. This is called the stochastic
gradient descent method, which we will now use for the backward pass in training our
network. The task at hand is to compute the partial derivatives of our loss function with
respect to each individual weight and bias parameter. For an individual training point we
see Lx{i} as a function of weights and biases, so we can drop the dependence on x{i} and
simply write

L =
1

2

∥∥∥y − a[L]∥∥∥2
2
. (16)

Next, we introduce the error of the jth neuron at layer l, to be defined as

δ
[l]
j =

∂L
∂z

[l]
j

for 1 ≤ j ≤ nl and 2 ≤ l ≤ L. (17)

The error is a measure of sensitivity of our loss function to the weighted input. With these
concepts we can get the following results using the chain rule. For the interested reader,
the full proof can be found in [9].

δ[L] = σ′
(
z[L]
)
◦
(
a[L] − y

)
, (18)

δ[l] = σ′
(
z[l]
)
◦
(
W [l+1]

)T
δ[l+1] for 2 ≤ l ≤ L− 1, (19)

∂L
∂b

[l]
j

= δ
[l]
j for 2 ≤ l ≤ L, (20)

∂L
∂w

[l]
jk

= δ
[l]
j a

[l−1]
k for 2 ≤ l ≤ L. (21)

Here x ◦ y, the Hadamard product, is defined by (x ◦ y)i = xiyi, so the pairwise
multiplication of the corresponding components.

Since the forward pass computes a[L], (18) immediately lets us compute δ[L]. Then,
using (19), in the backward pass we can compute δ[L−1], δ[L−2], ..., δ[2]. Finally, using (20)
and (21), we have access to the partial derivatives, which was what we wanted to retrieve.
This way of computing gradients is called backpropagation, a widely known term in the
field of deep learning.

3.3 Adam optimizer

The Adam optimizer - derived from Adaptive Moment Estimation - is another optimization
algorithm [12]. It combines the method of gradient descent with momentum with the
RMSP - Root Mean Square Propagation - method [13]. The gradient descent method with
momentum is similar to the stochastic gradient descent method mentioned in section 3.2,
but it takes the weighted average of the gradients into account. So we get

W [l+1] = W [l] − ηml, (22)

whereml denotes the total of the gradients at layer l, or the estimate of the first momentum,

ml = κml−1 + (1− κ)

[
δL

δW [l]

]
. (23)
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Here κ denotes the moving average parameter. The RMSP is a variation of this method.
It takes the exponential average of moving gradients,

W [l+1] = W [l] − ηt(
v[l]
)1/2 [ δL

δW [l]

]
, (24)

where v[l] is the sum of the square of past gradients at layer l, or the estimate of the second
momentum,

v[l] = κv[l−1] + (1− κ)

[
δL

δW [l]

]2
. (25)

Now, Adam combines these two method such that it uses both its strengths and makes for
an optimized gradient descent. It looks as follows

ml = κml−1 + (1− κ)

[
δL

δW [l]

]
v[l]. (26)

Studies show that the Adam method is a very good optimization algorithm and outperforms
most other algorithms including the stochastic gradient descent method, both with and
without momentum, and the RMSP method [13][14].

3.4 Residual networks

A special type of neural networks that we would like to highlight are residual neural
networks (ResNets)[15]. In many types of neural networks only the information from the
previous layer is passed on to the next layer, but in ResNets the data can be passed through
one or more layers, after which the input data is added to the transformed data. This is
called a residual block, which is portrayed in Figure 2.

Figure 2: A residual building block of a residual neural network [15].

Here F is the transformation that is applied to the data, F : Rnl → Rnl+1 , and if x is
the data of the previous layer, then

xt+1 = xt + F(xt, p). (27)

Again, p is our vector of parameters. As is the case for all neural networks, the idea behind
ResNets is that they improve as more layers are added. We will come back to ResNets in
the next section.
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4 Neural ODEs

The neural ordinary differential equation is a fairly newly-developed method to combine
ODEs and deep learning[7]. Instead of learning a transformation directly, as is done with
deep learning in general, we try to learn the structures of the transformation. Let us take
(27) as the output of some hidden state. Now we take more and more hidden layer, and
our timesteps smaller. If we take t to be infinitely small, we can change our system into
a continuous process. Instead of a discrete number of layers between the input layer and
the output layer, we allow the progression of the hidden states to become continuous. This
gives us the following

∂x(t)

∂t
= F(x(t), t, p). (28)

This is an ODE specified by a neural network. Now using our input layer x(0), which can
be specified by an initial condition, we get the output layer x(T ) as the solution to our
problem 28. Like mentioned, ResNets become more powerful when more layers are added.
But rather than adding more layers and taking the smaller steps each time, we can now
parameterize the derivative using an ODE, and solve it. By choosing the discretization in
our neural network we can get as many layers as we want. Figure 3 shows the ResNets and
ODE networks, where the pictures clearly indicate the discrete series and the continuous
series.

Figure 3: Left: A Residual network defines a discrete sequence of finite transfor-
mations. Right: A ODE network defines a vector field, which continuously trans-
forms the state. Both: Circles represent evaluation locations. Retrieved from [7].

5 Method

The method we use is based on a paper by Rackauckas et al. [16]. It uses the idea of
neural ODEs [7] and its main concern is demonstrating the use of differential equation
solvers with neural networks in the programming language Julia. They demonstrate the
use of their newly developed Julia package called DiffEqFlux, which is also used in our
study. The purpose of our thesis is to approximate a differential equation with the use of a
neural ODE. We therefore have to start by setting up a differential equation as to generate
our data. Let us take the following differential equation

∂x(t)

∂t
= f(x(t)), (29)
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like mentioned before in section 2. We need to start by generating data from this equation.
Let us say we sample t uniformly on a certain span, such that we get time samples ti, i =
0, 1, 2, ..., n, where n denotes the amount of time samples we want, ti ∈ [0, T ], T ∈ R. We
also set initial condition x(0) = x0.

Thereafter we start setting up our neural network. To do this, we have to implement
a prediction function. We start by defining a multilayer perceptron with one hidden layer
and a ReLU (Rectified Linear Unit) activation function [17],

σ(x) = max(0, x). (30)

Our deep learning model is the multilayer perceptron as presented in Figure 4.

Input
layer

Hidden
layer

Output
layer

Figure 4: Multilayer perceptron.

For simplicity we draw the hidden layer with three neurons only. We create layers with
a forward pass given by

σ(W [l]a[l−1] + b[l]). (31)

Now it is time to implement our neural ODE layer in our network. Like mentioned this is
an ODE defined by the neural network itself. If the input of our network is x the neural
ODE layer is simply

∂x(t)

∂t
= F(x(t), t), (32)

with F like mentioned in section 4. Our prediction function, P, is then the solution to this
ODE. Now it is time to define our loss function, which is

L =
∑
ti

‖P(ti)− x(ti)‖. (33)

The loss function is minimized and as a consequence the weights and biases are adjusted
accordingly. In order to do this, the gradients need to be computed. Since this takes
unnecessary effort to do by hand, we let a computer program evaluate these by means of
automatic differentiation [18]. Automatic differentiation uses the chain rule from differen-
tial calculus to compute derivatives. There are two main types of automatic differentiation,
namely forward mode and reverse mode. The package DiffEqFlux from Julia allows us
to switch between those two gradient methods very easily, such that our method does not
have to be adapted to either one.

Since our goal is to train our model for several initial conditions, we need to make sure
our prediction function depends on the initial condition. This then becomes P(xj(0)), with
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xj(0) ∈ R the initial condition for the jth training point, j = 1, 2, ..., J, J ∈ N. Our loss
function also needs to take the several initial conditions into account, so

L =
∑
xj(0)

∑
ti

‖P(ti, xj(0))− xj(ti)‖. (34)

After training, we still need to compute the test loss. For this, let us take initial
condition xt(0) = x0, where x0 /∈ xj(0). Again we generate data from 29, now using initial
condition xt(0). Our loss prediction has been optimized during training for the weights
and biases, so all that is left is to compute

L =
∑
ti

‖P(ti, xt(0))− x(ti)‖. (35)

This gives us the test loss, which we can then compare to the training loss.

6 Results

Now our method is set, we can start training our model. We implemented our method in
the programming language Julia for this, and tried to train and test our model for two
different systems: the Lotka-Volterra equations [19] and the Van der Pol oscillator [20].
Since our goal was to see how our model would react if we tested it on a different set of
initial conditions after training it for certain other conditions, we first need to actually
train our model.

6.1 Lotka-Volterra

The Lotka-Volterra equations are defined as follows

∂x1
∂t

= αx1 − βx1x2,

∂x2
∂t

= δx1x2 − γx2.
(36)

where x1 defines the number of prey and x2 the number of predators. α is the prey
population growth parameter, β is the first species interaction parameter, γ is the second
species interaction parameter and δ is the predator population extinction parameter.

For training our model we chose the settings depicted in Table 1.

Table 1: Values parameters of the model for (36).

Parameter Description Value
α Prey population growth parameter 1.5
β First species interaction parameter 1.0
γ Second species interaction parameter 3.0
δ Predator population extinction parameter 1.0
η Learning rate 0.01
epochs Amount of full cycles over the whole training set 200
∆t Step size 0.05
T End timespan 2.5

In order to get a qualitative approximation of the prey-predator model using our method
it is important to carefully consider the learning rate and amount of epochs. If the number
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of epochs were to be too large there is a possibility of overfitting, meaning the model will
perform well during training, but poorly during testing. However, recent studies suggest
that some deep learning models can exhibit the double-descent phenomenon [21]. This
means that the models performance does worsen as the amount of epochs increases at
first, but later performs better if the amount of epochs are increased even more. In order
to study this possible effect some large amounts of epochs are added as well. The learning
rate determines how much the weights are updated for each iteration, and thus a rate too
large will cause for unstable training. If the rate is chosen too small, its consequence will
be a long computation time as well as the possible development of local minima, meaning
the model gets stuck in the process and the loss function cannot be minimized any further.
In Figures 5 and 6 the amount of epochs is graphed against the training and test loss. It
is visible that after 200 epochs it is not valuable anymore to train the model any longer,
since the test loss stays steady and only the training loss decreases slightly. The losses are
also shown in Table 2.

Table 2: Training and test loss.

Amount of epochs 100 150 200 250 300 1000 2000
Training loss 9.26 2.32 1.58 1.02 0.93 0.46 0.28
Test loss 8.45 1.59 1.26 1.37 1.48 7.01 7.05

Figure 5: The amount of epochs
against the training and test loss
in Table 2.

Figure 6: Epochs 100-300
against the training and test loss
in Table 2.

In Julia we also have to determine the ODE-solver, for which we chose Tsit5, which
has a performance similar to the ODE-solver ode45 in Matlab [16]. Tsit5 is in general a
suitable solver for non-stiff equations in Julia, therefore a good solver for (36). Finally,
the optimizer needs to be determined. We decided to use the optimizer Adam [12], an effi-
cient algorithm for first-order gradient-based optimization of stochastic objective functions,
suitable for networks of this size.

In Figures 7 and 8 the approximation of the Lotka-Volterra equations can be seen after
our network has been trained for several different initial conditions. The figures depict the
prediction the trained model made for initial conditions of x = 2 and y = 5. In Table 3
the values for the initial conditions during training can be seen. The testing value differs
from the training values.

We also ran the model for a longer timespan. In Figures 9 and 10 the approximation
is visible for T = 5. The training loss is in this case 48.04 and the test loss is 17.31. The
amount of epochs used is again 200, with a learning rate of 0.01.
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Figure 7: Approximation of the Lotka-Volterra equations (36).

Figure 8: Approximation of the Lotka-Volterra equations (36) in 2D.

Table 3: Values initial conditions for the different training points for (36).

[x1;x2] [2; 3] [1; 5] [5; 9] [5; 1] [3; 2] [4; 3]

Figure 9: Approximation of the
Lotka-Volterra equations (36) for
a larger timespan.

Figure 10: Approximation of
the Lotka-Volterra equations (36)
for a larger timespan in 2D.
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6.2 Van der Pol oscillator

The Van der Pol oscillator can be described as follows

d2x

dt2
− µ

(
1− x2

) dx
dt

+ x = 0, (37)

where u is the parameter indicating the strength of the damping. We would however
prefer not to have a second order differential equation, but a first order. By applying
transformation x2 = x − x3/3 − ẋ/µ, and setting x = x1 we get to the following two-
dimensional result

∂x1
∂t

= µ(x1 −
1

3
x31 − x2),

∂x2
∂t

=
1

µ
x1.

(38)

In Table 4 the values of the parameters of our model can be seen. Again the Adam-
optimizer an the Tsit5 ODE-solver are used.

Table 4: Values parameters of the model for (38).

Parameter Description Value
µ Strength of damping parameter 0.5
η Learning rate 0.01
epochs Amount of full cycles over the whole training set 200
∆t Step size 0.05
T End timespan 5.0

In Figures 11 and 12 it is again visible what the test and training loss is as the amount
of epochs grows larger. Table 5 shows the exact amount of training and test loss.

Table 5: Training and test losses.

Amount of epochs 100 150 200 250 300 1000 2000
Training loss 1.19 1.13 0.12 0.13 0.31 0.06 0.01
Test loss 0.96 1.33 0.10 0.16 0.20 0.10 0.01

In Figures 13 and 14 the approximation of the van der Pol system can be seen after
the network has been trained for several different initial conditions. The figures depict the
prediction the trained model made for initial conditions of x = 0.3 and x2 = −0.5, which
are different initial conditions than used in the training set. Table 6 shows the values for
the initial conditions of the training points.
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Figure 11: The amount of
epochs against the training and
test loss in Table 5.

Figure 12: Epochs 100-300
against the training and test loss
in Table 5.

Figure 13: Approximation of the Van der Pol oscillator (38).

Figure 14: Approximation of the Van der Pol oscillator (38) in 2D.

We also ran the model for a longer timespan. In Figures 15 and 16 the approximation
is visible for T = 10. The training loss is in this case 63.80 and the test loss is 87.85. The
amount of epochs used is again 200, with a learning rate of 0.01.
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Table 6: Values initial conditions for the different training points for (38).

[x1;x2] [0.5; -0.5] [0.3; -0.1] [-0.5; 0.5] [-0.2; 0.0] [0.2; -0.7]

Figure 15: Approximation of
the Van der Pol oscillator (38) for
a larger timespan.

Figure 16: Approximation of
the Van der Pol oscillator (38) for
a larger timespan in 2D.

6.3 Amounts of training points

During training we noticed that the quality of the approximation depended heavily on the
amount of training points used. Figure 17 and Table 7 show the loss for an amount of
training points ranging from one to six for the Lotka-Volterra equations (36). The actual
values of the initial conditions used for each of these training points are the same as in
Table 3. The first training point is only the first-depicted value, the training point that
was added afterwards is the second-depicted value, and so-on.

Figure 17: The amount of training points against the training and test loss for
(36).

Table 7: Training and test losses for different amounts of training points for (36).

Amount of training points 1 2 3 4 5 6
Training loss 3.36 2.88 9.02 2.90 2.67 1.58
Test loss 89.97 10.63 16.43 3.68 2.17 1.26

16



The same procedure was used for the Van der Pol oscillator (38). Figure 18 and Table
8 show the loss dependent on the amount of training points. The values of the training
points are depicted in table 6, shown in the same way as for the Lotka-Volterra equations.

Figure 18: The amount of training points against the training and test loss for
(38).

Table 8: Training and test losses for different amounts of training points for (38).

Amount of training points 1 2 3 4 5
Training loss 0.27 0.20 195.76 0.28 0.12
Test loss 14.77 7.67 414.46 2.55 0.10

7 Discussion & Conclusion

In this paper we have looked at neural ODEs and how they can be used to approximate
the Lotka-Volterra equations and the Van der Pol system. As can be seen in the figures
in the result section, it is possible to use neural ODEs to set up a network that learns
the structure of a system of equations. By training the model for different sets of initial
conditions, it learns how the equations behave with different starting points, so it is not
dependent on one single system of differential equations to make a prediction for a new set
of initial conditions. The parameters were trained to be used for several training points,
thus learning the behaviour of the system in general.

However, there are many parameters and variables that need to be taken into account.
During training we noticed that it matters a lot what the values are for the learning rate
and the amount of epochs. The effect on the quality of the approximation of the amount
of epochs is shown in Figures 5 and 11. It is interesting that those figures do not depict
the exact same behaviour. Figures 5 and 6 shows a more steady decrease in loss as the
amount of epochs increases, after which the test loss increases again a lot for the larger
epochs. Figures 11 and 12 show a very sudden descent in loss at 200 epochs, after which
both the test and training loss slowly increase again, to be followed by a decrease for larger
epochs. We do not have an explanation for this, it is thus an interesting topic for further
research.

The learning rate has not been closely looked at during this research, so this could be
a factor that could be studied more intensely. Besides this, the training process in this
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research was relatively short. The Lotka-Volterra equations were trained on six different
sets of initial conditions, and the Van der Pol oscillator was trained on five different sets
of initial conditions. Figure 17 shows that at least five training points were necessary to
get a test loss lower than the training loss for the Lotka-Volterra equations. After adding
the third training point, both the training and test loss increased again. Our hypothesis
is that this is caused by the third training point having relatively large initial conditions
compared to the other training points, as can be seen in Table 3. As for the Van der Pol
oscillator, the model needed five training points before the test loss got smaller than the
training loss. Figure 18 interestingly shows that the model was not capable of accurate
testing, or training for that matter, when the third training point was added. A possible
explanation for this is that the third training point is very different from the first two
training points, since x1 is negative and x2 is positive, which was the other way around
for the first two training points. It implies the effect of the value of the initial conditions
of the Van der Pol oscillator is of a large influence on the structure of the system, making
it harder to adjust the parameters such that it can minimize the loss function using all
those training points. Once a fourth training point is added, the model seems to perform
much better. It is thus clear that the performance of the model is highly dependent on the
choice of the amounts and values of the initial conditions. However, we do not know how
well the model will improve once it is trained on a larger and more diverse dataset. We
thus recommend to study this aspect of the model in more detail, as there are still many
unknowns.

There was unfortunately not enough time to study the model and its capability of
approximating differential equations for a longer timespan. Figures 9, 10, 15 and 16 show
that it is possible to make an approximation, and that the network can adjust the parame-
ters such that the general structure of the system is preserved. However, the loss becomes
a lot bigger both during training and testing. We thus recommend that more experiments
are done with this, since it could be that a larger amount of epochs solves this problem.

On a positive note, our network turned out to work quite well on our datasets, and
surprisingly enough managed to make decent approximations for a relative small number
of training points. We do recommend to broaden this research to more different kind of
systems of differential equations. There are more complicated systems, which could have
a very different behaviour, and therefore more difficult to learn for a neural network.
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