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Abstract—Positive selection is an interesting concept in popula-
tion genetics, and with more genetic data available new and better
tools to detect selective sweeps indicative of positive selection are
needed. Selective sweeps are detectable by looking for linkage
disequilibrium (LD) and other statistical metrics. RAiSD uses
LD and other statistical measures to detect a selective sweep.
However with LD it only considers it a LD match when the r2

value is 1, and all other values are floored to 0. This raises the
question whether the performance of RAiSD could be improved
by choosing the r2 threshold somewhere else, for example 0.8.
This is implemented, but the increase in accuracy of the code
is not worth the increase in computational time with the tested
data sets. This could be investigated further, but a decrease in
compute time is required for this. So an FPGA accelerator is
developed to try to decrease the computation time and realise
the potential of the system.

Index Terms—High level synthesis, Linkage Disequilibrium,
accelerator, Selective sweep

I. INTRODUCTION

Positive selection is a phenomenon which occurs when a
certain allele has a higher probability of producing offspring
compared to competing alleles. Over time this allele tends to
be more prominent within the population. If given enough time
the whole population will tend to get this allele. This increase
in frequency of the favourable allele is called a selective
sweep. A selective sweep is thus an indication that a certain
allele has better change of producing more offspring. This is a
useful indication for genetic research and population genetics.
Thus being able to see a selective sweep and by extension
positive selection is essential. The challenge is to detect the
difference between neutral alleles and gene locations where
recently positive selection has occurred. Figure 1 shows some
of the fingerprints of a selective sweep, namely the fixation
of the beneficial mutation, the reduction of variance close to
the beneficial allele and strong correlations between neutral
alleles [2].
When looking at the genetic data of a population, there
is a lot of genetic data which is not interesting for the
purpose of detecting a recent selective sweep. This is because
most of the genetic data is equal for everyone inside the
population. Only the locations where there is a difference
between specimen is of interest when detecting a selective
sweep. Because if all specimen have the same genetic data

at a location, no correlation or other data can be extracted
from this. This is achieved by only looking at the single-
nucleotide polymorphisms (SNP) of the population, which are
the different nucleotides at the same location for different
specimen. Another possible reduction in datasize is to convert
the base pairs (A, C, G, T), to a binary presentation, because
it is assumed to only have two possible base pairs at one
location. This allows a computer to process the data faster,
because a binary representation of the different SNP’s.
RAiSD [3] is a program for detecting selective sweeps. This
program considers three different factors to detect positive
selection, namely the variance, the site frequency spectrum
(SFS) and the linkage disequilibrium (LD). The source code
of this program is public and open.
High level synthesis (HLS) tools are tools which allows the
developer to work at a higher level of abstraction on the
FPGA. This allows the development time to decrease, and
the tools tend to be more flexible. Currently there are some
accelerators developed for the detection of selective sweeps
[5][6]. However to the knowledge of the author none of these
accelerators use a HLS for development.
The motivation for developing a more accurate implementation
of the LD algorithm and to develop a accelerator for this is that
it could have a potential to speed up the process of genetics
research. It also tests the possibility of HLS tools to develop
these accelerators, and this has the possibility to reduce the
development of other accelerators. This would allow to use
more datasets and see if this shows better results.

II. BACKGROUND

Linkage Disequilibrium (LD) is the correlation between two
different alleles in a population. Two different loci are in
linkage disequilibrium when the frequency of association is
either higher or lower than what is expected with random
change. When considering two different loci i, j in a given
populations, consider an allele A at locus i, and an allele B
at locus j. pA is the frequency of allele A occuring in the
population, pB is similarly the frequency for allele B and lastly
pAB is the frequency of both A and B occurring at the same
time. Then the coefficient of linkage disequilibrium is given
by

DAB = pAB − pApB (1)



Fig. 1. A: The first specimen in the population has the beneficial allele
B: After the selective sweep has finished and the population has the same
beneficial allele

This disequilibrium constant can be different for different
combinations of alleles with fixed loci. However when you
simplify the situation that there are only 4 alleles (a,A, b, B),
two at each location the values of LD are related a following:

DAB = −DAb = −DaB = Dab (2)

The sign of the constant isn’t of interest with regards of
detecting a recent selective sweep. This is due to the fact
that the sign of the coefficient is a indication if the two
alleles are more present together than expected from random
change, and a negative sign indicated that the alleles tend
to occur separate from each other. The absolute value is of
more interest, because a higher absolute value indicates a
higher degree of linkage disequilibrium. One problem with this
definition is that it is very closely related to the frequencies
of the two different alleles, and thus it is hard to compare
the linkage disequilibrium between different loci of the same
group, due to the fact that the frequency of the original alleles
is different, the value of linkage disequilibrium also changes.
To try to mitigate this problem the correlation coefficient is
used to normalize the values for LD, meaning that the values

can be compared in a meaningful way.

r2A,B =
(PA,B − PAPB)

2

PAPB(1− PA)(1− PB)
(3)

This formulation of the Linkage Disequilibrium also has the
added benefit of always being positive, meaning that compar-
ing values is easier.

III. RELATED WORK

A. Positive selection detection

There are currently many competing tools for analysing
genetic data to detect positive selection [15]. Pavlidis et
al [15] compile some of the more used tools, and try to
compare the differences between them. There are three basic
mathematical tools which are used to detect an occurrence
of recent positive selection, namely site frequency spectrum
(SFS), linkage disequilibrium (LD), and diversity reduction.
Pavlidis et al [15] evaluated four different tools, SweepFinder
[14], SweepFinder2 [9], SweeD [16] and OmegaPlus [1] [4],
which consist of both sequential and parallel implementations,
and utilise either SFS of LD.
Positive selection can be measured using multiple factors, the
main three are the local genetic variation, SFS and LD [3].
As shown by Alachiotis and Pavlidis [3], combining these
factors yields superior results, and with some optimization the
computational load is also reduced compared to other state of
the art tools. The LD part of this code will be changes to test
the potential of testing the LD value to a different threshold.
There is the tool based on the µ statistic [3], which accelerates
this tool by utilizing a FPGA to decrease processing time
of some intensive calculations. This tool is developed by
Alachiotis et al [5], and this implementation was able to
decrease the processing time by up to two orders of magnitude
on both simulated and real data. It achieves this by splitting
up the process by a CPU which parses the genetic data into
a set of SNPs, and a FPGA which calculates the variation,
SFS and LD, using a sliding window.

B. HLS and FPGA acceleration

Recently the field of HLS is developing quickly with both
academic and commercial HLS languages being developed
[12].
Nane et al [12] made a survey on the different HLS, and tried
to differentiate between the different tools. They classified
the languages into four classes, namely Object Oriented,
Procedural, C-extended and New languages. It also compared
the performance of three academic languages, BAMBU [18],
DWARV [13] and LEGUP [7], and compared it to a commer-
cial language.
Chrysos et al [8] studies the possibilities of FPGA’s to acceler-
ate different tools. For this the authors looked at multiple algo-
rithms, and stated some algorithms which have a FPGA imple-
mentation. Here it is observed that the computation time can
be reduced, while significantly reducing power consumption of
the system. There is also the potential of Graphical processing



units (GPU), which are not configurable hardware, but GPU’s
excel at parallel processing, able to increase performance up to
40 times compared to classical CPU processing [8]. This also
introduces the concept of hybrid systems, with both a FPGA
and a GPU to choose the best accelerator depending on the
algorithm, or dividing the algorithm up into a part GPU part
FPGA.
Alachiotis et al [6] implemented a FPGA based LD accel-
erator. This accelerator utilises an automatic RTL generator
to fully utilise the FPGA. This implementation was up to 50
times faster than a modern 6-core CPU. This accelerator thus
reduces the compute time, but it also considers LD in a binary
fashion, meaning that all r2 not equal to 1 are considered to be
0, reducing compute time more, but also reducing the output
resolution, and thus potentially losing some information.

IV. SYSTEM DESIGN

A. Extending RAiSD

The program RAiSD [3] is used as the original source to test
the behaviour of the different ranges of LD. This is achieved
by replacing the functions which return if the two inputs are a
LD match. These functions take as input two different arrays
of SNP’s, in a binary format. It also has as input the size of this
array and the amount of SNP’s to consider. One considers the
situation that if allele A is present, B is also present, effectively
looking at if the arrays A and B are identical. The other functio
flips one of the arrays and then checks if the two arrays are
then equal. This checks the situation if A is present, B is not
and vise versa. So these two functions are able to detect LD
if the r2 value is equal to 1, but isn’t sensitive for any other
r2 value.

To change the behaviour of the code, another function is
called as opposed to the two described above, which returns
a float representing the value of r2, allowing the code to
more precisely determine an appropriate threshold as opposed
to only considering r2 = 1. This new function also doesn’t
need to consider the binary opposite, due to the fact that the
calculation of r2 doesn’t depend on the definition of which
alleles are 1 and 0, as seen in equation 3.

This new version of the code is tested against four different
data sets, and the µstat is compared between different runs
with different LD thresholds and different sets.

B. LD calculation

The LD function which was used above to test the func-
tionality of changing the LD threshold is now used as a basis
for the accelerator. A copy is made as a reference function to
make sure that the behaviour of the accelerator and the original
function remains identical. The definition of r2 as seen in
equation 3 uses a lot of numbers with a range of [0, 1], which
has to be implemented by either a float or a double. This takes
a lot more resources on a FPGA, so equation 3 is rewritten in
equation 4.

Di,j = Pi,j − PiPj

Pi =
popcnt(i)

S
, Pj =

popcnt(j)

S
, Pi,j =

popcnt(i&j)

S

r2i,j =
(Pi,j − PiPj)

2

PiPj(1− Pi)(1− Pj)
=(

popcnt(i&j)
S − popcnt(i)

S
popcnt(j)

S

)2

popcnt(i)
S

popcnt(j)
S (SS −

popcnt(i)
S )(SS −

popcnt(j)
S )

S4

S4
=

(popcnt(i&j)S − popcnt(i)popcnt(j))2

popcnt(i)popcnt(j)(S − popcnt(i))(S − popcnt(j))

(4)

In equation 4 is used to represent the bitwise AND operation
between two words, and the function popcnt is used to
represent the popcount function, which is the amount of 1
in a integer. The advantage of this rewriting is that most of
the calculations are done using integers. Only at the last step,
with the division do the integers have to be converted to floats
and only 1 float operation has to be performed.

The design of the accelerator can be seen in Figure 2, where
the dataflow of the accelerator is shows with two different
popcount cores. The pop count part of the hardware is used to
determine the values of popcnt(i), popcnt(j) and popcnt(i∩j)
from equation 4. The big challenge of determining these
values is that it is dependant on the sample size, and the
fact that a long integer only contains 64 bits. This means
that the hardware has to determine the pop count of possibly
more than 1 long integer. This calls for a iterative approach,
but a iterative for loop with a variable amount of cycles is
difficult to synthesize to hardware. This problem was solved
by implementing a different amount of popcount cores, which
work in parallel on different parts of the data, and at the end
the sum of the output of these cores is taken and used to
determine the value of r2.
The second part of the processing is not influenced by the
input data size, but the arithmetic uses a lot of floating point
hardware, which is slower than integer arithmetic [10]. To take
advantage of this fact, the calculation for r2 is changed slightly
to allow more integer arithmetic to be used, see equation 4.

V. RESULTS

A. Experimental setup

The data sets which are used are a subset used to test the
original code for RAiSD [3] [11]. The data sets 1, 20, 40
and 60 are used from RAiSD. The metrics used to test the
output are the accuracy, success rate, true positive rate (TPR)
and run-time. The computer which was used to run RAiSD
and get the run-time values contains a AMD Ryzen 7 3700X
paired with 16 GB of RAM. The FPGA board which was used
for the accelerator is the ZedBoard (xc7z020-clg484-1) [19].
This FPGA was configured to run with a cycle time of 10 ns.

B. LD with accuracy

In Figure 3 the accuracy of RAiSD is plotted against
different r2 threshold, with multiple data sets. It can be
shown that the a reduction of r2 threshold doesn’t change the
accuracy significantly until the threshold is reduced to below
0.2.
In Figure 4 the success rate of the different runs of RAiSD are

plotted. Again there is not a significant difference between the



Fig. 2. Design of the FPGA accelerator, with two popcount cores

Fig. 3. Accuracy of RAiSD with different threshold of LD which are
considered a match

Fig. 4. Success rate of RAiSD with different thresholds of LD

Fig. 5. The TPR of RAiSD with different data sets and different thresholds

runs with a threshold between 0.5 and 1.0. However below 0.5
The success rate starts to decrease below 0.5 and this reduction
accelerates as the threshold is reduces to below 0.2.
The True Positive Rate (TPR) is perhaps one of the most

important metrics to consider, because it considers how sen-
sitive RAiSD is to a selective sweep which is the goal of the
software. It can be seen in Figure 5 that for high LD threshold
the results are highest, and that the TPR tends to reduce with
lower LD threshold. However these differences are not large
until the LD threshold reduces to below 0.2, an then the TPR
starts to plummet, making the output significantly worse.
Lastly the time to compute the different samples is compared.

The computational increases compared to the original RAiSD
code due to the fact that the code is calculating the actual r2

value as opposed to comparing if two samples are equal or
exact opposite. This causes the code slow down as seen in
Figure 6. However with a lower LD threshold, there are more
matching samples, and due to the fact that these samples are
combined, the code performs fewer comparisons. This causes



Fig. 6. Genetics variation at A: A new occurrence of a beneficial mutation
B: After the selective sweep has occurred

Fig. 7. Hardware requirements of the accelerator with different amount of
popcount cores

the code to decrease computation time with a reduced LD
threshold. Initially the change in computational time is around
a factor of 2, and the original code is as fast as a LD threshold
between 0.3 and 0.4.

C. Accelerator performance

The design is tested with a input size of 1000 long integers
for every input cycle, which has to be reduced to a single
float as a output. The accelerator requires more hardware the
more popcount cores are used, which is expected (see Figure
7). When 10 pop count cores are used, 84% of the LUT’s are
used, as seen in Table II. A problem with the 10 core design
is that it requires a input bitrate of 53 Gbit/s (see Table I).
But the FPGA used to design the hardware only has a PCIe
2.0x8 interface [19], which only is able to achieve a bitrate of
32 Gbit/s [17]. Thus of the different designs, the 5 popcount

design has the highest throughput while the input fits on a 32
Gbit/s PCIe 2.0x8 interface. But the required throughput of the
5 core design is fairly close to the max theoretical throughput,
so any design changes which require more throughput will
over saturate the PCIe interface.
The 5 core design, with a input sample size of 1000 64 bit
words has a interval of 219 cycles I.

VI. CONCLUSION

One of the most important metrics of RAiSD is the TPR. To
get at least comparable results to the original code a high LD
threshold has to be chosen (Figure 5). The same applies to the
success rate of RAiSD (Figure 4). However these results are
comparable to the original code and the runtime is significantly
higher to the original code (Figure 6). Combining these facts
it is currently not worth the additional computational load on
a computer to calculate the LD as opposed to checking if it
is equal or opposite.
The FPGA accelerator has potential to increase the perfor-
mance of the system, but the accelerator hasn’t been tested
in combination with RAiSD to determine the difference in
computation time. So the full potential of the accelerator is
not known, but the fact that it is able to fully saturate the
PCIe 2.0x8 shows that the throughput of the system is fairly
high.

VII. DISCUSSION

RAiSD was designed with either a full LD match or no
match at all. One way this is obvious is that the program will
group matching pattern and consider it as a single pattern. This
makes sense when a LD match means that it is totally equal.
But when considering LD values which are not a full match,
this optimization will throw away unique patterns. This in turn
could reduce the performance of the system. Possibly there are
other similar simplifications in the code which expect a LD
pattern to be either a full match or no match at all, and when
the code matches two non identical patterns it will actually
reduce the performance. However these factors were not tested
due to time constraints.
A obvious improvement is to integrate the accelerator into
the RAiSD software and actually compare the different times
required to complete the analysis of the data. This would show
the potential time savings or maybe the fact that the latency
associated with using a external PCIe device would be more
significant than the reduced time to compute. Another thing
with the current implementation of the accelerator is that the
routing of the design has not been done, which could reveal
errors or decrease the final performance of the accelerator.
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